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Abstract: Polycystic ovary syndrome (PCOS) is a major anovulatory infertility affecting a great pro-
portion of women of childbearing age and is associated with obesity, insulin resistance and chronic
inflammation. Poor endometrial receptivity and recurrent implantation failure are major hurdles to
the establishment of pregnancy in women with PCOS. The accumulating body of evidence obtained
from experimental and clinical studies suggests a link between inherent adaptive and innate immune
irregularities and aberrant endometrial features in PCOS. The use of conventional therapeutic in-
terventions such as lifestyle modification, metformin and ovarian stimulation has achieved limited
clinical success in restoring ovulation and endometrial receptivity in women with PCOS. Unlike other
immunosuppressive drugs prescribed in the clinical management of autoimmune and inflammatory
disorders that may have deleterious effects on fertility and fetal development, preclinical studies in
mice and in women without PCOS but with repeated implantation failure revealed potential thera-
peutic benefits for the use of low-dose tacrolimus in treating female infertility. Improved systemic
and ovarian immune functions, endometrial progesterone receptor and coreceptor expressions and
uterine vascular adaptation to pregnancy were among features of enhanced progesterone-receptor
sensitivity in the low-dose tacrolimus-treated mouse model of the disease. In this review, we have
compiled available experimental and clinical data in literature on endometrial progesterone resistance
and current therapeutic options, as well as mechanisms of actions and reported outcomes relevant
to the potential therapeutic benefits for the use of low-dose tacrolimus in treating PCOS-associated
female infertility.

Keywords: polycystic ovary syndrome (PCOS); endometrial progesterone resistance; tacrolimus;
immunosuppression; chronic inflammation

1. Introduction

Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder and a major
cause of anovulatory infertility affecting 6–10% of women of reproductive age [1–3]. Hu-
man and experimental studies confirm that, in its typical form, this multisystemic hormonal
disorder is characterized by oligo- and/or anovulation, as well as hyperandrogenism, and
is often associated with obesity, insulin resistance, dyslipidemia, immune disturbances
and increased risk of cardiovascular events [4]. After excluding other ovarian and en-
docrine disorders simulating PCOS, the diagnosis of the disease is exclusively dependent
on two of three features: irregular menstrual cycles with oligo- or anovulation, and poly-
cystic ovarian morphology (PCOM) together with clinical and/or biochemical evidence
of hyperandrogenemia [5,6]. Recommendations from the international evidence-based
guideline for the assessment and management of PCOS (i.e., the Rotterdam diagnostic
criteria) characterized four phenotypes of the syndrome: (1) Type A (classic) presents
with irregular cycles with hyperandrogenism (HA) and polycystic ovarian morphology
(PCOM), (2) Type B (classic) presents with HA and irregular cycles, (3) Type C (ovulatory,
nonclassical) presents with HA and PCOM, and finally (4) Type D (normo-androgenic)
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presents with irregular cycles and PCOM [7] (Table 1). Beside hormonal disturbances,
particularly hyperandrogenemia and associated chronic anovulation, low progesterone
(P4) levels and ensuing oligo-menorrhea further leading to endometrial dysfunctions, loss
of endometrial plasticity is believed to be among contributing factors in the development
of the reported cyclical irregularities in PCOS [8]. It is generally held that combinations of
primary (genetic and cellular) endometrial abnormalities manifesting during prenatal de-
velopment, together with postnatal endometrial defects secondary to hormonal, metabolic,
inflammatory and immune malfunctions, result in these PCOS-associated endometrial
dysfunctional phenotypes [9,10]. Indeed, evidence of primary endometrial defects in
women with PCOS is demonstrated in the existence of inherent endometrial aberrancies
in both ovulatory and anovulatory phenotypes affecting several biological pathways and
the anomalous expressions of proteins involved in endometrial receptivity, such as those
related to cell adhesion and the cytoskeleton network, transcriptional regulation, DNA re-
pair, apoptosis and cell cycle regulation, cellular transport and signaling and mitochondrial
metabolism [11–15]. Importantly, evidence of perturbed endometrial immune responses
and poor endometrial receptivity has also been reported in ovulatory and anovulatory
women with PCOS [10,11,16,17].

Table 1. Classification of polycystic ovary phenotypes (modified from references [7,18]).

Parameter Phenotype A Phenotype B Phenotype C Phenotype D

HA + + + −
OD + + − +

PCOM + − + +
Abbreviations: HA: hyperandrogenism, OD: ovulatory dysfunction, PCOM: polycystic ovarian morphology.

2. Evidence of Endometrial Immune Irregularities in PCOS

Despite a plethora of emerging data and myriad suggested hypotheses on the im-
munological abnormalities associated with PCOS, the exact mechanism(s) underlying
the immune etiology of this endocrine metabolic disorder and its links to disturbed en-
dometrial functions remain moot. To date, the general consensus is that the onset of
PCOS is marked by low-grade inflammation characterized by elevated serum levels of
CRP, IL1, IL6 and products of activated monocytes (e.g., TNFα, IFNγ, MCP1, MCP5
and MIP) as well as molecules originated from leukocyte–endothelium interactions (e.g.,
VCAM-1, ICAM-1) [19–21]. Autoantibodies have also been detected in women with
PCOS [22,23], and a causal association between chronic low-grade inflammation and the
age- and adiposity-dependent development of endocrine, metabolic and cardiovascu-
lar adversities in PCOS has been reported [24,25]. At the endometrial level, impaired
progesterone-mediated decidualization of endometrial stromal fibroblasts was associated
with aberrant pro-inflammatory gene-expression profiles in the form of increased ex-
pression of IL8, monocyte chemo-attractant proteins MCP1 and MCP3 (CCL2 and CCL7,
respectively), RANTES (CCL5) and granulocyte-macrophage colony-stimulating factor
(GM-CSF) [17]. These have been reported among several endometrial cell populations in the
proliferative phase endometrium of anovulatory women with PCOS [10,17]. Moreover, pro-
teomic studies by Rashid et al. (2020) unraveled evidence of aberrant differential expression
of proteins involved in inflammation, humoral immune responses, immunomodulation
and immune-checkpoint mechanisms in women with PCOS with subdued fertility and
dampened endometrial receptivity [11]. These findings are supported by the significant re-
lationship between programmed cell death-1 (PD-1) and programmed cell death-1-ligand I
(PD-L1) polymorphisms and PCOS, which was reported by Han et al. (2021) [16]. Alto-
gether, the importance of the findings by Rashid et al. (2020) and Han et al. (2021) stems
also from the critical role of the PD-1/PD-L1 immune-checkpoint pathway in modulating
the cytotoxic activity of a subset of decidual CD8+ T cells, namely the PD1/NKG2D double
positive CD8+ regulatory T cells (Tregs), which contribute to maternal immunotolerance at
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the maternofetal interface [26]. Another important subset of endometrial Tregs involved
in modulating local immune milieu during implantation are the CD4+CD25+ T cells [27].
The quintessential role of these fetal-specific Tregs in suppressing the allogeneic response
against the implanting embryo and supporting early gestation is well demonstrated in
previous animal studies [28–30]. Whereas adaptive transfer of exogenous Tregs in the
peri-implantation period in depleted mice prevented fetal loss [29], targeted depletion of
these T cells during implantation terminates pregnancy [28]. One major mechanism for the
differentiation of these Tregs from their naïve CD4+ status is the activation and expression
of the fate-determining transcriptional factor FoxP3, which are believed to be achieved
under the influence of the modulatory cytokines TGF-β, IL2 and IL15 [27,31]. This critical
differentiation of the CD4+ T cells into functioning FoxP3+ CD4+CD25+ Tregs might be
defective in PCOS [32]. A study by Krishna et al. (2015) reported that the inability of the
CD4+CD25+ T cells, extracted from the entire peripheral blood mononuclear cell popu-
lation, to expand during the follicular phase is most likely a consequence of an inherent
hyporesponsiveness to IL2 signaling and compromised STAT5 activation in women with
PCOS [32]. STAT5 is necessary for Treg development, as it binds to the FoxP3 promoter
and regulates FoxP3 expression [33]. Preclinical studies in mice have also revealed that
the declining thymic ability of the estrogen-primed female mouse to produce CD4+CD25+
regulatory T cells culminated in anovulation and ovarian-cyst development [34]. Moreover,
among features of perturbed Tregs functions in PCOS is the low-level expression of the
leukemia inhibitory factor (LIF) in the endometria of women with PCOS [35]. LIF is a Treg
cytokine that influences fate determination in these cells [36,37]. More importantly, animal
studies and clinical data support a critical role for LIF in preparing the endometrium for
embryo implantation and postimplantation embryonic development [38,39]. Therefore, the
crucial role of FoxP3+ Tregs in endometrial receptivity and embryo implantation [30,40,41]
dictates the need for alternative therapeutic approaches to support endometrial FoxP3 acti-
vation and the periconceptional expansion of the CD4+CD25+ Tregs in infertile women [27],
especially those with PCOS.

3. Evidence of Endometrial Progesterone Resistance in PCOS

A resistance to the hormonal actions of progesterone (P4), also referred to as P4 resis-
tivity, has been described in women with infertility, including those with PCOS [42–44].
Human studies established that PCOS endometrium is inherently different with respect
to its response to progesterone [44,45]. PCOS patients exhibit poor endometrial receptiv-
ity and reduced effectiveness and exposure to progesterone [46]. Molecular mechanisms
associated with the latter are not well understood. However, quantitative and qualitative al-
terations in the endometrial epithelial progesterone receptor (PGR) have been described in
the secretory endometrium of women with PCOS [46–48]. Quezada et al. (2006) confirmed
that higher levels of expression of the endometrial epithelial PGR messenger RNA (mRNA)
and protein are associated with an aberrant higher expression of the androgen receptor
associated protein 70 (ARA70) and low level of the adhesion molecule beta-3 integrin in
the midsecretory endometrium of women with PCOS [46]. Aberrancies in the endometrial
epithelial expressions of PGR-A and PGR-B have also detected in the proliferative phase
of chronically anovulatory obese women with PCOS [47]. Studies by Paulson et al. (2017)
revealed that the aberrant overexpression of the endometrial epithelial and stromal PGR-B
and the downregulation of the PGR-A in the proliferative endometrium of obese women
with PCOS likely impacted proliferation of the secretory-phase endometrium [47]. Fea-
tures of defective endometrial progesterone actions have also been confirmed by Hu et al.
(2018) [48], suggesting that the aberrant overexpression of PGR-B in the cytoplasm rather
than the nuclei of the endometrial epithelial and stromal cells is associated with the de-
velopment of PCOS in women [48]. The culprit of the abovementioned irregularities of
the endometrial PGR expression and localization is believed to be, in part, due to chronic
anovulation and the elevated levels of androgens and their receptors, estrogen receptor
alpha (ERα) and steroid receptor co-activators in the PCOS endometrium [48,49]. How-
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ever, the plausible mechanisms involved in this progesterone resistance may reside in the
progesterone receptor (PGR) itself. This was first reported by Chrousos et al. (1986) [50]
and is supported by the work of Igarashi et al. (2005) [51] establishing that alteration in the
pattern of endometrial PGR expression leads to endometrial P4 resistivity [51]. According
to their cellular locations and mechanisms of actions, progesterone receptors are either
located at the cell membrane, also referred to as PGRM with its two identified component
isoforms: PGRMC1 and PGRMC2 conveying the rapid non-genomic actions of P4, and
the cytosolic/nuclear PGR (PGR-A and PGR-B) mediating the genomic actions of the
hormone [52]. Aberrancies in the expressions of PGR (A and B), PGRMC1 and PGRMC2 in
the endometria of anovulatory women with PCOS have been reported [47]. Compared to
the control group of regularly cycling women, Paulson et al. (2017) [47] observed persistent
higher expressions of PGR (A and B), PGRMC1 and PGRMC2 in the stroma and of PGRMC1
in the luminal epithelium on cycle days 21–23 in obese anovulatory women with PCOS [47].
These findings suggest inherent defects in the cytosolic and nuclear PGR functions and
expression in women with PCOS. The cytosolic/nuclear PGR is a heterodimer of the naïve
progesterone receptor protein in dynamic interactions with its chaperones HSP90, HSP70
and p23, and its cochaperone immunophilins FKBP51 and FKBP52 [53–56]. Ligand binding
causes the release of multiple HSP-subunit complexes, allowing the PGR to undergo certain
conformational changes assisted by the enzymatic action of the FKBPs, which permits
the receptor dimer to interact with specific progesterone response elements localized at
the regulatory regions of its target genes [57,58]. Studies showed that alterations in the
expression or function of PGR coactivators, chaperones, and cochaperones that are bound
to the mature form of the cytosolic PGR before activation and nuclear translocation have
been implicated in the development of P4 resistivity [59–61]. Although few investigations
have been conducted on the impact of FKBPs on PCOS, the general consensus is that lack
of cochaperone FKBP52 or the overexpression of the cochaperone FKBP51 causes PGR
signaling irregularities and endometrial progesterone resistance in experimental murine
models [61,62]. Furthermore, among the critical events involved in the generation of a
receptive endometrium are the dynamic interactions between endometrial PGR and other
transcriptional factors such as the Forkhead box protein O1 (FoxO1) [63,64]. Human and
mouse studies confirmed the existence of a vital molecular switch mechanism represented
by the reciprocal relationship between endometrial epithelial PGR and FoxO1 expression
and activation during the window of receptivity [63,64]. FoxO1 protein is a key media-
tor of insulin action on gene expressions [65] and is a negative regulator of cell survival
that inhibits cell proliferation and promotes cell apoptosis and cycle arrest [66]. Aberrant
overexpression and activation of FoxO1 have been reported in women with PCOS [67,68].
Studies by the Vega group suggested a mechanistic link between a persistent high level
expression of the phosphorylated FoxO1 (p-FoxO1Ser319) in the endometrial epithelial
compartment and disturbed endometrial homeostasis, steroid bioavailability and failed
uterine receptivity in obese and hyperinsulinemic women with PCOS [46,68]. Additionally,
the aberrantly upregulated FoxO1 was also found to mediate the production of proinflam-
matory cytokines that alter the PGR expression, such as IL1β, IL6 and TNF-α, in women
with PCOS [67]. While these reports may suggest a role of abnormal FoxO1 signaling in the
development of restricted progesterone-dependent uterine receptivity and decidualization
in PCOS, further molecular studies into the mechanistic association between the endome-
trial PGR and other transcriptional mediators of endometrial receptivity, particularly the
Indian hedgehog (IHH) signaling pathway, are warranted. Notably, the fact that the persis-
tence of the abovementioned endometrial irregularities despite adequate metabolic control,
lifestyle interventions and the restoration of regular ovulatory cycles [47,69] underpins the
need to further examine the link between chronic inflammation and related immunological
abnormalities in the development of P4 resistivity in PCOS.
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4. Current Therapeutic Options for PCOS

Current consensus guidelines and clinical accord on the management of anovulatory
infertility in women with PCOS focus largely on improving ovulatory function and manag-
ing oligo- or anovulation-related subfertility [5,70]. Therefore, irrespective of their FDA-
approval status, current therapeutic interventions for PCOS include lifestyle modification
and weight management, as well as drugs that induce ovulation, such as clomiphene citrate
(CC) and aromatase inhibitors (such as letrozole and/or anastrozole) [71–74]. Additionally,
combined oral contraceptive pills (OCPs) have been used to improve hyperandrogenism in
women with PCOS [75], and for its demonstrated clinical and metabolic benefits improving
ovulation and menstrual frequency in anovulatory PCOS patients, the insulin-sensitizing
agent metformin has also been prescribed [76]. Weight loss is considered an initial treat-
ment strategy for reproductive disorders in overweight and obese women with PCOS [25].
Evidence showed that active lifestyle management, weight loss and physical activity help
menstrual disturbances and can shorten the time to conception and reduce adverse obstet-
ric risks [77]. However, the current management of the irregular menstrual cycles to protect
the endometrium against development of hyperplasia entails the use of OCPs [78]. The
flip side of the use of OCPs in PCOS not only resides in the increased risk of inflammatory
and coagulatory disorders and cardiovascular-disease development [79,80], but also in the
lack of sufficient data from randomized clinical trials comparing progestins alone versus
combined estrogens and progestins in the treatment of irregular vaginal bleeding due to
anovulation. This has cautioned the need for alternative therapeutic approaches [81].

Among insulin-sensitizing agents primarily used to treat insulin resistance with
demonstrated clinical and metabolic benefits in the management of PCOS in women is
metformin [82,83]. Although metformin is not approved by the US Food and Drug Admin-
istration (FDA) for the treatment of infertility in women with PCOS [84], its use in PCOS
is largely derived from case-control studies with occasional conflicting results [85–87].
A prospective evaluation of the safety of metformin administration during pregnancy
in 98 women with PCOS done by De-Leo and colleagues (2011) [86] found a significant
reduction in pregnancy complications such as gestational diabetes mellitus (GDM) and
gestational hypertension [86]. On the other hand, data obtained from a randomized double-
blind placebo-controlled trial conducted by Vanky and associates (2010) [85] revealed no
difference in the primary outcome, which was a composite of preeclampsia, spontaneous
abortion, GDM and preterm delivery among 257 women with PCOS receiving metformin
(500–1000 mg twice daily) from the first trimester to delivery [85]. Nonetheless, besides
its systemic and ovarian actions in reducing peripheral insulin resistance, regulating
hepatic glucose release and inhibiting androgen production in the ovaries, experimental
and clinical data showed that metformin may have a direct modulatory effect on the en-
dometrium [83,88,89]. Experimental studies revealed that metformin could ameliorate
uterine receptivity defects and partially improve implantation rates, and had significant
immunosuppressive properties when used at a high dosage in the treatment of PCOS-
associated adverse pregnancy outcomes in murine models of the disease [90,91]. In doing
so, the molecular mode of action of metformin on the endometrium seems to be diverse.
A study by Zhai et al. (2019) [92] suggested that metformin may improve endometrial
receptivity through increasing the expression of the homeobox A10 (HOXA10) and integrin
beta-3 (ITGB3) via the downregulation of miR-1910-3p and miR-491-3p in the endometrium
of women with PCOS [92]. These findings are supported by recent data from Zhang et al.
(2020) [93] on the modulatory effect of metformin on the activation of the AMPK signal-
ing pathway in the endometrium of diabetic pregnant mice in improving implantation
rates [93]. Moreover, in a study reported by Xiong et al. (2019) [94], metformin was found
to alleviate estradiol and progesterone-induced decidualization of human endometrial
stromal cells by modulating the secretion of multiple cytokines, inhibiting expression of
matrix metalloproteinase-2 and -9, activating MAPK/ERK/p38 signaling and reducing
PGR expression [94]. Metformin can also normalize androgen-receptor-mediated tran-
scriptions, thereby restoring endometrial epithelial–stromal crosstalk, and has significant
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antagonizing actions in reversing the androgen-induced alterations in the insulin receptor
substrate and GLUT4 expressions in endometrial glandular epithelial cells [95,96]. How-
ever, notwithstanding the additional health benefits for the use of metformin in reducing
serum atherogenic biomarkers, such as the advanced glycation end products and C-reactive
protein [79], the role of metformin in treating PCOS is narrowing [97]. Metformin may
improve the menstrual cycle within 1–3 months; nonetheless, multiple reports from sys-
temic reviews and randomized clinical trials indicate that metformin may not improve
implantation and/or live birth rates or reduce miscarriage in women with PCOS [98–100].
More importantly, the use of metformin during pregnancy did not reduce maternal weight
gain or avert gestational diabetes mellitus when initiated during pregnancy in at-risk
women [101,102], nor did it reduce the relatively high obstetrical risk associated with
increased rates of cesarean sections and the delivery of babies that were large for their
gestational age and macrosomic babies (i.e., >4 or 4.5 kg at birth) [101–103].

Unlike metformin, the use of ovulation-induction agents such as the aromatase in-
hibitor letrozole has gained popularity [104–106]. Letrozole is effective for ovulation in-
duction, and new data show improved live birth rates by skipping a progestin withdrawal
bleed and proceeding directly with a dose escalation of letrozole in clomiphene citrate
(CC)-resistant women with PCOS [77,106]. However, unlike CC, letrozole is categorized
as pregnancy class D drug and is not FDA-approved for treating infertility and inducing
ovulation [74]. Nonetheless, experimental and clinical data have indicated better effects
of letrozole compared to CC on endometrial thickness and the expression of endometrial
receptivity markers, and those associated with embryo implantation and placental devel-
opment such as the Wnt-beta-catenin pathway critical for embryo implantation [107,108].
All in all, the safety and efficacy of letrozole or clomiphene citrate in achieving live birth in
infertile women with PCOS will need to be further evaluated.

Other therapeutic modality in the management of PCOS-associated female infertil-
ity is the use of gonadotropins [77,109]. Ovulation induction with follicle-stimulating
hormone (FSH) is currently reserved as a second-line treatment for anovulatory women
with PCOS who fail to respond to CC or letrozole [77]. Irrespective of the source and
clinical formulation, clinical data and meta-analyses indicated little or no difference in
live birth rates, multiple pregnancy rates, clinical pregnancy rates or miscarriage rates
between urinary-derived gonadotropins and recombinant FSH in women with PCOS [109].
Moreover, data obtained from large multicenter randomized clinical trials, such as the
Assessment of Multiple Intrauterine Gestations from Ovarian Stimulation (AMIGOS) trial
involving a cohort of 900 couples with unexplained infertility that included women with
PCOS, supported a higher efficacy of gonadotropins compared to CC or letrozole for
ovulation induction [110]. More important is the downside for the use of gonadotropins,
which is higher rates of multiple pregnancies compared to CC or letrozole, which is hard
to predict using clinical or biochemical markers of androgenic activity such as the serum
concentrations of androgens [110,111]. A list of current pharmacological agents commonly
used for treating anovulatory infertility in women with PCOS is summarized in Table 2.
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Table 2. Mode of action and fertility-related side effects of current pharmacological agents * commonly used in anovulatory
women with PCOS.

Medication Mode of Action Fertility-Related Side Effects

Clomiphene Citrate
- Induces ovarian follicular

development [112]

- Due to its antiestrogenic effect, endometrial
proliferation may be hampered [112,113]

- May change cervical mucus characteristics
with a consequent reduction in sperm
penetration [112,113]

- May impair endometrial receptivity [114]
- May worsen subendometrial/endometrial

vascularization as detected by power
Doppler [114]

- Its use is associated with an increased
cardiac anomaly rate [115,116]

- Resistance to CC is fairly common in women
with PCOS (~ 15% of women with PCOS
may not respond to the maximum dose of
CC and are considered resistant to this
medication) [78]

Gonadotropins (recombinant
follicle-stimulating hormone (rFSH) or

human menopausal gonadotropin (HMG))

- Stimulates endogenous peak of
luteinizing hormone for oocyte
maturation and ovulation
triggering [117]

- Rate of clinical complications such as
ovarian hyperstimulation ranges between
6.67 and 17.78% [118]; nonetheless, hCG
therapy for PCOS-associated infertility is
considered of high clinical curative
value [118]

Letrozole

- Induces ovarian follicular growth
and development and supports
postovulatory corpus luteum
without having a premature
luteinizing effect on the developing
follicles [119]

- Supports endometrial proliferation
through the stimulation of the
Wnt/β-catenin pathway [107]

- May improve endometrial
receptivity and spiral artery
resistivity indices [72,107,120]

- Inhibits androgen-induced
stimulation of E2 and aromatase
p450 in endometrial cells [121]

- May result in elevated serum level of
FSH [119]

- May induce ovarian cyst formation [119]
(not reported in CC-resistant women with
PCOS [122])

- Can induce PCOS-like ovarian phenotype in
experimental animals [123]

Metformin

- Improves glucose intolerance [87,88]
- Modulates uterine/endometrial ER

and PGR expressional
irregularities [89]

- Suppresses AR expression and
normalizes the AR-mediated gene
transcription [91,124]

- May improve endometrial
receptivity defects and improves
uterine vascularity and
subendometrial blood flow [125]

- Does not prevent the development of
GDM [102]

- May not improve live birth rate [126]
- May not reduce the risk of PCOS-associated

adverse pregnancy outcomes such as
spontaneous abortion, gestational
hypertension, preeclampsia and placental
abruption [85]

- Causes increased birth weight [103]

Abbreviations: CC: clomiphene citrate, FSH: follicle-stimulating hormone, GDM: gestational diabetes mellitus, ER: estrogen receptor, PGR:
progesterone receptor, E2: estradiol, hCG: human chorionic gonadotropin. * Irrespective of current FDA-approval status.

5. Mode of Action of Tacrolimus and Its Potentials to Mitigate Progesterone
Resistance and Associated Menstrual and Endometrial Abnormalities in PCOS

Tacrolimus (FK506) is a lipophilic immunosuppressant with a 23-membered ring
macrolide macrolactam structure [127] that is firmly established in the clinical routine
of immunosuppression. Recently, tacrolimus has been successfully prescribed in the
preclinical management of PCOS-related female infertility in an obese murine model of
PCOS [128] and in treating women without PCOS but with recurrent implantation fail-
ure (RIF)/recurrent pregnancy loss (RPL) with elevated systemic Th1 (CD4+ IFNγ+):Th2
(CD4+IL4+) cell ratios [129]. The first identified mode of action of tacrolimus is the in-
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hibition of the T-cell receptor (TCR)-mediated Ca++-dependent activation of the nuclear
transcriptional factors NFκB and the nuclear factor of activated T cells (NFAT) [130]. This
action is primarily contingent upon the binding of tacrolimus (FK506) to the FK506-binding
protein 12 (FKBP12) and the subsequent inhibition of the phosphatase activity of the
Ca++-dependent serine/threonine (Ser/Thr) protein phosphatase calcineurin, thereby
suppressing the dephosphorylation and nuclear translocation of NFκB and NFAT in a
dose-dependent manner [131–135]. The primary outcome of this tacrolimus-suppressed
TCR signaling is the restricted release of INFγ and IL2, as well as TNFα and GM-CSF, in ac-
tivated peripheral blood monocytes and plasmacytoid dendritic cells in a dose-dependent
manner [136,137]. Importantly, binding of tacrolimus to other members of the tetratricopep-
tide repeat (TPR) domain-containing FKBPs, particularly FKBP52, has been identified and
has proven to influence varieties of physiological functions, particularly those mediated
by the glucocorticoid receptors (GR) [138,139]. It has been shown that this binding of
tacrolimus to the GR/cochaperone complex could increase the GR receptor transactivity
and hormone-binding affinity [139,140]. These TPR cochaperones exhibit peptidylpro-
lyl cis-trans isomerase (PPlase) activity, which, upon activation through the binding of
tacrolimus, allows for the release of the mature form of the glucocorticoid receptors from
the complex and their subsequent nuclear translocation for the mediation of their genomic
actions [141,142]. In fact, the critical role of FKBP52 in the nuclear translocation of steroid
receptors has been documented in a variety of cellular contexts [58,143]. The cytoplas-
mic fraction of FKBP52 is localized to microtubules and serves as an adaptor between
dynein, which is attached to the PPlase domain of the protein and the TPR domain-bound
GR/HSP90 complex of the steroid receptor [58,144]. Davis et al. (2002) [145] reported a
switch mechanism in which the hormone causes exchange of the inhibitory cochaperone
FKBP51 for the stimulatory FKBP52 in the GR complex [145]. This exchange has also been
shown to influence the corecruitment of the dynein motor protein and movement of the
mature GR complex to the nucleus for downstream genomic signaling [145].

Moreover, tacrolimus can modulate the transcriptional activities of the PGR through
mechanisms involving the activation of the protein inhibitor of activated STAT-y (PI-
ASy) [146]. PIASy is a member of the PIAS family E3-type small ubiquitin-like modifiers
(SUMO) capable of transcriptionally repressing the PGR receptors directly through SUMOy-
lation or indirectly via binding to the steroid receptor DNA-binding domain [147]. We
have previously shown that PIASy is aberrantly downregulated and that it has low affinity
to be recruited to the nuclear PGR in the peri-implantation uterus of an obese mouse model
of PCOS [146]. We have also demonstrated that the use of low-dose tacrolimus rescued
the endometrial expression of PIASy and restored its binding capacity to interact with
and regulate the transcriptional activity of the nuclear PGR in these uteri [146]. Previous
studies showed that the SUMOylation of the PGR, particularly PGR-B, by members of
the E3-ligaeses destabilizes its nuclear retention, thereby repressing its transactivation
and downstream genomic signaling [148]. Additionally, this PIASy-mediated alterations
of PGR phosphorylation rate and the subsequent reduction in its nuclear shuffling and
retention efficiency are also mediated by the concerted actions of the histone deacetylases,
which bind to active DNA-binding sites, such as those abundantly located within the hinge
region of the PGR-A [149,150]. This PIASy-controlled downregulation of PGR-A is histone
deacetylases-1-mediated in ex vivo cultured human primary myometrial cells [151]. This is
important to our understanding of the mode of action of tacrolimus in restoring endome-
trial receptivity in PCOS. Both PGR-A and PGR-B were aberrantly expressed during the
window of receptivity in the uteri of obese mice with PCOS [146]. The prepregnancy ad-
ministration of low-dose tacrolimus restored normalized expressions of PGR-A and PGR-B
and their interactions with PIASy at the implantation window conducive to gestational
success in these mice [146]. This was associated with increased implantation and live birth
rates among treated mice [90,146]. Therefore, we believe that through these PGR-regulatory
effects, the use of low-dose tacrolimus suppresses heightened endometrial progesterone
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resistance, promotes endometrial receptivity and aids in the prevention of implantation
failure in a murine model of PCOS [146].

6. Tacrolimus and Its Potentials to Prevent Dysregulated Treg Response in PCOS

The interplay between the ovarian follicular cells and the effector arm of the follicular
immune system, of which the regulatory T cells (Tregs) are critical effectors [152], is indis-
pensable for the control of ovulation [153]. Residents as well as infiltrating lymphocytes
contribute substantially to the cyclic-tissue remodeling of the ovary due to their ability
to secrete various inflammatory and immunomodulating molecules [152]. As described
earlier, among the immunosuppressive regulatory T cells are those defined by their sig-
nature expression of the cell-surface molecules CD4, CD25 and the transcriptional factor
FoxP3 [154–156]. Notwithstanding the limited sample size reported in the human stud-
ies, an accumulating body of evidence from animal and human data implicates evident
immunological deficits among circulating and ovarian resident Tregs in the pathogenesis
of PCOS [32,128,157]. Of the latter are the reduced expression of FoxP3 and decreased
expansion of CD4+CD25+CD127low Tregs due to inherent aberrancies in Interleukin 2 (IL2)
signaling in women with PCOS [32]. This is valuable to our understanding of the usefulness
of low-dose tacrolimus (i.e., ≤10 ng/mL) in mitigating these inherit immunological deficits
in PCOS. Firstly, tacrolimus has the potential to bidirectionally regulate the transcriptional
activities of FoxP3 in a variety of cellular contexts [158]. Shen et al. (2011) [158] confirmed
that this tacrolimus-mediated action on FoxP3 is dose-dependent, and a low concentra-
tion of 10 ng/mL tacrolimus resulted in higher nuclear shuffling of the nuclear factor of
activated T cells (NFAT) [158]. Members of the NFAT family expressed by the immune
cells, including NFAT1, NFAT2 and NFAT4, directly bind to the FoxP3 enhancer and/or
cooperate with Smad3 to activate FoxP3 transcription, thereby regulating the production
of cytokines by T cells [159]. These diversified actions of NFAT on FoxP3 transcription
are contingent upon their calcineurin-mediated dephosphorylation, subsequent nuclear
translocation and unmasking of at least six of their T-cell-specific FoxP3 nuclear localization
sequences, which positively regulate the transactivation of FoxP3 gene after triggering of
the T-cell receptor (TCR) [160,161]. While translating the actions of low-dose tacrolimus on
FoxP3 activation in PCOS awaits further investigations, we believe that, at least in part,
through this plausible stimulatory effect on FoxP3, low-dose tacrolimus is capable of induc-
ing the periconceptional expansion of the CD4+CD25+CD127low Tregs in a murine model
of PCOS [128]. Second, tacrolimus has the potential to moderate the severity of the compro-
mised cross-talks between resident white blood cells, such as macrophages with systemic T
helper cells Th1 (CD4+ IFNγ+), Th2 (CD4+IL4+) and Th17 (CD4+IL17A+) [162,163] criti-
cally involved in the process of expulsing the oocyte from the antral/Graafian follicles and
maintaining a fetal-protective decidual immune milieu during gestation [30,152]. These
modulatory effects of low-dose tacrolimus on the expression and activation profiles of the
Th1 (CD4+ IFNγ+)/Th2 (CD4+IL4+) and Th17 (CD4+IL17A+) Tregs have indeed been
proven effective in the clinical management of women without PCOS but with recurrent
implantation failure [129] and in a murine model of PCOS [128], respectively.

7. Conclusions

Provision of the best care for women with PCOS requires thorough understanding of
the underlying immune and molecular mechanisms associated with poor ovarian functions,
heightened progesterone resistance and declining endometrial receptivity. The persistence
of clinical, immunological and histopathological features of endometrial malfunction,
despite the use of the most effective ovarian stimulation regimen, dictate the need for
further investigations into the fundamental molecular and immunological mechanisms of
ailing endometrial health in women with PCOS. Evidence presented in this review suggests
that immunomodulation with low-dose tacrolimus may mitigate the severity of PCOS-
associated female infertility. The efficacy of tacrolimus to promote endometrial receptivity
may reside in its intrinsic ability to regulate the endometrial progesterone receptor signaling
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while suppressing systemic immune aberrancies and associated endometrial immune
irregularities in PCOS. Lastly, while the present data from experimental and human studies
point to the relative perinatal safety for the use of low-dose tacrolimus in treating female
infertility [90,164], further studies are needed to establish the best-fit tacrolimus-based
monotherapeutic interventions in the management of PCOS-associated female infertility.
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