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Abstract: Sonochemistry uses ultrasound to improve or modify chemical reactions. Sonochemistry
occurs when the ultrasound causes chemical effects on the reaction system, such as the formation
of free radicals, that intensify the reaction. Many studies have investigated the synthesis of nano-
materials by the sonochemical method, but there is still very limited information on the detailed
characterization of these physicochemical and morphological nanoparticles. In this comprehensive
review, recent advances in the sonochemical synthesis of nanomaterials based on iron oxide nanopar-
ticles (Fe3O4NP), gold nanoparticles (AuNP) and iron oxide-coated gold nanoparticles (Fe3O4@Au
NP) are discussed. These materials are the most studied materials for various applications, such as
medical and commercial uses. This review will: (1) address the simple processing and observations
on the principles of sonochemistry as a starting point for understanding the fundamental mecha-
nisms, (2) summarize and review the most relevant publications and (3) describe the typical shape
of the products provided in sonochemistry. All in all, this review’s main outcome will provide a
comprehensive overview of the available literature knowledge that promotes and encourages future
sonochemical work.

Keywords: sonochemistry; nanomaterials synthesis; iron oxide gold nanoparticle; shape control

1. Introduction

Reducing the material’s size to the nanoscale limits the electrons inside to a small space
that changes its physicochemical properties [1]. Such an expedited transition has given
rise to many new applications while enhancing existing ones. The idea of synthesizing
nanomaterials with the appropriate morphology and applicable properties has therefore
stimulated great interest in this technological evolution. Through simple solution-based
approaches such as hydrothermal, solvothermal and sonochemistry to cutting-edge ap-
proaches as ablation, epitaxy and lithography, the diversity of nanomaterial synthesis
techniques can be exploited to monitor their development. Sonochemistry provides a
special crystallinity control that enables the preparation of amorphous metals, metal alloys
and metal oxide [2]. Compared to most approaches, sonochemical is very economical,
allowing individual enthusiasts and researchers to experience and try out ideas [3]. It has
grown to prominence with a rise in interest in material processing and engineering over the
last 30–40 years. Nonetheless, the study of chemical solutions and chemical reactions with
the use of sonochemical dates back to the early 20th century [4]. Physical methods such
as vapor deposition, plasma glow discharge and gas-phase sputtering are prohibitively
costly, whereas chemical methods such as electrolysis, photochemical synthesis and elec-
troreduction yield greater nanoparticle sizes and have problems with mass processing.
A third technique, such as the sonochemical process, solved some of the drawbacks de-
scribed above by generating nanoparticles of smaller sizes [5]. The microwave method
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requires high temperatures during the synthesis [6–8]. The high temperature will lead to
too-high reaction kinetics. It is impossible to control the growth step of the crystallization
process in reactions with fast kinetics; on the other hand, an explanation for this is that
cherry extract is a reducing agent that is rich in ascorbic acid [9], and this acid becomes
slightly unstable at higher temperatures [10] and leads to a poor reduction process and
uncontrolled and fast aggregation. Sonochemical syntheses takes less than an hour to
produce compared to the solvothermal method’s 48-h requirement. Furthermore, the
particles generated by sonochemical processes are smaller than any of those generated by
conventional synthesis [11].

Zhanfeng et al. [12] analyzed the most recent advances in the field of ultrasound-
mediated effects or processes in catalysis, focusing on the production of catalyst materials
and sonochemical uses in catalytic processes. Jun et al. [13] clearly present the fundamental
concepts of ultrasound irradiation, such as mechanical and physical effects, sonochem-
ical effects and acoustic cavitation, and it hereby summarizes sonochemical catalysis
for the manufacturing of nanostructured and microstructured inorganic materials, in-
cluding plastics, inorganic composites, metal compounds and alloys. Another study by
Hangxun et al. [14] showed how the physical and chemical effects of high-intensity ultra-
sound could be used to prepare or alter several nanostructured materials. However, there
is limited information on the detailed characteristics of nanoparticles’ physicochemical and
morphological features obtained by intensive (sonochemistry) technologies.

Our goal is to provide a comprehensive review, collecting together all relevant knowl-
edge to better understand nanomaterial synthesis using the sonochemical method, focusing
on Fe3O4 NPs, AuNPs and Fe3O4@AuNPs and their contributions to different fields. Sono-
chemical originates from the intense transient conditions produced by ultrasounds, which
create unique hot spots that can reach heating and cooling rates of up of 1010 K s−1, pres-
sures above 1000 atmospheres and temperatures of about 5000 K [15,16]. These conditions
vary from other traditional synthetic methods such as flame pyrolysis, wet chemistry, pho-
tochemistry and hydrothermal synthesis [17,18]. Ultrasonic waves passing through typical
liquids create low- and high-pressure regions based on periodic expansion and compres-
sion [19]. This shift in pressure marks the beginning of sonochemistry, so this precedes the
critical phase of acoustic cavitation, i.e., the formation, growth and collapse of the bubble.
The process of the bubble growth and compression proceeds until the external pressure
prevails and the bubble implodes. These conditions can lead to abnormal chemical and
physical changes and promote a particular reaction between molecules and atoms to create
a special category of materials [20]. However, the utility of the sonochemical process lies in
the fact that the radicals and ions inside the bubble emanate from the chemical solutions;
thus, suitable chemicals will help to customize the overall procedure. These conditions
permit the sonochemical production of different nanomaterials. The sonochemical method
has been employed to synthesize a variety of nanomaterials other than noble metals with a
variety of structures. Among these materials are CdS NPs [21], Ag2Se NPs [22], AgNPs [23],
Pt NPs [24] and ZnO NPs [25]; transition metal oxides [26]; silicon oxide nanocrystals [27];
carbon-based materials [28] and metal composites [29].

This review will emphasize the recent studies on using a sonochemical method for
nanostructured material synthesis and be arranged according to the mechanisms whereby
ultrasounds can be employed to synthesize nanomaterials. In addition, this review will also
summarize the most relevant publications on the synthesis of nanomaterials focusing on Fe3O4,
Au and Fe3O4@Au NPs, as well as describing the typical shapes of the products produced.

2. Sonochemical Formation of Fe3O4NPs, AuNPs and Fe3O4NPs@AuNPs

The chemical reaction driven via extreme ultrasound waves was strong enough to
create cavitation, dissolution, oxidation, hydrolysis and decomposition [30]. Ultrasonic
irradiation through aqueous liquids induces free radicals of OH. and H. radicals [31]. These
radicals may recombine to return to their original form or combine to generate H2O2 and
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H2, and these resulting strong oxidants and reductants, in turn, are employed during
different reactions of the sonochemical in the aqueous solutions [17].

H2O→ H. + OH (1)

OH + OH → H2O2 (2)

H. + H. → H2 (3)

For Fe3O4NPs,
FeSO4 → Fe2+ + (SO4)

2− (4)

2Fe2+ + H2O2 → 2Fe3+ + 2OH− (5)

Fe2+ + Fe2+ + 8OH− → Fe3O4 + 4H2O (6)

For AuNPs, the formation of the AuNPs takes into account the fact that free radical
species are produced by the ultrasonic irradiation of water molecules (Equation (7)).

Na3C6H5O7 → Na2C5H4O5 + CO2 + Na+ + H+ 2e
Au+ + 2e → Au0 (7)

The formation of Fe3O4NPs@AuNPs and the sonochemistry mechanism for coating
the Fe3O4 surface by Au NPs were discussed in detail in our previous work [32]. Briefly,
sodium citrate can activate the reaction of the Fe3O4 surface with carboxylate ions (–COO−),
which enables the strong coordination of highly –COO− water with the Fe atom of Fe3O4
NPs. The mechanism that controls the bonding of Au NPs to the Fe3O4 surface is linked
to the microjets and shock waves generated within the vicinity of surfaces of the solid,
following the bubble collapse [33]. These microjets initiate the sintering of micrometer-
sized metallic particles and drive the NPs in the direction of the Fe3O4 surface at very high
velocities [33]. The jets react with free carboxylate ions (–COO−) on the Fe3O4 surface,
resulting in Au nanoshell formation on the Fe3O4 surface.

3. Nanomaterial Ultrasonic Synthesis

Fe3O4 NPs, AuNPs and Fe3O4@AuNPs are the main materials of interest due to their
biocompatibility, unique superparamagnetic properties, chemical stability, oxidation re-
sistance and optical properties and which are important for fields such as catalysis and
biomedical applications [34–36]. Ultrasound irradiation has recently been widely used in
the synthesis of nanomaterials [37]. As clarified, high-intensity ultrasound results primarily
in acoustic cavitation [38], which, in turn, initiates a distinctive interface between energy
and matter [39]. This enables a wide range of chemical reactions and the production of a
range of exceptional nanostructured materials [17]. Acoustic cavitation dynamics depend
on the localized environment, either a uniform liquid or an inhomogeneous interface
between a solid and liquid. For homogenous liquids that produce spherical cavities, acous-
tic cavitation produces implosive bubbles and waves, generating higher pressure with
amplitudes above 10 kbar [40]. Conversely, the acoustic cavitation is asymmetric for an
inhomogeneous medium and is related to high-speed microjets that influence the solid
surface, causing mechanical damage [41]. The collapsing bubble’s potential energy is con-
verted into the microjet’s kinetic energy with speeds of 100 s of m/s. Nonetheless, Doktycz
and Suslick announced that solid particles under the collapsing bubble diameter (~150 µm)
unable to start a microjet formation after an ultrasonic field of 2 kHz were irradiated [42].
Alternatively, traditional cavitation and shock wave emissions occurred [43].

3.1. Fe3O4NPs

Fe3O4NPs can easily be synthesized using a sonochemical method via very high
pressures and temperatures generated by ultrasonic irradiation by decomposing iron
salts and other nanostructures from an inorganic iron precursor [44]. The ultrasonic
irradiation generates high temperatures that lead to the formation of Fe3O4NPs through the
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decomposition of iron salts [45]. Fe3O4NPs improved their hydrophilic and monodisperse
properties through the ultrasonic irradiation process [46,47]. Many authors have recently
reported using a sonochemical way to synthesize Fe3O4 with promising physicochemical
properties, such as a high surface area and high electron storage ability [48,49].

Zuzana and Kerstin synthesized Fe3O4NPs and coated them with dextran as a capping
agent [50]. The larger cavitation bubbles at lower frequencies release more energy and
create exceptional reaction conditions concerning pressure and temperature, further facili-
tating the development of the larger magnetite cores. This method has several advantages,
such as a high chemical reaction rate, high yields and cost-effective synthesis. Sriram et al.
reported a rapid and straightforward fabrication of Fe3O4NPs decorated by graphene oxide
(GOS) by the sonochemical method [51]. This process involves a GOS ultrasound-assisted
reduction reaction. Furthermore, the advantages of the modified Fe3O4NPs decorated by
GOS were its reproducibility, repeatability and high stability. Figure 1a,b presented TEM
and SEM images of Fe3O4NPs decorated by GOS. The nanoparticles have a spherical shape
with a size of about 96 nm (Table 1).
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Figure 1. Images of Fe3O4NPs decorated by GOS synthesis using the sonochemical method (a) TEM
and SEM (b) [51]. Copyright 2019 Elsevier.

An ultrasonic-assisted coprecipitation approach of synthesizing magnetite nanopar-
ticles was recorded by Villegas et al. [52]. This approach identified a 16-nm amphoteric
crystallite size and provided a superparamagnetic behavior that separated less easily from
a solution in 1 min by using only a magnet. Fe3O4NPs decorated on multi-wall nanotubes
(MWCNTs) were successfully produced using a rapid and easy sonochemical process with-
out any chemical treatment on MWCNTs [53]. Fe3O4@ MWCNTs displayed a uniform, fine
nanoparticle distribution in the MWCNTs. Fe3O4@MWCNTs demonstrated an effective cat-
alytic efficiency after 1 h of treatment with 20-mg/L persulfate. Fe3O4NPs helped produce
sulfate radicals and hydroxyl radicals in the Fe3O4@ MWCNTs hybrid catalyst, whereas the
size of the Fe3O4 clusters could affect the transmission of electrons for radical production.
In addition, the combination of persulfate and Fe3O4@MWCNTs decreased the remaining
cell number to 9.4% within 30 min of treatment using high-frequency and low-intensity
ultrasounds. In summary, this method showed that low frequencies of ultrasonic devices
were capable of manufacturing Fe3O4@MWCNTs through a simple and fast method.

Due to the strong influence of the nanoparticle size on the magnetic and structural
properties of Fe3O4NPs, the size selection in proportion to the desired magnetization of
these particles is very significant. Boustani et al. successfully demonstrated the synthesis
of Fe3O4NPs by ultrasonic treatment (40 kHz, 150 W) and a novel precipitating agent
(ethylenediamine) by the coprecipitation way [54]. It was found that ethylenediamine pro-
duces Fe3O4NPs with a larger size and desired magnetization saturation (Ms). In another
study, a single, inexpensive and nontoxic metal salt (FeSO4.7H2O) reactant was used in
aqueous media to synthesize monodisperse Fe3O4 nanocubes with a uniform particulate
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size of about 80 nm using the sonochemical method [55]. The magnetic properties of Fe3O4
nanocubes demonstrated a magnetization of 91 emu/g for the as-synthesized sample at 5
K and of 94.8 emu/g for the sample that was annealed by a vacuum chamber at 600 ◦C.
Due to high magnetization, these nanoparticles can be used for various applications, such
as MRI and drug delivery.

3.2. AuNPs

Over the past decades, nanomaterials, especially AuNPs, have attracted a great deal
of attention from the research community because of their different and unique physical,
chemical, photochemical, electronic and optical properties, which also differ from the
material properties in their bulk states [56–58]. The unique characteristics of AuNPs
include high stability and chemical stability, high surface area-to-volume ratios and a
surface plasmon resonance (SPR) effect [59–62]. AuNPs are also biologically unreactive,
biocompatible and can be used with pharmaceutical drugs, proteins and enzymes [63].
For this purpose, they can be used in diverse medical applications, such as sensors and
biosensors [64], tissue imaging [65], therapeutic agents [66], dentistry [67,68], catalysts [69],
diagnosis treatment [70] and drug and gene delivery [71].

Recently, several methods of synthesis AuNPs have been developed to determine
the physical and chemical properties of AuNPs by their surface structures, purity, size
and morphology [72,73]. These methods are: (i) pyrolysis processes [74], (ii) flame spray
synthesis [75], (iii) atomic (iv) layer deposition [76] and (v) chemical vapor deposition [77].
AuNPs can be synthesized from molecular components (metal ions) using the above-
mentioned methods. All these approaches are suitable for producing small amounts of
AuNPs, the shapes and sizes of which depend on the batch used. Sonochemical is a great
potential method for AuNP mass production from different materials. This method is a
relatively powerful and straightforward technique for producing nanomaterials, and it
is possible to control the properties of nanoparticles by modifying the parameters of the
ultrasonic process [78,79]. AuNPs with semispherical shapes and average size distributions
of about 18.5 were produced through an economical sonochemical method in which the
nanoparticles were produced with ultrasounds from droplets of the metal salt precursor
solution (Figure 2) [80]. The sonicator probe model (SONICS Ultra-cell MODEL: VC 750)
operated for synthesis has an output power, frequency and tip size of 17.9 W·cm2, 20 kHz
and half an inch, respectively. Under ultrasound waves of 5 min, AuNPs showed high
stability in different media (AuNPs in phosphate-buffered saline and water were−39.5 mV
and −42.1 mV, respectively). The homogeneity of AuNPs may also be attributed to the
intense power and high energy produced by ultrasonic irradiation during the formation
and collapse of bubbles, which increase the pressure and temperature of the solution.
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Yasuda et al. synthesized AuNPs by ultrasonic irradiation at 495 kHz from aqueous
solution HAuCl4 without reducing the agent or surfactant [81]. The ratio of spherical
AuNPs increased with the introduction of ultrafine bubbles (UFBs), and the average
diameter of the spherical AuNPs reduced from 119 nm to 22 nm. The reduction of the Au
ion was hypothesized to be accelerated by UFBs, because UFBs were nuclei of ultrasonic
cavitation, which increased cavitation generation. In addition, AuNP synthesis with UFBs
seemed to be stable in the solution, because the AuNPs were immobilized onto UFBs
electrostatically, and the lifetimes of UFBs in the liquid were very long. During the pulse-
on time, the cavitation and AuNP nucleation improved, whereas, with increasing the
pulse-off time, the mean diameter also increased. The AuNPs developed during the pulse-
off time. AuNP size regulation in the absence of reducing agents and surfactants was
effective by optimizing the number of UFBs and the pulsed ultrasonic conditions. Kumar
et al. reported a simple sonochemical method for the preparation of gold–ruthenium
(Au–Ru NPs) by co-reduction, and sequential reduction methods were developed [82].
Nanoparticles have the potential for being used in direct methanol fuel cells as catalysts
in electrode materials. In addition, the preparation of Au–Ru NPs covered by a polymer
was systematically investigated by TEM and a UV-vis spectral study. During the reduction
of metal ions, the UV–vis spectral findings suggest that their redox potential governs
the order of the reduction process (metal ions), i.e., Au is first reduced, accompanied by
ruthenium. Additionally, AuNPs serve as an electron sink to reduce the time needed for
Ru3+ reduction significantly from 7 h to 4 h. Cui et al. demonstrated that hybrid AuNPs
wrapped graphene oxide (GO) materials can be designed and self-assembled through a
one-pot sonochemical reaction using HAuCl4 and GO precursors [83]. The morphology
of the composite materials obtained is that of the AuNP spheres covered with GO sheets
like gauze. It is important to use ethylene glycol to synthesize AuNPs, because it is
nontoxic. In addition, Au NPs exhibit excellent surface-enhanced Raman scattering in
hybrid materials and have also been reported to improve enhanced photocatalytic activity
through light irradiation. This method provides a simple way of controlling and tuning
the morphology and size of Au NPs in GO-wrapped metal nanoparticles, which expands
as a feasible way to produce metal NPs/GO composites employing GO as the precursor
material. Wang et al. documented a method of preparing fabrics that can prevent biofilm
formation by sonochemical decoration AuNPs covered with N-heterocyclic molecules [84].
Since N-heterocyclic molecules and AuNPs are not toxic to mammalian cells, their research
offers a novel strategy to superb antimicrobial activity against multidrug-resistant (MDR)
biofilm bacteria in a simple, low-cost and effective manner that holds promise for wide
clinical applications. The sonochemical production of AuNPs is recorded utilizing a
high-intensity ultrasound (HIU) performing at 463 kHz with various shapes and size
distributions [85]. AuNPs are formed by reducing Au3+ to Au0 by radicals produced
through acoustic cavitation. The TEM images revealed that AuNPs exhibit irregular shapes
at 30 W, are predominantly icosahedral at 50 W and contain a large amount of 70-W
nanorods. AuNP sizes decrease with a narrower size distribution, with increasing acoustic
power. The number of radicals formed and the mechanical forces produced control the
AuNP size and shape. The TEM images and UV-Vis spectra can be used to indicate a
potential explanation for the results observed. The results show that the HIU process
can be used to synthesize size- and shape-controlled metal nanoparticles. Radziuk et al.
demonstrated that ultrasonic irradiation (20 kHz) for 20 min is enough to fuse the AuNPs
in a dumbbell-like structure at the contact [86]. After 60 min of sonication in water, AuNPs
acquire a ring-like or worm-like structure. Fused AuNPs with oval or spherical shapes with
a size of about 25 nm forms in the presence of dodecyl amine solutions or sodium dodecyl
sulfate after ultrasonic irradiation. The dispersion of AuNPs, which is the weakest in pure
water, is found as an additional cycle during sonication. The results reported might be of
interest to the ultrasonic melting of inorganic materials at the nanoscale to produce metal
structures with different properties and morphologies. Recently, by our team, AuNPs with
different output powers have been synthesized (A1 = 12, A2 = 20 and A3 = 36 W) [87].
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Figure 3 confirms the influence of ultrasounds on the synthesis of various AuNPs as a
feature of ultrasound control. The typical diffraction peaks of Au are visible in all samples,
but the intensity of the prominent (111) peak for Au is greater at 36 W. This result suggests
that the structural properties of the synthesized AuNPs were affected by the output power,
as the samples displayed significant differences in peak intensities as the output power was
increased. The comparison of the various spectra found that the peak amplitude improved
as the ultrasound output power increased. This phenomenon may be due to the distinct
characteristics derived from the acoustics.
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3.3. Fe3O4@AuNPs

Recently, many achievements and scientific outcomes in nanotechnology have con-
tributed to the creation of nanomaterials with the desired structure, chemical and physical
compositions [88–91]. There is currently increasing interest in nanomaterials with mul-
tifunctional properties that can be produced for different tasks. Specifically, core–shell
nanostructures are increasingly attracting attention because of their universal structures
and compositions [92]. The interaction between the shell and core can lead to completely
new collective properties in a nanostructure [93,94]. Different organic and inorganic sub-
stances can be used as materials for nanostructures’ shells and cores to achieve different
effects and physical properties [95]. The differences in the materials used for core–shell
nanostructures and, subsequently, their physical characteristics can make use of a new class
of nanomaterials with a wide range of applications (e.g., bio-nanotechnology, magnetic de-
vices, nano optics and nanomedicine) [96–99]. Core–shell nanostructures can be produced
by a two-step sequential reaction in which, first, the core is formed and, then, the shell is
made up [100]. Fe3O4@Au (core@shell) is one of the most significant nanoparticles used for
many biomedical applications, including catalysis [101], biosensing [102], targeted drug
delivery [103], phototherapy [104] and (CT/MRI) dual-modality [105]. Various method-
ologies were used to synthesize the Fe3O4 core coated with an Au shell. For instance,
direct coating is easy but requires a complicated method of combining two incompatible
surfaces. The outcome typically indicates low dispersion and, therefore, fails to synthesize
Fe3O4@Au NPs [106]. In addition, the procedure is time-consuming and laborious [107],
as well as produces irregularly shaped and large sizes more than 100 nm, leading to an
undesired impact on their medical applications [108]. To successfully synthesize correctly
sized and consistently shaped Fe3O4@Au NPs through a straightforward method remains
challenging. A procedure for producing Fe3O4@Au NPs with outstanding physicochemical
characteristics has to be established. The sonochemistry strategy has the ability to develop
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into an invaluable tool for Au shell deposition on Fe3O4NPs (Figure 4). The sonochemical
procedure influences the surface and structure of Fe3O4NPs through the acoustic cavity,
which inhibits cluster agglomeration and leads to a more stable distribution [32].
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Fe3O4@Au NPs have been produced to combine the features of Fe3O4 NPs and Au
NPs with one core@shell nanoparticle [109]. Fe3O4 NPs were prepared by coprecipitation
proceeded by a reduction of the Au shell on the Fe3O4 surface using a fast and simple
sonochemical process within 10 min. Fe3O4@Au were prepared by employing sodium
citrate as a both reducing and capping agent, owing to the inclusion of carboxylate ions
and then identified by several methods that verified the development of the Au shell on the
Fe3O4 surface. Figure 5 provides TEM images of Fe3O4NPs and Fe3O4 after being coated
by AuNPs. SPR peaks shifted from 521 nm to 541 nm, indicating that the Au NPs shell
is tightly adsorbed to the Fe3O4 surface. Sonochemically produced Fe3O4@Au NPs have
high magnetization saturation values even after being coated with an Au shell. The high
energy generated by ultrasonic irradiation enhances the covalent interaction between the
core of Fe3O4 and the Au shell, even though the synthesis period was especially short. In
addition, the obtained Fe3O4@Au NPs showed good biocompatibility and high transverse
relaxation, as well as X-ray attenuation values, which were higher than those recorded for
NPs provided by conventional approaches and commercial NPs.
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Spherical Fe3O4@AuNPs were successfully produced as a photothermal agent with a
mean size of 20.8 nm by a sonochemical process [104]. At 40 kHz (ultrasound frequency),
5-mg Fe3O4NPs were ultrasonically dispersed for 15 min in 20 mL of sodium citrate.
Subsequently, a freshly formulated HAuCl4 (10 mL, 0.1 M) solution was applied in order to
minimize HAuCl4 and shape the shell based on Fe3O4. The process of sonication proceeded
for 15 min. A permanent magnet was used for collecting Fe3O4@AuNPs and washed
thoroughly with distilled water and re-dissipated in distilled water. The Fe3O4@AuNPs
cell viability assessment showed that MCF-7 lines have negligible toxicity, even with
high levels of NPs, after 24 h. After illumination with a laser at 808 nm (200 mW, 10
min), MCF-7 cells treated with Fe3O4@ Au NPs were significantly reduced (73.9%) at
50-µgFe/mL viability. In this paper, results agree that the produced Fe3O4@AuNPs that
pose a threat to human health could be used to increase breast cancer treatment as a
photothermal therapist. The synthesis of Fe3O4@AuNPs and variations of the parameters
were also further optimized using the surface response method (RSM) approach [110].
Experimental sequences of 14 different variations in sonication amplitude, sodium citrate
and HAuCl4 concentrations were performed using RSM to optimize the experimental
conditions, and a variance analysis (ANOVA) was used to achieve the optimum parameters
for the experimental results. The target of the zeta potential of −46.125 mV was obtained
with an optimum sonication amplitude of 40%, 30 mL of sodium citrate and 10 mL of
HAuCl4, which was consistent (about 99.2%) with the actual average of zeta potential
(−45.8 mV). The results confirmed that the sonochemical method effectively synthesized
monodispersed and highly stable Fe3O4@Au NPs with an average size diameter of 20 nm
in less than 8 min. Figure 6 shows the TEM images of Fe3O4 and Fe3O4@Au NPs where
the initial Fe3O4 is a homogeneous and spherical-shaped with an average size of about
8.7 nm. The resultant Fe3O4@Au NPs remained spherically shaped but increased in the
size diameter around 20 nm, caused by the existence of the Au shell covering of the Fe3O4
core (Figure 6b). Figure 7 illustrates the EDX analysis of Fe3O4 and Fe3O4@Au NPs. The
elements Fe, Au, C and O were uniformly distributed in the sample, supporting the coating
of the Au shell on the surface of Fe3O4NPs. The presence of uncoated iron, as confirmed by
TEM, is seen in Figure 7b. The Au shell thickness was around 11 nm and could be changed
by various experimental conditions [111].
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Another sonochemical method for developing Fe3O4@Au NPs was implemented by syn-
thesizing Au layers on the Fe3O4 surface, with sodium citrate being used as a reductant [112].
The TEM images showed that both Fe3O4 and Fe3O4@Au NPs are highly uniformly spheri-
cal [113]. The mean diameter ranges were approximately 9 nm and 27 nm for Fe3O4NPs and
Fe3O4@Au NPs, respectively. The Au shell was about 9 nm thick. The thickness of the shell can
be modified by adjusting the experimental parameters [114]. Hu et al. reported that a simple
but effective method (ultrasonic process (40 kHz, 50 W)) was used to produce Au-coated Fe3O4
with polyphosphazene (PZS) as a mediator [115]. PZS is an appropriate layer of glue, because
it has phenolic hydroxyl groups. Fe3O4NPs were prepared under high temperatures from
the iron salt precursor compound with polyol medium triethylene-glycol using ultrasonic
power to irradiate a combination of hexachlorocyclotriphosphazene, triethylamine and Fe3O4.
Thereafter, PZS was added to the mixture, then irradiated about 6 h; any adverse effect of
long-time irradiation was not mentioned by the authors. The Fe3O4NPs-PZS were then mixed
in a HAuCl4 solution under room temperature. After 30 min of ultrasonic waves, sodium
citrate was added to the mixture. As a result, the Fe3O4-PZS-Au NPs could become an excellent
candidate for photothermal therapy, as well as other applications, due to the characteristics of
the Au shell.

Aziz et al. showed a simple procedure to produce Fe3O4@Au NPs using ultrasonic
power that requires a chemical reduction in the existence of APTES ((3-aminopropyl)
triethoxysilane)-coated Fe3O4NPs seeded through chilled sodium borohydride [116]. The
acoustic cavitation effect provides high pressure and high thermal energy. On the Fe3O4
surface, the Au NPs establish a covalent connection to the terminal amine. The creation
of Au-coated Fe3O4NPs is stated by a change in the color of the combination to dark
purple [107,117]. The observable purple color can be related to the purple or red-to-blue
change in Au NP surface plasmon resonance (SPR), which is attributable in turn to Au NP
conjugation with Fe3O4. Furthermore, Fe3O4@Au NPs of quite high saturation magneti-
zation were synthesized with an easy and rapid sonochemical process (60 kHz). In the
following sequence, the synthesis involved three-phase reactions: (i) producing Fe3O4NPs
via the co-precipitation technique (ii), coated Fe3O4 by the amine group and (iii) Au3+

ion reductions with the assistance of sonication waves [37]. Chemically, the ultrasound
influences the activity of the nanoparticle surface through acoustic cavitation. Unlike
the regular stirring method, the ultrasound method is valuable in obtaining a uniform
shape, removing the variables of localized conditions, speeding up the reaction rate and
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developing a new phase. This procedure also reveals a shearing effect for agglomeration,
which is important for high monodispersity nanoparticle synthesis. Fe3O4@Au NPs were
synthesized ultrasonically with an average diameter about 9–25 nm as a stationary phase
with high dispersibility, magnetic responsivity and excellent water solubility. After that,
bovine serum albumin (BSA) was grafted on the Fe3O4@Au NPs surface by conjugating
Au NPs with BSA to produce Fe3O4@Au NPs-BSA [118]. Fe3O4@Au-BSA have a high
magnetization that enables them to be activated easily through an external magnetic field,
as well as a large area and excellent biocompatibility of the Au shell. Fe3O4@Au NPs-BSA
has developed a new approach in addition to novel applications of magnetic NPs in studies
of large concentrations of protein target enantiomers. All in all, the results confirm that
the use of sonochemical for the production of metal nanostructures provides highly stable,
eco-friendly and cost-effective particularly nontoxic nanoparticles with good morphology
and high-quality crystal structures [80].

Table 1. Summary of the recently published studies on Fe3O4, AuNPs and Fe3O4@AuNPs syntheses using sonochemicals.

No. Nanoparticles Power or
Frequency

Size and
Shape Media Precursor

Concentration SPR Magnetization Ref.

1 Fe3O4 130 kHz 180 nm NH4Cl 0.5 mol/L . . . . . .
. . . . 20 mT [50]

2 Fe3O4@GOS 60 W 96 nm
spherical

sodium acetate
Polyvinylpyrrolidone 2 mg . . . . . .

. . . . . . . . . . . . . . [51]

3 Fe3O4 . . . . . . . . . . 15 nm
amorphous NH4OH 100 mg/L 215 nm 76.89 emu/g [52]

4 Fe3O4@MWCNTs 40 kHz 20 nm
amorphous water/ethylene glycol 40 mg . . . . . .

. . . . . . . . . . . . . . [53]

5 Fe3O4 40 kHz, 150 W 22.41 nm
Semi-spherical ethylenediamine . . . . . . . . . . . . . . . .

. . . . 54.24 [54]

6 Fe3O4
20 kHz
1500 W

80 nm
cubes distilled water 2.31 mg 91 emu/g [55]

7 AuNPs 20 kHz/17.9
W·cm2

18 nm
semi-spherical distilled water 0.03 M 520 nm . . . . . . . . . . [80]

8 AuNPs 495 kHz 22 nm
spherical aqueous solution 0.1 mM 530 nm . . . . . . . . . . [81]

9 Au–Ru NPs 355 kHz 15 nm
spherical

polyethylene glycol
perchloric acid 5 × 10−5 M 536 nm . . . . . . . . . . [82]

10 GO-wrapped Au NPs 200 W 500 nm
sphere

water and ethylene
glycol (8 mg, 0.02 mmol) 546 nm . . . . . . . . . . [83]

11 N_Au NPs 750 W 4.83 nm
spherical methanol 0.1 mmol . . . . . .

. . . . . . . . . . . . . . [84]

12 AuNPs 463 kHz 14 nm
nanorods water 0.2 mM 650 nm . . . . . . . . . . [85]

13 AuNPs 20 kHz
40 W.cm−2

25 nm
oval or

spherical

dodecyl amine
solutions or sodium

dodecyl sulfate
1 mmol/L 523 nm . . . . . . . . . . [86]

14 Fe3O4@AuNPs 20 kHz/750 W 21 nm
spherical water 0.03 M 541 nm 42.2 emu/g [109]

15 Fe3O4@AuNPs 40 kHz 20.8 nm
spherical water 0.1 M 538 nm . . . . . . . . . . [104]

16 Fe3O4@AuNPs 20 kHz and
750 w

20 nm
spherical water 0.3 M 545 nm 54 emu/g [110]

17 Fe3O4-PZS-Au NPs 40 kHz, 50 W 253 nm
spherical NaBH4 24 mM 526 nm 24.2 emu/g [115]

18 Fe3O4@Au NPs-BSA 60 kHz 9–25 nm
spherical sodium citrate 15 mL (1% mass

fraction) 547 nm . . . . . . . . . . [118]

4. Shapes of Synthesis Nanomaterials Sonochemically

Study groups around the world have, over the years, obtained nanoproducts with
unusual shapes, such as nanorods, nanotubes, sphere, non-sphere, nano-hexagonal and
others. This section will clarify the capacity of the sonochemical method to generate a
variety of shapes for nanoparticles. Wani and Ahmad produced polyhedral structures
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and nanodiscs of AuNPs through the sonochemical technique without any stabilizer
(Figure 8a) [119]. Sodium borohydride was used as a reducing agent and has the potential
to produce a mixture of nanocrystals of various morphologies, including hexagons, cubes
and other polyhedral forms with an average size of 30 nm (Table 2). Moreover, Jung et al.
developed nano-cubic C-Fe2O3@Au sonochemically [120]. The Fe2O3@Au cubic is formed
by applying ultrasound waves to both C- Fe2O3 and HAuCl4. Au-coated C- Fe2O3 was
produced under ultrasonic irradiation (300 W, 20 kHz) for 30 min without any supporting
agents. The precipitate was obtained at 8000 rpm by centrifugation and washed with
distilled water three times to remove the residual impurities. The sonochemistry method
provided a direct synthesis technique for the hematite cubic form decorated with nano-
sized Au, suggesting possible applications for lithium storage materials, catalytic support
and water-splitting. A new type of nanocube with a size of about 43 nm was produced
sonochemically in 30 min (Figure 8b) [121]. The sonochemical formation of Fe3O4NPs does
not require strict experimental procedures or any toxic agent, and therefore, it is a fast,
green, efficient and straightforward method to produce extremely active catalysts for the
treatment of environmental pollutants.
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Table 2. Summary of the synthesis of various shapes using sonochemistry.

No Particles Shape Particles Size
(nm) Ultrasonic Power Ref

1 nanodiscs 30 . . . . . . . . . . [119]

2 nanocubic 433 (300 W, 20 kHz) [120]

3 nanocube 43 . . . . . . . . . . [121]

4 nanorods 34 [122]

5 nanosphere 9–11 (585 W, 20 kHz) [123]

6 nanosphere 11 . . . . . . . . . . [124]

7 nanosphere 15–20 430 kHz [125]
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The mechanism by which sonochemically the nanorods are formed is much simpler.
Okitsu et al. reported a rapid sonochemical route (one-pot synthesis) for the production
gold nanorods in the aqueous solution in the existence of ascorbic acid, silver nitrate and
cetyltrimethylammonium bromide in a short time [122]. The role of time, concentration,
sonication time and capping agent as effective variables has been investigated for the
formation of gold nanorods via the sonochemical route. TEM image shows the histogram
of the rods diameter of gold was about of 34 nm (Figure 8c). In growth investigations of
gold seeds formed by sonochemistry, the induction time before growth began has been
longer for shorter periods of irradiation. The result showed that the number of gold seeds
that were formed by sonochemistry increased with an increase in irradiation time. The
gold nanorods provided were wider and longer when the time of irradiation time was
shorter. Nagvenkar et al. and Mohammadi et al. have also demonstrated the potential for
fabrication nanorods in inorganic nanoparticles using the sonochemistry method [126,127].

In the case of spherical shape, Davino et al. employed the sonochemical method to
prepare 9–11 nm spheres Fe3O4NPs with excellent physicochemical properties in 12 min
(Figure 8d) [123]. A two-step synthesis with an ultrasound probe with a frequency of
(585 W, 20 kHz) was used to synthesize and conjugate Fe3O4NPs. In addition, even
with the overlay with a non-magnetic material, the sonochemistry approach generated
Fe3O4NPs with high magnetization values about 77 emu/g. The high energy generated
by ultrasound waves allowed the covalent bonding between the Fe3O4 and capping agent
molecules, given the relatively short time used during the synthesis. Fe3O4NPs coated
with amine and carboxylate displayed strong colloidal stability in water which makes
them promise for in vivo applications. In particular, the procedure used here overcomes
the current synthesizing-related limitations of biomedical research on Fe3O4NPs from
the bench to the clinics. It offers a simple experimental treatment that may bring new
opportunities for the scale-up of structured Fe3O4NPs with outstanding physicochemical
features suitable for biomedical usage.

In a similar study, Nazrul Islam et al. reported a simple sonochemical procedure was
introduced to synthesize the spherical Fe3O4NPs, which were effectively synthesized using
cheap and non-toxic metal salts as reaction mixture [124]. It is also worth noting that TEM
measurements revealed that the as Fe3O4NPs were produced to have a size distribution
(11 nm) in a small range and progressive monodispersity. The measurement curve for mag-
netization indicates that Fe3O4NPs have superparamagnetic behavior (80 emu/g), which
is very similar to the bulk value of Fe3O4. They mentioned that this approach can provide
an effective and quick synthetic route for bio synthesizing Fe3O4NPs and many other
applications as well. In a different study, Bagheri et al. stated that a facile sonochemical
method was proposed to optimize spherical Fe3O4@AuNPs [128]. The optimum values of
concentration, pH, sonication time and adsorbent weight were 26.5 mg L−1, 4.0, 4 min, 0.25,
respectively. The ANOVA revealed a strong determination coefficient (Adj-R2 > 0.920, and
R2 > 0.972). The rapid and rapid transfer of dyes to the adsorbent surface allows for rapid
balance which confirms the suitability and efficiency of ultrasonic power as a powerful
wastewater treatment tool. The results indicate that the initial adsorption is very fast due
to the high active surface area and an adsorbent vacant site that enhances the interface
and a driving force. In addition, the results of this study encourage research and indus-
try to use ultrasound devices for more efficient synthesizing nanomaterials. Takahashi
et al. demonstrated an easy and effective post-modification pathway was developed to
modify the surface charge of AuNPs using surfactant-free (thioctic acid) AuNPs produced
via the sonochemical method [125]. The AuNPs have been synthesized in 30 min by a
sonochemical surfactant-free reaction with ultrasound at 430 kHz. SEM images verified
that nano spherical of AuNPs (15–20 nm) was formed during the sonication of a 200-µM
HAuCl4 aqueous solution. It has been found that the presence of trace nereistoxin might
cause AuNPs aggregation if thioctic acid was partially covered at pH 5 on the AuNPs
surface. Since the aggregation could not have been produced without thiol groups by
the other amine compounds, it showed that the pronounced nereistoxin concentration
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might reduce the thioctic acid surface charge covered AuNPs resulting in aggregation. A
simplistic liquid-liquid reverse extraction method has been successfully used to prove the
ability of the proposed method for detecting trace levels of nereistoxin in environmental
water samples.

5. Conclusions

Sonochemistry demonstrates the use of modern methods and techniques and has
proven to be more simple and rapid in some ways than mature and conventional ones for
synthesizing Fe3O4, Au and Fe3O4@Au NPs. With simple alterations of the precursor com-
positions and reaction conditions, the usage of a high-intensity ultrasound has effectively
prepared a multitude of nanostructured materials for controlled structures, morphologies
and compositions. Using such exceptional conditions, naturally presented by acoustic bub-
bles, a large variety of nanomaterials were sonochemically synthesized even without the
assistance of extensive and costly equipment or facilities. Sonochemistry helps to eliminate
the complexity and to improve the handling of materials. The sonochemical method has
demonstrated its ability to produce diverse desired sizes and shapes of Fe3O4, Au and
Fe3O4@Au NPs. This review successfully highlighted its significant contributions and
progress, in addition to precise discussions on the sonochemical synthesis of nanomaterials.
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72. Majerič, P.; Jenko, D.; Friedrich, B.; Rudolf, R. Formation mechanisms for gold nanoparticles in a redesigned Ultrasonic Spray

Pyrolysis. Adv. Powder Technol. 2017, 28, 876–883. [CrossRef]
73. Rabeea, M.A.; Owaid, M.N.; Aziz, A.A.; Jameel, M.S.; Dheyab, M.A. Mycosynthesis of gold nanoparticles using the extract of

Flammulina velutipes, Physalacriaceae, and their efficacy for decolorization of methylene blue. J. Environ. Chem. Eng. 2020, 8,
103841. [CrossRef]

74. Shariq, M.; Friedrich, B.; Budic, B.; Hodnik, N.; Ruiz-Zepeda, F.; Majerič, P.; Rudolf, R. Successful synthesis of gold nanopar-
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