
entropy

Article

An Approach to Growth Delimitation of Straight Line Segment
Classifiers Based on a Minimum Bounding Box

Rosario Medina-Rodríguez 1,* , César Beltrán-Castañón 1 and Ronaldo Fumio Hashimoto 2

����������
�������

Citation: Medina-Rodríguez, R.;

Beltrán-Castañón, C.; Hashimoto, R.F.

An Approach to Growth Delimitation

of Straight Line Segment Classifiers

Based on a Minimum Bounding Box.

Entropy 2021, 23, 1541. https://

doi.org/10.3390/e23111541

Academic Editor: Jordi Nin

Received: 13 October 2021

Accepted: 13 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Ingeniería, Escuela de Posgrado, Pontificia Universidad Católica del Perú, Av. Universitaria
1801, San Miguel, Lima 15088, Peru; cbeltran@pucp.pe

2 Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo,
Rua do Matão, 1010, São Paulo 05508-900, SP, Brazil; ronaldo@ime.usp.br

* Correspondence: r.medinar@pucp.pe

Abstract: Several supervised machine learning algorithms focused on binary classification for solving
daily problems can be found in the literature. The straight-line segment classifier stands out for its
low complexity and competitiveness, compared to well-knownconventional classifiers. This binary
classifier is based on distances between points and two labeled sets of straight-line segments. Its
training phase consists of finding the placement of labeled straight-line segment extremities (and
consequently, their lengths) which gives the minimum mean square error. However, during the
training phase, the straight-line segment lengths can grow significantly, giving a negative impact on
the classification rate. Therefore, this paper proposes an approach for adjusting the placements of
labeled straight-line segment extremities to build reliable classifiers in a constrained search space
(tuned by a scale factor parameter) in order to restrict their lengths. Ten artificial and eight datasets
from the UCI Machine Learning Repository were used to prove that our approach shows promising
results, compared to other classifiers. We conclude that this classifier can be used in industry for
decision-making problems, due to the straightforward interpretation and classification rates.

Keywords: minimum bounding box; straight-line segment classifier; supervised learning

1. Introduction

The computational power and the high demand for automatic systems for pattern
recognition have increased, due to the wide availability of databases worldwide. We are
currently facing significant challenges in pattern recognition, which is concerned with
the automatic discovery of patterns in data through computer algorithms to take actions
such as classifying the data into different categories [1]. Classification is fundamental
when a data repository contains samples that can be used as the basis for later decision
making [2]. Indeed, classification algorithms that aim at producing learning models from
labeled training datasets are part of the supervised learning approach and are an essential
component of several systems, such as speech recognition, handwritten symbol recognition,
and data mining [3].

Many conventional classification algorithms were proposed in the long history of
machine learning, some of which have been acknowledged as being highly accurate,
particularly support vector machines (SVM) and random forests (RF). Furthermore, new
classifiers are continuously being proposed, due to the complex nature and increasing scale
of many real-world problems in different domains. For instance, deep learning (DL) [4] is a
trending classification technique, and it is currently the state-of-the-art in machine learning
research. It has demonstrated outstanding performance in image and speech recognition
and related applications [5]. Despite these advantages, DL presents a significant challenge
to acquiring a large amount of data, choosing the complex network structure, parameter
settings, and interpretability results. Indeed, using DL with small sample datasets is a
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challenge [6,7]. Furthermore, DL makes the transfer of knowledge between experts and
non-experts more difficult.

On the other hand, people not related to machine learning seek easy, interpretable,
but effective learning algorithms to be used in decision-making problems. That is the
reason why the straight line segment (SLS) classifiers are introduced [8]; they are binary
classifiers based on distances between points and two sets of labeled straight-line segments.
It is worthy of note that they are very light and can be embedded in small devices that use
small memory.

SLS classifiers take advantage of some good characteristics of the two methods, learn-
ing vector quantization (LVQ) [9–11] and nearest feature line (NFL) [12,13], such as lower
computational complexity, compared to support vector machines (SVM) [14]. Additionally,
in [8,14,15], Ribeiro and Hashimoto showed that SLS classifiers are excellent alternatives to
real applications, and their performance are comparable with SVM in binary classification
problems. The preliminary results and academic collaborations outlined the SLS classifier
as a good option, being competitive with well-known conventional classifiers for binary
classification problems. The crucial part of SLS classifiers is their training phase. It consists
of incrementally adjusting labeled straight-line segments to represent as much as possible
“portions” of the feature space containing subsets of training points that all have the same
label so that a new test point receives the same label of the straight-line segment nearest to
it. In this way, it is expected that the final positions of the labeled straight-line segments
provide the minimum (local) value for the mean squared error (MSE) of the training dataset.
Thus, the problem of finding the final right place of straight-line segments is an optimiza-
tion problem, which is solved by using a descent gradient. However, during the training
phase, the straight-line segment lengths can grow significantly, giving a negative impact
on the classification rate. In this work, we address this issue by solving the optimization
problem in a constrained search space (tuned by a scale factor parameter) in order to restrict
the straight-line segment lengths.

The rest of this paper is organized as follows: in Section 2, we briefly describe super-
vised learning methods based on distances and some related classifiers. Then, in Section 3,
we present definitions and the learning algorithm of the straight-line segment classifiers.
Later, Section 4 details the principal contribution of this work. Results for artificial and pub-
lic datasets are presented in Section 5, while the discussion is listed in Section 6. The paper
ends with conclusions and future perspectives in Section 7.

2. Supervised Learning Based on Distances

Supervised learning is an important component of all kinds of applications, such as
speech recognition, handwritten symbol recognition, and data mining, among others [1,16].
It is one subfield of machine learning that learns from samples and generalizes to unseen
cases. Thus, the aim of this kind of learning, and specifically in binary classification, is
to build a concise predictive model of labels for two classes, generally using function
f : Rd → {0, 1} from a known dataset, represented by pairs of examples (En = {(xi, yi) ∈
Rd × {0, 1} : i = 1, 2, . . . , n}). The goal is to establish decision boundaries in the feature
space that divide the patterns into its respective classes. Then, it is considered an error
when the machine assigns a different label from the tutor [15].

Different methods and approaches have been proposed to overcome the two-class
classification problem. Among the most frequently used, we can find the linear classi-
fiers, neural networks, Bayesian networks, random forest, and support vector machines
(SVM) [17]. However, the straight-line segment classifier is outlined as an exciting option,
based on the preliminary results and academic collaborations [15,18–20]. The main contri-
bution of the straight-line segment classifier is to introduce a classifier based on distances
between a set of points and two sets of straight-line segments [15], where the extremities of
the line segments do not need to be examples.
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2.1. Related Classifiers
2.1.1. K-Nearest Neighbor Classifier (k-NN)

Proposed by [21], the k-NN classifier is a simple algorithm that stores all available
cases and classifies new cases based on a similarity measure. Ref. [22] demonstrates that
the k-NN error is not more than twice the Bayes error, asymptotically. An example is
classified by a majority vote of its neighbors and labeled to the most common class among
its k nearest neighbors (see Figure 1a).

(a) (b) (c)

Figure 1. Example of a separable problem in 2D space. Decision boundaries obtained by (a) k-NN
classifier; (b) LVQ, prototypes are marked by larger symbols; (c) NFL, feature line spaces drawn from
5 points. Figures extracted from (a,b) [23] and (c) [12].

2.1.2. Learning Vector Quantization (LVQ)

LVQ is one of the most powerful approaches for prototype-based classification of
vector data [9]. The prototype adaptation scheme is based on attraction and repulsion
during the learning [24]. In the case of supervised vector quantization, the prototypes are
used to determine the classification decision. As can be seen in Figure 1b, the winning
prototype is moved closer to the example feature vector if they share the same label, and it
moves away otherwise [23].

2.1.3. Nearest Feature Line (NFL)

The NFL is applicable where there are at least two prototypes for each class; it was
proposed by [13]. This method uses a linear model to interpolate and extrapolate each
pair of prototype feature points belonging to the same class. More specifically, the two
prototype feature points are generalized by the feature line (FL), a straight line passing
through the two points in the feature space (see Figure 1c). Hence, it virtually provides
an infinite number of prototype feature points of the class, extending the capacity of the
prototype. Finally, the classification is done by calculating the minimum Euclidean distance
between the feature point and its projection to the feature line [12].

3. The Straight-Line Segment Classifier

In this section, we present the straight-line segment classifier (SLS classifier), whose
main contribution is to introduce a binary classifier based on distances between a set of
points and two sets of straight-line segments [15], where the extremities of the line segments
are not necessarily part of the examples. In order to achieve this objective, in this section,
we include its basic definitions and training algorithm.

3.1. Notation and Definitions

A straight-line segment with extremities p and q ∈ Rd+1 is defined as follows:

Lp,q = {x ∈ Rd+1 : x = p + λ · (q− p), 0 ≤ λ ≤ 1} (1)

Given a point x ∈ Rd, an extension of x to Rd+1 is denoted by xe = (x, 0), adding one
more coordinate with zero value. Moreover, a pseudo-distance between a point x ∈ Rd and
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a straight-line segment Lp,q ⊆ Rd+1 is defined in Equation (2), where dist(a, b) denotes the
Euclidean distance between two points a, b ∈ Rd+1; as can be seen in Figure 2. It is worth
mentioning that this metric does not compute the Euclidean distance between a point (x)
and a straight-line segment (L). However, it satisfies the following axioms [15]: (i) if p = q,
then distP(x, L) = dist(x, p) = dist(x, q); (ii) if x ∈ L, then distP(x, L) is zero; and (iii) if
x /∈ L, then distP(x, L) is greater than zero. Therefore, the farther x is from L, the greater
distP(x, L) .

Figure 2. Representation of the distance between a point x and a straight-line segment with extremi-
ties p and q ∈ Rd+1.

distP(x, L) =
dist(xe, p) + dist(xe, q)− dist(p, q)

2
(2)

Since the SLS classifier is based on two sets of straight-line segments (red and blue, see
Figure 3), a set of SLSs L is defined in Equation (3), where m represents the number of
straight-line segments for each class.

Figure 3. Representation of two sets of straight-line segments in color red and blue.

L = {Lpi ,qi : pi, qi ∈ Rd+1, i = 1, . . . , m} (3)

Furthermore, the discriminative function is defined in Equation (4), where x ∈ Rd and ε is
a small positive constant to avoid division by zero. Followed by the classification function
denoted in Equation (5), where SL0,L1(x) is a sigmoid function (see Equation (6)), where g
is a real positive constant, which influences the slope of the sigmoid function. The larger
the values of g, the more the sigmoid function approximates to a step function. It is worth
mentioning that this value is optimized during the training phase.

TL0,L1(x) = ∑
L∈L1

1
distP(x, L) + ε

− ∑
L∈L0

1
distP(x, L) + ε

(4)

FL0,L1(x)
{

0, i f SL0,L1(x) < 0.5;
1, otherwise

(5)

SL0,L1(x) =
1

1 + e−g(TL0,L1
(x))

(6)

3.2. Training Algorithm

As stated in [25] “supervised statistical learning involves building a statistical model
for predicting or estimating an output based on one or more inputs by reducing the



Entropy 2021, 23, 1541 5 of 17

error on a training data set”. Therefore, as described in [15], given a set of n examples
En = {(xi, yi) ∈ Rd × {0, 1} : i = 1, 2, ..., n}, the objective of the supervised learning
algorithm of the SLS classifier is to find two sets of straight-line segments (SLSs)(L0 and
L1), based on the fact that points x closer to L0 (or L1) and farther from L1 (or L0) (i) lead
the classification function FL0,L1(x) to 0 (or 1) and (ii) minimize the mean squared error
(Equation (7)), which is a differentiable function.

MSE(FL0,L1) =
1
n

n

∑
i=1

[SL0,L1(xi)− yi]
2 (7)

As proposed in [14], the training algorithm is composed of two phases, as depicted in
Figure 4 and detailed in Algorithm 1.

Figure 4. Training algorithm steps: placing (a–d) and tuning (e–f). Modified from [15].

Algorithm 1 Training algorithm

Require: En = {(xi, yi) ∈ Rd × {0, 1} : i = 1, 2, ..., n}, m = numSLS, l = 1, g = 1,
gdParams=[Imin,Imax,γinc,γdec, Dispmin, Rmin]

Ensure: g, L0, L1
{Placing Phase}

1: X0 ← {(xi, yi) ∈ En and yi = 0}
2: X1 ← {(xi, yi) ∈ En and yi = 1}
3: for class← 0 to 1 do
4: (c0

class, . . . , cm−1
class), (C

0
class, . . . , Cm−1

class )← KMeans(Xclass,m)
5: for z← 0 to m− 1 do
6: (d0

class, d1
class), (D0

class, D1
class)← KMeans(Cz

class,2)
7: pe ← (d0

class, l)
8: qe ← (d1

class, l)
9: add (pe, qe) to Lclass

10: end for
11: end for

{Tuning Phase}
12: g← 1
13: α← [g,L0, L1]
14: [g,L0, L1]← GradDesc(α, gdParams)



Entropy 2021, 23, 1541 6 of 17

3.2.1. Placing

This phase consists of pre-allocating (finding the initial positions of) the straight-line
segments (in L0 and L1), as described in Algorithm 1 from line 1 to 11, based on the fact
that points x closer to L0 (or L1, respectively) and farther from L1 (or L0, respectively) lead
the classification function FL0,L1(x) to 0 (or 1, respectively). To achieve this goal, the set
of examples En is divided into two groups: Xi = {x ∈ Rd : (x, y) ∈ En and y = i} (for
i = 0, 1). Then, the clustering algorithm k-means is applied to each group, with k = m,
where m represents the number of SLSs required per class. As can be seen in Algorithm 1
line 4, k-means returns two sets: (i) the centroids c and the points belonging to an specific
cluster C. Later, with the objective to obtain the initial extremities of the SLSs (pi and qi) for
each cluster, the k-means algorithm (with k = 2) is applied again, but at this time, to each
cluster obtained from the previous k-means application.

3.2.2. Tuning

The purpose of this phase is to minimize the mean square error function, as described
in Algorithm 1 from lines 12 to 14. Therefore, to accomplish this task, the gradient descent
technique [1] is used to find the final positions of the SLSs in L0 and L1 (which contains
the initial positions obtained in the previous phase) and the value of g (sigmoid inclination;
see Equation (6)), whose default value is 1 such that the derivative of the mean square
function is equal to zero.

As detailed in [20], this classifier version differs from the original in a sign change of
the MSE derivative concerning the parameter g, which defines the sigmoid “smoothness”
(Equation (6)). Then, the application of the gradient descent technique, which occurs
only once, including the value of g in the parameters vector, adjusts its value during
optimization in conjunction with the straight-line segment final positions (see Algorithm 1
line 14). Lastly, the stop criterion depends on the gradient’s Euclidean norm, specifically
when it has reached a specific small predefined value (Ngtolerance). If ‖ ∇MSE(SL0,L1) ‖
is small enough, it can be approximated to zero, meaning that it is close to the optimal
solution. Either, if MSE(SL0,L1) is convex, the gradient is monotonous and continuous, so
if it is close to zero, it is close to the minimum. Despite the fact that the gradient descent
method does not guarantee the global minimum and the final solution (positions of the
SLSs) depends on the initial placing phase, it is successfully applied.

4. Bounding Box Approach for Straight-Line Segments Growth Restriction

The length of the straight-line segments has a meaningful influence on the classification
rate of the SLS classifier. The straight-line segments are displaced in the space during the
training to achieve a minimum mean squared error by applying the gradient descent
method. Nevertheless, most of the time, it is not just a displacement but also a growth
of the straight-line segments to represent more points and obtain a better classification
rate. According to Medina et al. [20], in some cases, the straight-line segments can grow
significantly. Although it leads to high classification rates, visually, the segments are apart
from the training set. As shown in Figure 5, the left side depicts the results (79.45%) after
using the k-means algorithm to find the initial positions. However, the right side represents
a set of straight-line segments that visually are far from the dataset and also achieve a
correct classification (79.32%) similar to the left side. It is worth mentioning that the initial
positions were randomly initialized.

In order to understand this behavior, we explore the pseudo-distance, which represents
the distance from a point to one straight-line segment. We hypothesized that by definition,
Equation (2) has a disadvantage: the distance between a point to a distant and long straight-
line segment could be less than the distance between the same point to a short and close
straight-line segment. Therefore, to prove our hypothesis, in Figure 6, we plot the distance
from the red straight-line segment, which has a length of 10.78 and the green one with
the length of 0.94. For these cases, the distances are 0.4478 and 0.4999, respectively. These
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results prove our hypothesis that the distance from SLS-2 (red and long) is less than from
the SLS-3 (green and short).

Figure 5. Representation of the initial (dashed line) and final (solid line) positions of the straight-line segments for the
S-Shape distribution using 2-2 straight-line segments per class. In the plots, the red color lines belong to class1 and the ones
in black, to class0.

Figure 6. Distance comparison between one fixed point X (in purple) and three straight-line segments
(i) in blue, a short length and far from point X; (ii) in green, a short length and close to the point X;
and, (iii) in red, long length and far from point X.

Given this context, we analyze this behavior at the training phase. Then, we can
assume that for each iteration of the gradient descent, the length of a long straight-line
segment could keep growing because the distance computed according to Equation (2)
is short. Moreover, it could lead to problems of misclassification and the overlapping of
straight-line segments from different classes. Therefore, to represent the training points
with two sets of straight-line segments without exceeding a certain length, we propose
an approach to restrict the straight-line segments’ growing space, based on the idea of
the bounding box, which is defined as the rectangle that is just large enough to contain all
objects. In this paper, we define a rectangular box that encloses the straight-line segments,
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restricting their length. This bounding box is determined by each minimum and maximum
coordinate value as defined in Equation (8).

[{mini, ..., mind, mind+1}{maxi, ..., maxd, maxd+1}] ∈ Rd+1 : i = 1, 2, ..., d, d + 1; (8)

It is worth mentioning that we introduce a new coordinate d + 1 with value 1 at the tuning
phase (see Section 3.2.2). Thus, we fix the minimum and maximum value of that coordinate
to {−1, 1}. An example of an increment in the bounding box size for the circles distribution
is depicted in Figure 7. In order to scale the bounding box, we use a variable called
mbb_ f actor, which increments the minimum and maximum values by a percentage of each
coordinate in the following way:

NewMini = mini + (mini ∗mbb_ f actor)

NewMind+1 = −1 + (−1 ∗mbb_ f actor)

NewMaxi = maxi + (maxi ∗mbb_ f actor)

NewMaxd+1 = +1 + (1 ∗mbb_ f actor)

Finally, the minimum bounding box is used as a stop criterion for the gradient descent
besides the Euclidean norm and a maximum number of iterations. Therefore, the gradient
descent will also stop whenever any of the extremities from the straight-line segments
exceed the bounding box. Then, line 14 of Algorithm 1 is replaced with [g,L0 , L1] ←
GradDesc(α, gdParams, minimumBoundingBox).

Figure 7. Proposed bounding boxes for restricting the straight-line segments’ growing space, using scale factors (mbb_ f actor):
0.0, 2.0 and 4.0, respectively.

5. Results

This section describes the artificial datasets built for this work and the eight public
datasets used for testing the proposed approach. Their configuration, including the clas-
sifier parameters, number of examples, and training times, are also described. Finally,
the obtained results and a comparison between a previous version of the classifier and the
proposed one is shown.

5.1. Artificial Datasets

Artificial datasets are useful for a better understanding of the behavior of algorithms
in response to different hyperparameters. They should meet some properties, such as the
following: quick and easy generation and visualization in two dimensions; having known
outcomes for comparison with predictions; being stochastic, allowing random variations
on the same problem; and scalability.

Given this context, we used four distributions, renamed for the interest of this re-
search to (i) F-Shape, (ii) S-Shape, (iii) Simple-Shape, and (iv) X-Shape, proposed by [14].
As depicted in Figure 8i–iv, for each class C ∈ {0, 1} in R2, the distributions were designed
according to probability distributions divided into several regions. Each region is asso-
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ciated to a density function defined by the sum of M normal two-dimensional functions
denoted by Equation (9), where µC

i ∈ R
2 is the center of the normal density function,

ΣC
i is the 2× 2 covariance matrix, and PC is a real number such that ∑M

i=1 PC
i = 1 whose

values are detailed in Table 1. Additionally, Ribeiro and Hashimoto [15] applied the Bayes
classifier [16] to obtain the ideal classification rate for each distribution (see Table 2) since
the probability density function is known.

p(x, y = C) =
M

∑
i=1

PC
i Normal(x, µC

i , ΣC
i ) (9)

Table 1. Set of values for the probability density functions used for the generation of the artificial
distribution. Adapted from [20].

Dist. Class (C) Mean (µ) Covariance (Σ) Prob(P) Label

F-Shape
M = 3

0
[0.125, 0.5] [0.01, 0, 0, 0.04] 0.574 (a)
[0.5, 0.375] [0.012, 0, 0, 0.01] 0.213 (b)
[0.5, 0.875] [0.012, 0, 0, 0.01] 0.213 (c)

1
[0.875, 0.5] [0.01, 0, 0, 0.04] 0.574 (d)
[0.5, 0.125] [0.012, 0, 0, 0.01] 0.213 (e)
[0.5, 0.625] [0.012, 0, 0, 0.01] 0.213 (f)

S-Shape
M = 2

0 [0.4, 0.4] [0.02, 0, 0, 0.01] 0.5 (a)
[0.4, 0.8] [0.02, 0, 0, 0.01] 0.5 (b)

1 [0.6, 0.2] [0.02, 0, 0, 0.01] 0.5 (c)
[0.6, 0.2] [0.02, 0, 0, 0.01] 0.5 (d)

Simple-Shape
M = 1

0 [0.6, 0.6] [0.01,−0.009,−0.009, 0.01] 1 (a)

1 [0.4, 0.4] [0.01, 0.009, 0.009, 0.01] 1 (b)

X-Shape
M = 2

0 [0.25, 0.25] [0.04, 0, 0, 0.04] 0.5 (a)
[0.75, 0.75] [0.04, 0, 0, 0.04] 0.5 (b)

1 [0.25, 0.75] [0.04, 0, 0, 0.04] 0.5 (c)
[0.75, 0.25] [0.04, 0, 0, 0.04] 0.5 (d)

Table 2. Bayes classification accuracies reported in [15].

Distribution Bayes Classifier (%)

F-Shape 91.43
S-Shape 84.39

Simple-Shape 96.95
X-Shape 81.11

Furthermore, six new dataset types (see Figure 8v–x) were considered, and to generate
samples for them, we used a data generator from the scikit-learn package [26] with the
parameters detailed in Table 3, briefly described below:

(v) Blobs: it consists of two blobs from a Gaussian distribution for each class (gray
and blue colors, respectively).

(vi) Blobs with noise: they are composed of one blob for each class. The label of 20% of
the samples from each blob is randomly exchanged.

(vii) Circles: they are a sample that falls into two concentric circles.
(viii) Gaussian quantiles: they are constructed by taking a multi-dimensional standard

normal distribution and defining classes separated by nested concentric multi-
dimensional spheres. Each class has an equal number of instances.

(ix) Imbalanced: it contains the number of gray instances class0 that significantly
outnumbers (nine times) the blue instances class1, which leads to class imbalance.

(x) Moon: it is composed of two half moons, one for each class.
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(i) (ii) (iii) (iv) (v)

(vi) (vii) (viii) (ix) (x)

Figure 8. Artificial dataset types used in our research. On the first row: (i) F-Shape, (ii) S-Shape,
(iii) Simple-Shape, (iv) X-Shape, and (v) Blobs. On the second row: (vi) Blobs with Noise, (vii) Circles,
(viii) Gaussian, (ix) Imbalanced, and (x) Moon. On each graph, class0 is represented by gray color
and class1 by blue color.

Table 3. Set of scikit-learn parameters used to generate the six new artificial datasets.

Dataset Type Parameters

Blobs n_samples = 160,000, centers = 4, n_features = 2, random_state = 222

Blobs with
Noise

n_samples = 160,000, n_features = 2, n_informative = 2, n_redundant = 0,
n_repeated = 0, n_classes = 2, n_clusters_per_class = 1, class_sep = 2,

flip_y = 0.2, weights = [0.5, 0.5], random_state = 222

Circles n_samples = 160,000, factor = 0.5, noise = 0.05, random_state = 222

Gaussian
Quantiles n_samples = 160,000, n_features = 2, n_classes = 2, random_state = 222

Imbalanced
n_samples = 160,000, n_features = 2, n_informative = 2, n_redundant = 0,

n_repeated = 0, n_classes = 2, n_clusters_per_class = 2, class_sep = 1.5,
flip_y = 0, weights = [0.9, 0.1], random_state = 222

Moon n_samples = 160,000, noise = 0.1, random_state = 222

For comparison purposes, we estimated the naive Bayes classifier [27] accuracies for
each dataset type. To that end, for each dataset type (including the four original ones), we
generated eleven datasets, each one containing 160,000 sampling points. Then, we trained
ten naive Bayes classifiers [27] for the first ten datasets, and computed their accuracies
using the last one. The results can be seen in Table 4. It is worth mentioning that we
achieved a low classification rate for the X-Shape distribution (logical XOR) with 49.31%
because of the class conditional independence assumption of the naive Bayes classifier
model; that is, given a class, a feature variable is independent of any other feature variable.
Moreover, there is a difference of 4% concerning the optimal Bayes classifier accuracy rate
on the four distributions proposed in the original work.
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Table 4. Mean and standard deviation of the correct classification rate obtained with the naive
Bayes classifier.

Distribution 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean Stdev

Blobs 99.76 89.20 99.63 60.57 99.38 82.69 96.25 97.85 93.66 90.68 90.97 12.03
Blobs_noise 89.05 89.42 89.90 89.22 89.89 90.03 90.02 89.73 89.91 89.02 89.62 0.40
Circles 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 0.002
F-Shape 82.16 82.00 82.08 82.05 82.08 82.19 82.10 82.12 82.02 82.02 82.08 0.06
Gaussian 97.27 97.23 97.33 97.42 97.33 97.24 97.21 97.32 97.35 97.41 97.31 0.07
Imbalanced 98.37 99.66 99.74 98.89 98.77 98.26 98.75 97.97 95.56 99.25 98.52 1.19
Moon 87.92 88.03 87.95 88.02 87.93 88.02 87.99 88.02 88.03 87.98 87.99 0.04
S-Shape 79.27 79.57 79.26 79.52 79.53 79.59 79.60 79.60 79.44 79.52 79.49 0.13
Simple-Shape 92.37 92.36 92.47 92.39 92.35 92.41 92.33 92.33 92.35 92.40 92.38 0.05
X-Shape 50.35 47.44 47.36 47.43 49.73 49.91 47.52 50.36 55.72 47.29 49.31 2.62

5.2. Experiments

Based on the approach proposed in Section 4, some experiments over ten artificial
datasets, using the parameters detailed in Table 5, were performed to find out if delimiting
the growth of the straight-line segments improves the classification rate of the SLS classifiers.
Figure 9 shows the mean squared error (Equation (7)) achieved when the training algorithm
stops after one of the straight-line segments falls out of the bounding box.

Table 5. Set of parameters for the experiments performed with the artificial datasets.

Parameter Values

Training Samples 10 samples of 1000 examples
Test Sample 160,000 examples
Validation 10-Fold-Cross-Validation
mbb_factor 0.0, 1.0, 2.0, 4.0, 6.0
Num. SLS per class 1-1, 2-2, 3-3, 4-4, 5-5
Gradient Descent-γinit 0.1
Gradient Descent-γinc 0.1
Gradient Descent-γdec 0.5
Gradient Descent-Ngtolerance 0.001

For instance, for the imbalanced dataset, using 2-2 SLS per class, we can see that one of
the extremities of the straight-line segments fell out of the bounding box with scale factor
is equal to 6.0 at iteration 1,012,150, in contrast to the situation when the bounding box is
not scaled, where the algorithm stops at the first iteration. The circles dataset presents the
same behavior regarding the bounding box scale. Moreover, for visualization purposes,
in Figure 10, we display the initial (dashed lines) and final positions (solid lines) of the
straight-line segments before they fall out of the bounding box applied to the circles dataset.
Additionally, for both datasets, the MSE is very close to zero. Therefore, from these two
plots, we can conclude that a bigger bounding box will take many iterations to stop the
training algorithm because it needs an extremity of any straight-line segments to be out of
the bounding box. However, due to the randomness feature of the k-means used to find
the initial positions, this affirmation is not always true, as shown in Figure 9 (second row).
For the datasets presented in this row, the training algorithm stops earlier than expected.
However, for the datasets in the first row of the same figure, the number of iterations
increases, while the scale factor increases. Unlike the datasets presented in the second row,
the iterations are less than 100 when the scale factor is equal to 6.0, which means that the
straight-line segments grow faster and fall out of the box quickly.
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Imbalanced (2-2 NSLS) Circles (4-4 NSLS)

Simple-Shape (1-1 NSLS) S-Shape (1-1 NSLS)

Figure 9. Number of iterations at gradient descent algorithm stops when using different bounding
box scale factors.

From the results, we can notice two behaviors of the training algorithm: (i) it stops
when one of the extremities of any straight-line segment falls out of the bounding box; or
(ii) it has to be interrupted manually because of countless iterations caused by the fact that
the straight-line segments never fall out of the large size of the bounding box.

Figure 10. A 3D visualization of the final straight-line segment positions obtained after applying the training algorithm,
using one straight-line segment per class. Each column represents a different value of mbb_ f actor = {0, 2, 4} with accuracies
of 73.35%, 99.9% and 99.9%, respectively.

Additionally, several experiments were performed with different bounding box scale
factors, such as 0, 1, 2, 4 and 6, using from 1 to 5 straight line segments per class (see
Figure 11). From these experiments, we extracted two charts, which show the classification
rates achieved by two distributions: S-Shape and Simple-Shape (see Figure 11). As can
be seen, on one hand, the bounding box generated (scale factor = 0.0) is too small, and it
does not let the straight-line segments move in the space. On the other hand, when
mbb_ f actor = 4.0 and 6.0, the bounding boxes are too big; consequently, the algorithm
takes too many iterations since the straight-line segments never fall out of the bounding
box. Nonetheless, the classification rates have high values, which could be due to the
disadvantage of the pseudo distance function detailed in Section 4. In addition, these plots
show that the classification rates increase for scale factors from 0.0 to 2.0 and remain the
same or similar for higher values of scale factors.
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S-Shape Simple-Shape

Figure 11. Correct classification at test phase for distributions S-Shape and Simple-Shape using from
1 to 5 straight line segments per class and 0, 1, 2, 4, 6 as bounding box scale factors.

5.3. Public Datasets

In order to demonstrate the feasibility, robustness, and performance of the proposed
classifier on real problems, eight public datasets described in Table 6 were extracted from
the UCI Machine Learning Repository [28]. The experiments were conducted according to
the following specifications:

• Pre-processing: each dataset is normalized between −1 and 1, and the mean of the
column replaces the missing values.

• Validation: stratified dataset split, preserving the percentage of samples for each class
(train 75%, test 25%); and 10-fold cross validation where the training dataset is divided
into 10 stratified folds.

• Number of straight-line segments: from 1 to 10 for each class, obtaining 100 models.
• Model selection: exhaustive search to find the straight-line segments’ best configuration.
• Gradient descent parameters: γinit = 0.1; γinc = 0.1; γdec = 0.5 and Ngtolerance = 0.001.
• The classifier was implemented in C++ using Armadillo library for Linear Algebra &

Scientific Computing [29,30].
• All the experiments were performed in a 64-bit computer with 12 cores of 3.60 GHz

under the Ubuntu/Linux operating system.

Table 6. Public datasets features.

Dataset # Examples Dim Train-Size Test-Size

Australian Credit Approval
[31] 690 14 517 173

Breast Cancer Wisconsin [32] 683 10 512 171
Pima Indians Diabetes [33] 768 8 576 192
German Credit Data [34] 1000 24 750 250
Heart [35] 270 13 202 68
Ionosphere [36] 351 34 263 88
Liver Disorders [37] 345 6 258 87
Sonar Mines vs. Rocks [38] 208 60 156 52

Since we applied an exhaustive model selection approach on the experiments, in Table 7,
we show the classification accuracy rates obtained for each scale factor (1.0, 1.5 and 2.0)
based on the mean squared error computed for the validation and test sets. In the same
table, we detail the number of straight-line segments per class used for achieving those
classification rates. As can be seen, in five datasets, the best result was achieved using 2.0
as a scale factor for the bounding box.
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Table 7. Summary of the best models (number of straight-line segments per class and the bounding
box scale factor) obtained after an exhaustive model selection approach from 1 to 10 straight-line
segments per class for each bounding box scale factor, evaluating the mean squared error on validation
and test datasets.

Dataset The SLS Best Configuration MSE-Validation (%)
(1.0, 1.5 and 2.0)

MSE-Test (%)
(1.0, 1.5 and 2.0)

Australian {1-1, 2-3, 1-1} {89.22%, 88.85%, 88.77%} {89.60%, 89.80%, 89.81%}
Breast Cancer {8-10, 8-10, 8-10} {98.41%, 98.41%, 98.41%} {94.72%, 95.35%, 95.65%}
Diabetes {3-2, 7-2, 7-2} {84.08%, 83.77%, 83.83%} {83.22%, 82.35%, 82.96%}
German {2-2 ,1-1, 1-2} {82.50%, 82.47%, 82.45%} {84.80%, 84.36%, 85.33%}
Heart {2-2, 1-2, 1-1} {87.27%, 87.31%, 87.16%} {87.39%, 85.17%, 86.69%}
Ionosphere {10-8, 10-8, 10-8} {96.98%, 96.98%, 96.98%} {94.12%, 94.35%, 94.50%}
Liver Disorders {5-2, 5-2, 5-2} {81.41%, 81.41%, 81.41%} {75.51%, 75.65%, 76.59%}
Sonar {5-7, 6-7, 6-7} {91.12%, 91.10%, 91.10%} {89.38%, 92.38%, 90.04%}

Moreover, shown in Table 8, we compared the original classifier [15] and the one
proposed in this paper. We also performed an exhaustive search for the number of straight-
line segments per class used by the original classifier for this experiment. The results
presented in Table 8 show that the accuracies achieved by the proposed classifier using an
exhaustive model selection (number of straight-line segments per class and the bounding
box scale factor) outperform the original one by several percentage points. Regarding
the number of straight-line segments, the proposed classifier uses fewer than the original
one. It is worth mentioning that the original classifier always uses the same number of
straight-line segments per class.

Furthermore, Table 8 also shows a comparison between the results of the proposed
SLS classifier and the ones from other learning algorithms such as neural networks and
the support vector machines. These results were extracted from [39], which evaluates
179 classifiers arising from 17 families, and applied to 121 datasets (representing the
whole UCI data, excluding the large-scale problems). The classifier most likely to be
the best, according to Fernandez-Delgado et al. [39], is the random forest. However,
the difference is not statistically significant with the second best—the SVM with Gaussian
kernel implemented in C using LibSVM (Ionosphere and Sonar dataset accuracy were
extracted from: http://fizyka.umk.pl/kis-old/projects/datasets.html (accessed on 13
October 2021)). Table 8 also presents the results obtained using the SLS classifier with
three variants: (i) the original algorithm, (ii) a previous version of the classifier without
the bounding box approach, and (iii) our proposal with the best bounding box scale factor
founded in the experiments. It is worth mentioning that Table 8 also presents a comparison
with neural networks (NNs) which are a kind of simplified version of deep learning (DL)
network. In fact, DL networks can be built by using NNs with higher complexity. Since
we are dealing with UCI public datasets with a number of samples much smaller than the
number of samples expected to be used in DL classifiers, the fairest comparison should use
a kind of simpler version of DL networks.

Table 8. The best results between the proposed SLS classifier and other literature classifiers. The best
results among them are highlighted in bold, and the standard deviation are presented in parentheses.

Dataset All NN SVM SLS Classifier
[39] [39] [39] Original Proposed w/o MBB Proposed w/ MBB

Australian 69.1 68.8 68.2 87.28 8-8 86.00 (1.49) 1-1 89.81 (4.2) 1-1 2.0
Breast-Cancer 97.4 97.4 97.0 94.74 8-8 98.20 (1.46) 8-10 95.65 (1.6) 8-10 2.0
Diabetes 79.0 78.1 78.3 73.44 7-7 76.79 (2.38) 3-2 83.22 (3.5) 3-2 1.0
German 79.0 78.1 77.6 72.40 1-1 72.16 (0.48) 1-2 85.33 (1.6) 1-2 2.0
Heart 88.2 86.9 88.1 80.88 6-6 78.42 (1.38) 2-2 87.39 (6.2) 2-2 1.0
Ionosphere 95.5 95.2 95.5 95.45 7-7 95.56 (3.53) 10-8 94.50 (2.0) 10-8 2.0
Liver-Disorders - - - 72.41 5-5 72.08 (2.08) 5-2 76.59 (7.5) 5-2 2.0
Sonar 97.1 97.1 90.4 88.46 7-7 88.57 (1.51) 6-7 92.38 (6.0) 6-7 1.5

http://fizyka.umk.pl/kis-old/projects/datasets.html
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6. Discussion

The straight-line segment length was an existing problem for the straight-line segment
classifier, specifically when the k-means algorithm does not find optimal initial positions,
and the gradient descent algorithm allows their length to grow faster, making the straight-
line segments distant from the training dataset samples. Therefore, this paper proposes
an approach to constrain its growing space by defining a minimum bounding box for
the straight-line segments. The user defines a scale factor that allows the growth of the
bounding box. Several experiments changing the scale factor value were performed on
artificial datasets, concluding that using a scale factor bigger than 2.0 leads to lower
classification rates and a higher number of iterations, and consequently, increasing the
computational cost. For instance, in Figure 12, we can see the classification error curves for
SLS classifiers, using 1–5 straight-line segments per class and three suggested bounding
box scale factors. As can be seen, the curves show the same behavior when increasing
the number of straight-line segments. Therefore, the greater the number of straight-line
segments, the lower the classification error and, consequently, the higher the classification
rate. In addition, it can also be seen that using 2.0 as a scale factor for the bounding box
leads to a higher classification errors than the ones obtained with a bounding box scale
factor equal to one.

Several works in the literature describe which classifiers are more suitable to tackle
a diversity of applications. Despite the long tradition of pattern recognition research, no
technique yields the best classification in all scenarios [40]. From the results in Table 8, we
can conclude that our proposed method achieves acceptable results when compared with
other classifiers. Since the results in the column “All” include a list of 179 conventional
machine learning classifiers from which the random forest frequently achieves the best
results, we can see that our proposal outperforms these results in half the cases. It is
worth mentioning that in none of the cases, the classifier achieves the worst classification
rate. Moreover, when comparing our proposal considering the standard deviation, we
achieve similar classification rates than the best classifiers analyzed in [39]. In addition,
Table 8 shows a column “NN”, which contains the best results obtained by using NNs
(a simplified version of DL networks), reported by Fernandez-Delgado et al. [39]. NNs
achieved the highest classification rate only for the Sonar dataset. Among the results from
the SLS classifiers, we can conclude that using the bounding box approach improves the
classification rates, achieving the highest rate in most cases. It even improves the results
from the previous version of the SLS classifier, which only stops when the maximum
number of iterations is reached (1000 iterations).

Figure 12. Classification errors at testing phase for the Simple-Shape distribution using {1.0, 1.5, 2.0} as scale factors for the bound-
ing box.
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7. Conclusions

This paper aims to provide a method for adjusting the straight-line segments in a
constrained search space to build reliable SLS classifiers. To that end, we illustrated our
approach based on a bounding box by using simulated and public datasets. From the
results, we can conclude that our way of increasing the bounding box could be improved
by considering the data variance into the scale factor calculations. An alternative to the
straight-line segments growth restriction must be explored to constrain the length of each
straight-line segment during the training algorithm with the gradient descent method.
Moreover, a different model selection approach should avoid the exhaustive search of
parameters, including the minimum bounding box scale factor in the model selection. This
extension could help find the best model among all the possible parameters. Furthermore,
people unrelated to the machine learning field are searching for easily understandable and
interpretable but accurate classifiers to be used in decision-making problems. The straight-
line segment classifier emerges as an interesting alternative with low complexity and
computational costs, and easy results interpretation, compared to the complex deep learn-
ing network structure design, parameter settings, and interpretability, making it attractive
to be embedded in small devices. The SLS classifier would make more effortless the transfer
of knowledge between experts and non-experts.
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