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A B S T R A C T   

The improved thermal performance of recently discovered hybridized nanofluids has become 
essential in large scale thermal processes. In fact, this is highly efficient technique to introduce the 
thermal efficiency of tranditional heat transferring fluids. The behavior of the nanofluid can be 
significantly impacted by the unsteady heating and magnetic field effects that may be present in 
many applications. Therefore, the current study investigat the unsteady magnetized flow of 
hybrid nanofluid with heat transport characteristics subject to thermal radiation and slip at the 
surface wall. The shrinking/stretching surface is chosen as a flow source, which is frequently 
occure in polymer technology, which deals with the deformability of elastic sheets, and in met
allurgy, where continued strips are cooled. The novel form of shrinking surface flow is funda
mentally a reverse flow and exhibits physical characteristics that differ significantly from the 
channel flow scenario. The distinctive features of this scruinity is the use of empirical relations to 
approximate the optimum thermophysical attributes of a Cu − Al2O3/ water hybrid nanofluid in 
order to model the 2-dimensional flow past a flat shrinking/stretching sheet under the action of 
radiation, Lorentz forces and realastic boundary condition responses. The governing system of 
modelled equation are assembled using the Tiwari-Das model in conjunction with a hybrid mass- 
based nanofluid model. The bvp4c algorithm is employed within the computer MATLAB pro
gramme. The hybrid nanofluid flow shows conclusive improvement in the frictional coefficient 
and heat transport performance. However, the effectiveness the unsteadiness parameter de
teriorates the heat transmission. In the contiguity of a suction parameter, multiple outcomes 
appear to arise for both stretched and shrinking instances. The coefficient of energy transport 
improves as the magnetic factor is augmented, however the skin coefficient of friction exhibits 
dual behavior for the second solutions. A time-dependence investigation is undertaken to figure 
out the reliability of the twin solutions, and it is discovered that merely one of them remains 
stable and aesthetically credible.   
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1. Introduction 

Liquids designated as hybrid nanofluids are composed of several nanoparticles in order to expand the thermophysical character
istics of the working fluids. The properties of mono nanofluids can be customised by changing the concentration or ratio of the 
nanoparticles. On the other hand, monotonous nanoliquids showed consistent thermophysical characteristics in a confined assortment 
by utilising just one kind of nanoparticle (nonmetallic or metallic). In recent years, hybrid nanoliquids have been developed to mend 
the thermophysical attributes and heat transfer abilities of fluids. Due to their hydrothermal characteristics, hybrid nanoliquids have a 
extensive variety of solicitations in heat exchangers, heat pipes, heat sinks and solar panels. The relationships between the Nusselt 
number and the frictional coefficent are also referenced in several applications procedures that require heat transfer. Thermal man
agement is a field that is constantly growing and making significant strides forward in all phase containing cooling and heating, 
electricity production, electronic devices, manufacturing sectors and biomedical features. Due to the component miniaturisation and 
exponential growth in manufacturing capabilities, the heat flux or density has significantly increased, which poses a task to the 
traditional chilling technologies. Exhausting a hybrid nanofluid (HNF) is primarily intended to upturn heat efficiency in a variety of 

Nomenclature 

(x,y) Cartesian coordinates (m) 
u,v Components of flow in x and y directions (ms− 1)

Uw, u∞ Sheet velocity, free stream velocity (ms− 1)

vw Mass suction velocity through the sheet (ms− 1)

L Slip coefficient 
T, Tw, T∞ Fluid, sheet and free ambient temperature (K)
b > 0, c Constants 
B Magnetic field (Tesla) 
t Time (sec) 
λ Stretching parameter for λ > 0 and shrinking λ < 0 
(ρCp) Fluid heat capacitance (J • K− 1 • m− 3)

Cp specific heat at constant pressure (J • kg− 1 • K− 1)

μ dynamic viscosity of the fluid (kg • m− 1 • s− 1)

σ electrical conductivity of the fluid (S • m− 1)

σ∗ Stefan-Boltzmann constant (W • m− 2 • K− 4)

hnf Hybrid nanofluid 
Ec Eckert number 
S mass flux parameter 
s1 first solid particle 
Rd Radiation parameter 
ρ density of the fluid (kg • m− 3)

ψ Stream function 
τ dimensionless time variable 
υ kinematic viscosity of the fluid (m2 • s− 1)

φ1, φ2 nanoparticle volume fractions for Al2O3 (alumina) and Cu (copper) 
τw wall shear stress (kg • m− 1 • s− 2)

Cf Skin friction 
qw Wall heat flux (W • m− 2)

Nux Nusselt number 
β unsteadiness parameter 
qr radiative heat flux (W • m− 2)

κ∗ Rosseland mean absorption coefficient (m− 1)

f Base function 
f(η) Dimensionless velocity 
Θ(η) Dimensionless temperature 
Pr Prandtl number 
M Magnetic number 
α1 Slip parameter 
s2 second solid particle 
Re1/2 =

̅̅a
ν

√
x Reynold number  
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engineering and industrial processes, including the creation of sheet and rubber sheeting among other sophisticated materials. Indeed, 
when a stretching sheet is present, like extrusion procedures, the eminence of the closing product depends on the mass and heat 
transmission. Such types of fluid flow were explained by Siddheshwar et al. [1], but the flow past a stretched sheet was first 
demonstrated by Crane [2]. Many experts started to pay attention to fluid flow in the existence of shrinking sheets. In a theoretical 
examination, Mahabaleshwar et al. [3] looked at the flow of an impulsively extending sheet past an unsteady MHD laminar boundary 
layer. The MHD flow of viscoelastic fluid and power law models in the context of a stretched surface were both studied by Andersson 
et al. [4,5]. Later, a large number of researchers conducted in-depth studies on fluid flow in the existence of hybrid nanofluids and 
nanofluids with a different motivations, such as in the existence of radiation and mass transpiration. A nanofluid investigations was 
carried out with a range of boundary circumstances under the influence of a stretching sheet by Mahabaleshwar et al. [6,7]. Some 
researchers also studied hybrid nanofluids in addition to nanofluids. The right method of hybridization is most beneficial for the hybrid 
nanofluid thermal efficiency, according to research on recent developments in hybrid nanofluids by Sarkar et al. [8,9] using three 
distinct base fluids, including water, oil, and ethylene glycol. In the presence of a stretched sheet, Devi and Devi [10] investigated the 
Cu − Al2O3/H2O hybrid nanofluid. Both nanofluids and hybrid nanofluids have a extensive range of physical applications [11]. 

Potential advantages for the fluid dynamics caused by a stretched sheet can be found in the hot wire drawing, rolling, and fiber glass 
processing plants. Sakiadis [14] first looked into the boundary layer flow over a continuous rigid sheet drifting with a constant speed of 
light. Crane [2] provide ground breaking concept by providing an analalytic solution for the two-dimensional steady flow caused by a 
stretched sheet in a dormant fluid. After that several researcher consider the different features of stretched sheet problem and achieved 
normalized solutions, including Chen and Char [15], Wang [16], Gorla and Sidawi [16], Magyari and Keller [17], Andersson [18], and 
Ishak et al. [19]. Researchers subsequently looked into the scenario of a sheet that was shrinking rather than extending. A new kind of 
shrinking sheet flow that Goldstein [20] describes a backward flow. Wang [21] initially noticed the emergence of the peculiar form of 
flow brought on by shrinking while studying the characterestics of a liquid film on an erratic stretched surface. As an explicit solution 
of the Navier-Stokes equations exhbiting the steady flow past a contracting sheet was studied by Miklavi and Wang [22]. They 
discovered that mass suction is necessary to sustain the flow over a contracting sheet. Fang et al. [23], Fang [24], and Fang [25] 
examined the flow produced by a contracting sheet of power-law liquid model with constant velocity. The flow caused by a contracting 
sheet reveals physical characteristics that are substantially different from the flow caused by forward stretching. Numerous re
searchers, including [26–30] eloborates problems involving shrinking/stretced sheet with different fluids and many geometry under 
diverse conditions. 

The primary benefit of slip mechanism may be the reduction of flow resistance in microchannels and the enhancement of the 
efficiency of nanoscale viscous pumps. It is important to look at various slip-related research projects, particularly to address the right 
level of slip velocity for significance that are also concerned with related aspects. The first scientist who look at the velocity slip in
fluence on the boundary layer flow in a viscous fluid was Anderssonn [18]. Using the influence of radiative heat flux and mixed 
convection flow of the MHD carbon nanotubes (CNTs), Maraj et al. [31] investigate the analytic solution of nanofluid. In the most 
recent study, Nadeem and Abbas [32] examined the slipage impact of micropolar hybrid nanofluids. Muhammad et al. [33] inves
tigated the mechanism of heat transport mechanism utilising the slip perimeter influence in the context of viscous dissipations hybrid 
nanoliquid, nanofluid, and working fluid on multiwalled nanotubes. Yan et al. [34] examined the dual and stability analysis for joule 
heating and various slip scenrio on hybrid magnetized nanofluid with the aid of a few additional variables. Moreover, comparable 
findings on slip conditions in the presence of hybrid nanofluids have been reported by Eid et al. [35] and Aly et al. [12]. The results of 
the aforementioned research investigations may serve as the initial step for engineers and scientists in anticipating and managing the 
velocity slip effect in the track of the appropriate application. 

Traditionally, adding nanomaterials raises the rate of thermodynamic growth of the liquid flow; however, in the case of a 
computationally deteriorating solution, the influence is retracted, and the rate of heat transfer of a hybrid nanofluid is fewer than that 
of the original fluid and its nanofluid counterpart. In the light of the previous investigations, several investigators concentrated on an 
MHD flow over an extensible surface rather than a glaring stretch/shrinking surface, and only identified one treatment. A porous 
stretch/shrinking interface is important in manufacturing processes where the external surface may not be stationary, such as poly
meric extruding, fluid crystal, and ceramic material production. To the extent of the expertise, no previous studies have explored the 
unsteady flow in hybrid nanofluid caused by linear porous stretch/shrinking sheet with magnetohydrodynamics (MHD) as part of their 
mathematical framework. As a result of the aforementioned knowledge gap, the ultimate purpose of this research is to create a 
computational model exploring the hybrid nanofluid model and perform a stability study of an unsteady MHD stagnation point flow 
caused by a linear permeable stretching/shrinking sheet. The Tiwari and Das [36] nanofluid model is being used in the current work to 
analyze the model of the time-dependent flow and heat transport of a hybrid nanofluid via a stretch/shrinking surface with wall mass 
suction and slip mechanism. Two distinct nanoparticles, Cu − Al2O3 are suspended in pure water to create a hybrid nanofluid. In a 
broader context, the favourable qualities of both materials may be enhanced by balancing out the susceptible aspect with another 
material using a pair of well-composed nanomaterials. Suresh et al. [37] indicated that the hybrid Cu − Al2O3/water nanoliquids is 
proficient of boosting the effectiveness of thermal conductivity and fluid flow resiliency, thus the Cu − Al2O3 nanoparticles were 
chosen for the given investigation. The MATLAB systems software bvp4c approach is used to produce problem solutions. This model 
used a combination method with fourth-order precision and was widely accepted due to its strong stability properties. The findings 
clarification is clearly reflected. Our investigation identified the fluid flow separation sites and demonstrated the distinct interactions 
between separate solution. Furthermore, we state that this inquiry is novel and that all numerical results achieved are unique. 
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2. Problem description 

In this study, a stretched/shrinking surface with a sheet positioned at y = 0 has been used to explore the time-dependent 
incompressible flow and energy transfer of hybrid nanofluids. The schematic of interest in the current work is depicted in Fig. 1(a, 
b). Using cartesian coordinates (x, y) and boundary constraints. The x direction is aligned to the shrinking sheet and y direction is 
perpendicular to it. The two-dimensional flow velocities in (x, y) directionsare u and v, respectively. The surface is capable of 
stretching and shrinking in x direction with velocity uw(x, y) = Uw

1− ct, where t depicts time, c means unsteadiness and Uw = bx. 
Physically, c > 0, promotes the external flow ability; c < 0 deleinate the reverses flow, and c = 0 conforms the inviscid steady flow. 
Additionally, it is simulated that the mass flow velocity is vw(x,y), with vw > 0, elucidate the injection and vw < 0 for suction. The fuid 
temperature at the wall and free stream is given by constants Tw and T∞. The frictional dissipation and the action of radaint heat flux 
are also considered. A smooth transverse magnetic field with strength B additionally operates along to the y-axis. It is also expected 
that the hybridized nanoliquids is electrically conductive and the corresponding magnetic Reynolds number is low enough to ignore 
the induced magnetic field. When studying the hybrid nanofluid, it is believed that the size of the nanomaterials is homogeneous, and 
the influence of nanoparticle aggregation on thermophysical characteristics is ignored. The considered problem in this analysis is 
composed of Cu− Al2O3/water hybrid nanofluid flowing over an elongational surface, which is assumed as a two-dimensional, un
steady, incompressible and Newtonian. The base liquid and the nanoparticles are put into account while establishing thermal 
equilibrium. 

The equations describing momentum, continuity, and heat with the initial and boundary conditions are constructed employing the 
Boussinesq-approximations theory. Employing Tiwari and Das model and considering the above-mentioned assumptions, the leading 
equations in terms of the primitive variables formulation are written as [9,38]: 

∂u
∂x

+
∂v
∂y

= 0, (1)  

∂T
∂t

+ u
∂u
∂x

+ v
∂v
∂y

=
μhnf

ρhnf

∂2u
∂y2 −

σhnf B2u
ρhnf

, (2)  

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khnf(

ρcp
)

hnf

∂2T
∂y2 +

μhnf(
ρcp

)

hnf

(
∂u
∂y

)2

−
1

(
ρcp

)

hnf

∂qr

∂y
, (3)  

At y= 0; v = vw(x, t), u = λuw(x, t) + L
μhnf

ρhnf

∂u
∂y
,T = Tw, for t ≥ 0, (4)  

At y → ∞; u= 0,T =T∞, (5)  

u(x, t)= 0, vw(x, y) = 0, T = T∞, for t < 0, (6)  

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khnf(

ρcp
)

hnf

∂2T
∂y2 +

μhnf(
ρcp

)

hnf

(
∂u
∂y

)2

+
16σ∗T3

∞(
ρcp

)

hnf 3κ∗
∂2T
∂y2 , (7)  

Fig. 1. Description of physical model.  
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where T depicts the hybrid nanofuids temperature. Furthermore, μhnf hybrid nanofuids dynamic viscosity, ρhnf density of hybrid 
nanofluid, khnf , and (ρcp)hnf are thermal conductivity and heat capacity of hybrid nanofluid, respectively. There mathematical and 
numerical expressions are given in Tables 1 and 2, respectively. 

The implemented variables and relevant parameters in the simulation of non-dimensional leading equations are: 

η= y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a
νf(1 − ct)

√

,ψ= x
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

aνf

(1 − ct)

√

,Θ(η) = T − T∞

Tw − T∞
, (8)  

Here, the stokes stream function ψ gives the velocity components in the following manner: 

u=
∂ψ
∂y

, v = −
∂ψ
∂x

, (9)  

in the view of Eq. (8), the velocity component takes the following form: 

u= xa
f′(η)

(1 − ct)
, v= −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
aνf

(1 − ct)

√

f(η), (10) 

The equation of continuity (1), yielded as result of (9). Thus, the controlling Eqs. (2), (3) and (7) with the boundary conditions (4)– 
(6) reduced to the following dimensionless form in single variable η by replacing Eq. (8)− (10): 

μhnf

μf
f‴ +

ρhnf

ρf

[
ff″ − f′2− β

(
f′ +

η
2

f″
)]

− Mf′= 0, (11)  

Θ″
(

1+
khnf

kf
Rd

)

+
kf

khnf

(
ρcp

)

hnf(
ρcp

)

f

Pr
[

fΘ′ −
β
2

ηΘ′
]

+
kf

khnf

μhnf

μf
EcPrf″2= 0, (12)  

f (0)= S, f ′(0) = λ + α1f″(0),Θ(0) = 1, (13)  

f (∞)= 0,Θ(∞) = 0, (14)  

Rd =
16σ∗T3

∞

3κ∗kf
,M =

σfB0
2

aρf
,Ec =

(uw)
2

(
cp
)

f(Tw − T∞)
=

bχ2
(
cp
)

f(Tw − T∞)
, β =

c
b
,S =

− vw(x, t)
̅̅̅̅̅̅̅̅̅

aνf
(1− ct)

√ , Pr =
μf
(
cp
)

f
κf

, α1 = L
̅̅̅̅̅̅
aνf

√
> 0,

here, Rd elucidate the radiative variable, M the magnetic number, Ec the Eckert number, β the unsteadiness variable, S the suction 
parameter, Pr the Prantdl number, α1 the slip parameter, λ depicts the stretch/shrinking factor, with λ > 0 (stretching) and λ < 0 
(shrinking). χ is the specific length of the stretched or shrinked surface are emerging parameters in Eqs. (11)–(14). 

Table 1 
Thermophysical properties of the nanomaterials [12,13].  

Physical Characteristic Base fluid (water) Al2O3 (Cu)

ρ(kg.m− 3) 997.1 3940 8933 
cp(J.kg− 1K− 1) 4179 765 385 
k(W.m− 1K− 1) 0.613 40 401 
σ(Ω− 1.m− 1) 0.05 1 × 10− 10 5.96 × 107 

Pr 6.2 − −

Table 2 
Theoretical relationships for the design of hybrid nanofluids physical properties.  

Nanofluid attributes Hybrid nanofuid model 

Density ρhnf = (1 − φ2)[(1 − φ1)ρf + φ1ρs1] + φ2ρs2 

Dynamic viscosity μnf =
μf

(1 − φ1)
2.5

(1 − φ2)
2.5 

Heat capacitance (ρCp)hnf = (1 − φ2)[(1 − φ1)(ρCp)f + φ1(ρCp)s1] + φ2(ρCp)s2 

Effective thermal conductivity 
κhnf =

ks1 + 2knf − 2φ2(knf − ks2)

ks2 + 2knf + 2φ2(knf − ks2)
κnf 

Where 

κnf =
ks1 + 2kf − 2φ1(kf − ks1)

ks2 + 2kf + 2φ1(kf − ks1)
κf 

Electrical conductivity σnf

σf
=

σs2 + 2σbf − 2φ2(σbf − σs2)

σs2 + 2σbf + φ2(σbf − σs2)
and 

σbf

σf
=

σs1 + 2σf − 2φ1(σf − σs1)

σs1 + 2σf + φ1(σf − σs1)
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2.1. Engineering parameters 

The physical parameters utilized to simulate the flow are skin drag Cf and Nusselt number Nux, which are formulated in Eqs. (15) 
and (16): 

Cf =
τw

ρf(uw)
2 ,Nux =

xqw

kf(Tw − T∞)
, (15)  

where the values of τw, the shear stress at the interface and qw the energy flux at the wall are given by: 

τw = μhnf
∂u
∂y

⃒
⃒
⃒
⃒

y=0
,qw= −

(

khnf +
16
3

σ∗T3
∞

κ∗

)
∂T
∂y

⃒
⃒
⃒
⃒

y=0
, (16) 

The dimensionless form of frictional coefficient and Nusselt number Eq. (17) and (18) are obtained using Eq. (9) as below: 

Cf Re ̅̅
x

√ =
1

(1 − φ1)
2.5
(1 − φ2)

2.5f″(0), (17)  

Nu
Re ̅̅

x
√

= −

(
khnf

kf
+Rd

)

Θ′(0), (18)  

3. Mathematical assessment for solutions stability 

Meanwhile, we recognize the development of non-unique outcomes in the model problem Eqs. (11) and (12), we must follow the 
endeavors of Merill et al. [39] and Merkin [40] for their excellent innovations of the stability assessment techniques to meditate on the 
time-dependent flow equations in order to eventually identify an accurate and stable solution. In light of the time-dependent flow, new 
similarity parameters is proposed. 

τ= at
(1 − at)

, u=
xa

(1 − at)
∂f
∂η (η, τ), v= −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
aνf

(1 − αt)

√

f(η, τ), η= y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a
νf(1 − at)

√

,Θ(η, τ)= T − T∞

Tw − T∞
, (19) 

Implementing Eq. (19) into Eqs. (11) and (12), Eq. (20)–(23) takes the following form 

μhnf

μf

∂3f
∂η3 +

ρhnf

ρf

[

f
∂2f
∂η2 −

(
∂f
∂η

)2

− β
(

∂f
∂η+

η
2

∂2f
∂η2

)]

− M
(

∂f
∂η

)

−
∂2f

∂η∂τ= 0, (20)  

(

1+
khnf

kf
Rd

)
∂2Θ
∂η2 +

kf

khnf

(
ρcp

)

hnf(
ρcp

)

f

Pr
[

f
∂Θ
∂η −

β
2

η ∂Θ
∂η −

∂Θ
∂τ

]

+
kf

khnf

μhnf

μf
EcPr

(
∂2f
∂η2

)2

= 0, (21)  

f (0, τ)= S,
∂f
∂η (0, τ) = λ + α1

∂2f
∂η2 (0, τ),Θ(0, τ) = 1, (22)  

f (∞, τ)= 0,Θ(∞, τ) = 0, (23)  

according to Weidman et al. [41], to verify the stable behavior of the time-independent flow f = f0(η) and Θ = Θ0(η) that satisfy the 
problem with boundary values and boundary conditions (11–14), we write: 

f (η, τ)= f0(η) + e− ωtV(η),Θ(η, τ) = Θ0(η) + e− ωtW(η), (24)  

where, ω is the eigenvalue of anonymous characteristics, where the functions V(η) and W(η) are comparatively minor as compared to 
f0(η) and Θ0(η). The eigenvalue issues (20) and (21) with the boundary conditions (22) and (23) yield an infinite group of eigenvalues 
ω = ω1 < ω2 < ω3 < … that perceive an early decline when ω1 is constructive, while the development of disturbances is noticed when 
ω1 is destructive, exposing the unbalanced flow. Moving forward by substituting (24) into (19)–(20). 

μhnf

μf

∂3V
∂η3 +

ρhnf

ρf

[

f0
∂2V
∂η2 +V

∂2f0

∂η2 − 2
∂V
∂η

∂f0

∂η − β
(

∂V
∂η +

η
2

∂2V
∂η2

)]

−
∂2V
∂η∂τ − M

(
∂V
∂η

)

+ω ∂V
∂η = 0, (25)  

(

1+
khnf

kf
Rd

)
∂2W
∂η2 +

kf

khnf

(
ρcp

)

hnf(
ρcp

)

f

Pr
[

f0
∂W
∂η +V

∂Θ0

∂η −
β
2

η ∂W
∂η +ωW

]

+2
kf

khnf

μhnf

μf
EcPr

(
∂2f0

∂η2

)
∂2V
∂η2 = 0, (26) 

To facilitate to pinpoint that initial development or degradation of solutions, we follow Weidman et al. [41] and retain V = V0, and 
W = W0 in Eqs. (25) and (26). As a result, we get the following streamlined eigenvalues problems. 
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μhnf

μf

∂3V0

∂η3 +
ρhnf

ρf

[

f0
∂2V0

∂η2 +V0
∂2f0

∂η2 − 2
∂V0

∂η
∂f0

∂η − β
(

∂V0

∂η +
η
2

∂2V0

∂η2

)]

−
∂2V0

∂η∂τ − M
(

∂V0

∂η

)

+ω ∂V0

∂η = 0, (27)  

(

1+
khnf

kf
Rd

)
∂2W0

∂η2 +
kf

khnf

(
ρcp

)

hnf(
ρcp

)

f

Pr
[

f0
∂W0

∂η +V0
∂Θ0

∂η −
β
2

η ∂W0

∂η +ωW0

]

+2
kf

khnf

μhnf

μf
EcPr

(
∂2f0

∂η2

)
∂2V0

∂η2 = 0, (28) 

With 

V0(0)= 0,
∂V0

∂η (0) − α1
∂2V0

∂η2 (0)= 0,W0(0) = 0, (29)  

V0(∞)= 0,W0(∞) = 0, (30) 

To generate an envisaged spectrum of eigenvalues Eq. (27)–(30), Harris et al. [42] state that for the far field boundary requirements 
(V0(∞), W0(∞)) must be undisturbed and replaced with a new condition. As a result, throughout the study, the boundary constraint 
∂V0
∂η (∞)→0 in Eq. (29) is substituted with a new boundary condition ∂

2V0
∂η2 (0) = 1. The bvp4c function in Matlab is employed to execute 

the stability investigation in this segment. The least eigenvalue (ω) obtained may regulate the proper (physical) solution among 
multiple solutions. 

4. Numerical algorithm 

Employing the bvp4c solver, the similarity solutions are derived by solving the nonlinear ODEs Eqs. (10) and (11) with the BCs (see 
Eqs (12) and (13)). Shampine et al. [43] developed the bvp4c solver, which uses the Lobatto IIIa three-stage computational approach. 
The technique at hand is classified as finite difference [sol = bvp4c (@OdeBvp, @OdeBC, solinit, choices)] is the basic syntax of the 
bvp4c solver, and Eqs. (11) and (12) must be redrafted in the following codes: equations (11)–(14) are turned into first order dif
ferential equations for this purpose. The rate of convergence interval is chosen to be between 0 and 6, with η∞ = 6. The approach has 
been verified through assessing our findings to earlier published work; as indicated in Table 3, there is good agreement with existing 
data. The absolute convergence criterion was chosen to be 10− 6 [44]. The multiple solutions are gathered in this technique by 
modifying distinct initial guesses for f′(0) and Θ(0), based on multiple physical characteristics. Furthermore, all contours must fulfill 
the far field criteria asymptotically. The boundary circumstances are carried out in this analysis for few finite value of the similarity 
variable η represented by ηmax. For optimal asymptotic conduct of factors on temperature and velocity profiles, we computed ηmax = 7, 
10, and 15. 

As shown in Tables 3 and 4, the confirmation of the outcomes produced is evaluated using the remarkable work of Bachok et al. 
[45] using the Runge-Kutta-Fehlberg (RKF) method, Wang [46] and Zainal et al. [47] used a standard (RKF-5) technique combined 
with the shooting mechanism. Notwithstanding the variety of boundary value problem solving techniques, it should be emphasized 

Table 3 
Evaluation of Cf Re ̅̅

x
√ , when φ1 = 0, φ2 = 0, M = 0, β = 0 (stretching sheet case).   

λ = λc >

0 

Bachok et al. [45] Wang [46] Zainal et al. [47] Present result 

0 1.2325877 1.232588 1.23258762 1.2325 
0.1 1.1465610 1.146560 1.14656097 1.1465 
0.2 1.0511300 1.051130 1.05112996 1.0511 
0.5 0.7132949 0.713300 0.71329492 0.7132 
2.0 − 1.8873066 − 1.887310 − 1.88730666 − 1.8873  

Table 4 
Evaluation of Cf Re ̅̅

x
√ , when φ1 = 0, φ2 = 0, M = 0, β = 0 (shrinking sheet case).   

λ = λc <

0 

Bachok et al. [45] Wang [46] Zainal et al. [47] Present result  

Primary 
solution 

Secondary 
solution 

Primary 
solution 

Secondary 
solution 

Primary 
solution 

Secondary 
solution 

Primary 
solution 

Secondary 
solution 

− 1.00 1.3288170 0.0000000 1.32882 0.00000 1.32881684 0.00000000 1.3288 0.0000 
− 1.10 1.1866805 0.0492290 − − 1.18668024 0.04922896 1.1866 0.0492 
− 1.15 1.0822315 0.1167022 1.08223 0.11670 1.08223112 0.11670214 1.0823 0.1167 
− 1.20 0.9324739 0.2336794 − − 0.93247330 0.23364973 0.9324 0.2336 
− 1.2465 0.5842956 0.5542824 0.55430 − 0.58428107 0.55429619 0.5842 0.5542 
− 1.24657 0.5639733 − − − 0.57452457 0.56401151 0.5639 0.5640  
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that the most recent conclusions are largely in agreement with earlier ones. Thus, we can conclude that the model presented in this 
work is the best choice for analyzing hybridized nanofluid flow model past a stretch/shrinking surface. Based on the output of Eqs. 
11)-(11, the (dual) solutions are regarded to have a particular scope of λc. 

5. Parametric results and arguments 

The normalized Eqs. (11) and (12) are solved employing the bvp4c built-in function. For a sound understanding of the details of the 
computational technique, it is advised to consult helpful sources like Shampine et al. [48]. Contrarily, we have chosen 100 starting 
meshes with 0.001 for virtual tolerance and 1 × 10− 6 for entire tolerance. The character λc denotes a critical point or the point at which 
non-uniqueness solutions meet. It should be noted that there are many solutions when the sheet is shrinking (λc < 0), there are no dual 
solutions when the surface is stretching (λc > 0). The fluid flow disintegrates beyond the critical stage and no longer follows the flow 
partition theory. Although it is assumed that the primary solution is materially reliable and exist in reality, the reality of 
non-uniqueness solutions prompts the execution of the stability analysis in order to reach the solution that is substantially important. 
In the present study, the flow is described as the condition of the sheet when it is either stretching or contracting at a speed of 
generalized quadratic form. This section presents numerical upshots for the fluid flow (velocity profiles and frictional coefficient) and 
thermal features (temperature fields and Nusselt number) for various essential flow parameters. The eminent flow parameters involved 
in this analysis are the shrinking parameter ( − 1 ≤ λ ≤ − 1.3) the magnetic parameter (0 ≤ M ≤ 2), the slip parameter (0.1 ≤ α1 ≤

0.5), the unsteadiness parameter (β = − 2), the suction parameter (S = 2.2), the Prandtl number (Pr = 6.2), Eckert number (0.5≤ Ec ≤

1.5) and the radiation para-meter (0.2 ≤ Rd ≤ 0.6). 

Fig. 2. f″(0) variation for altered values of M and λ.  

Fig. 3. f″(0) variation for altered values of α1 and λ.  
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Fig. 2 illustrates the inspiration of M on Cf Re ̅̅
x

√ in the presence of λ. We can see that the existence of M causes the demarcation of the 
layer at its borders where the values of λc are positioned marginally to the left result in drag delay. This phenomena arises because the 
Lorenz forces repressed the vorticity created by the shrinkage of the surface within the fluid layer, as explained by Bhattacharyya and 
Pop [49]. Furthermore, for the first solutions, the values of Cf Re ̅̅

x
√ increase as M increases, although this is clearly evident when is close 

to λc, whereas the reverse tendency is found for the secondary solutions. The multiple solutions are achieved for λ > λc, with the crucial 
values for M = 0.05, 0.1 and 0.2 being λc = − 1.2302, − 1.2399, − 1.2491. Fig. 3 depicts the coefficient of skin friction Cf Re ̅̅

x
√ in 

relation to the stretch/shrinking parameter λ and slip velocity (α1 = 0.1, 0.2, 0.3) demonstrate a decrease in Cf Re ̅̅
x

√ near the interface. 
The similar outcomes have been published in the earlier works by Dzulkifli et al. [50]. According to Mahapatra and Nandy [51], an 
increase in the velocity slip indicates the statistic of the vorticity generated by the stretch or shrunk velocity decreases progressively. 
Although the vorticity coefficients are limited throughout the boundary region for larger elongated and shrinking parameters with the 
identical strained velocity of the stagnant flow, a stable solution is possible with certain broad values of λ. Furthermore, increasing the 
assortment of dual solutions | λc | upturns indicate that increasing the range of dual solutions effectively influences the velocity slip 
parameter. Thus, the presence of slip α1 control can extend the diversion of the fluid layer. Fig. 4 depicts an ascending pattern in Nu

Re ̅̅
x

√

when the velocity slippage parameter α1 transpires escalating role the thermal transfer rate over the stretched and contracting sheet. 
These outcomes corroborate with the excellent work discussed by Mahapatra and Nandy [50] and Khashi’ie et al. [52]. Evidently, in 
the primary solution, the efficiency of heat transmission grows in an upward trend, but the subsequent solution provides for a 
downward trend as the velocity slip develops. Prior to this particular inquiry, the authors inferred from past and present findings that 
velocity slip significantly contributes to the augmentation of the heat transport. Fig. 5 show the effect of Rd parameter on local Nusselt 

Fig. 4. Nusselt variation for altered values of α1 and λ.  

Fig. 5. Nusselt variation for altered values of Rd and λ.  
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number curves. As parameter Rd grows, the Nu
Re ̅̅

x
√ decreases for the initial solution while it increases for the subsequent, as illustrated in 

Fig. 5. As a result, increasing parameter Rd causes the heat transport rate of the hybrid nanofluid to rise. The radiative factor Rd, as 
described by Ref. [53], is the reverse of the Stark number, which computes the thermal radiation relative contribution to heat 
transport. More, substantial levels of Rd designate that heat radiation perform conduction. As a result, a higher Rd rate specifies that 
additional radiative heat transfer occur into the flow field, resulting in an escalation in temperature. Figs. 6 and 7 exhibits the features 
of skin drag friction and heat transfer rate against unsteadiness parameter β. Fig. 6 discloses that the first solution increases sub
stantially, while the second solution retains a lowering activity as the sheet contracts. The inclusion of nanoparticle volumetric fraction 
in the functional fluid may also increase due to the growth in hybrid nanofluid viscosity. The impact of β on Nu

Re ̅̅
x

√ is displayed on Fig. 7. It 
is evident that as the value of β increases the declines in Nusselt can be adjudged for the first solution. It is anticipated that dual 
solutions (two-branches) exist when different values of the shrinkage parameter and the unsteadiness parameter are taken into account 
while maintaining the constant values of the other parameters. The illustrations show that multiple solutions occur with lower and 
upper branch for a given assortment of the unsteadiness parameter β. As earlier stated, we assume a stretch/shrinking surface with β ≤

0 indicates that the flow is decelerating. The multi solutions happen only when the value of β equals a critical number βc. The critical 
value βc is the point at which the lower and upper branch solutions encounter. Evidently are no matching solutions beyond these 
critical levels since the border layer splits from surface layers and solutions based on boundaries layer estimations are not achievable. 
The existence and addition of nanoparticles φ1 and φ2 should theoretically increase the kinetic energy of the fluid particles while 
decreasing the frictional coefficient and delaying the diverting the boundary layer, as perceived in Figs. 8 and 9. Moreover, as shown in 

Fig. 6. f″(0) deviation for altered values of S and β.  

Fig. 7. Nusselt deviation for altered values of S and β.  
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Fig. 8, this energy also triggers the heat transfer from fluid to the interface while also speeding up the heat transfer rate. The results 
indicate that when Cf Re ̅̅

x
√ develops, an increase in frictional drag might extend the boundary layer division (Fig. 9). Due to an upturn 

in the nanoparticle volume fraction in both working fluids, the initial solution in Fig. 10 shows an increase in the heat transport 
characteristic, or Nu

Re ̅̅
x

√ , while decreasing in the other solutions. Briefly, as traditional nanofluid evolves into hybrid nanofluid, the rate of 

heat transmission increases. This result is because; the surface temperature falls, when φ2 increases, the heat mechanism can be 
strengthened by maximizing the concentration of nanoparticles. This action backs up the pattern shown by Fig. 11, which shows the 
temperature changes that occur when a traditional nanofluid transforms into a hybrid nanofluid. The hybrid nanofluid thermal 
conductivity falls as temperature decays, improving the convective heat transfer rate over time. 

To emphasize the significance of the magnetic parameter M on the flow field structure (velocity fields f′(η) and heat transfer 
attribute (temperature fields Θ(η) for decelerating shrinking flow of hybrid nanofluids (β < 0 and λ < 0) inside the boundary layer are 
evaluated in Figs. 12 and 13, respectively. The ambient boundary conditions are fulfilled by the profiles solutions, confirming their 
reliability. As the magnetic parameter M increases, the velocity profiles gradually increases for primary branch and an opposite trend is 
seen for the subsequent branch. On the hand, an increase in magnetic parameter yields significant reduction in momentum boundary 
layer, therefore, the temperature distribution reduces in upper solution. However, in case of lower solution, the temperature profiles is 
seen to be an increasing function of magnetic parameter. As we can observe in the first solution, the increase in magnetic mechanism in 
the hybrid nanofluid system is found to enhance the thermal boundary layer thickness and decrease convective heat transfer. As a 
result, the rate of heat transport is reduced due to a decrease in the wall heat flux and a shrinking surface. Physically, the impedance of 

Fig. 8. f″(0) variation for altered values of φ1, φ2 and λ.  

Fig. 9. Nusselt deviation for altered values of φ1, φ2 and β.  
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Lorentz force caused by the magnetism, increases the flow rate, enhances fluid temperature, and accelerates thermal boundary layer 
distinction. Figs. 14 and 15, are set up to show the distributions of velocity f′(η) and temperature Θ(η) for varying values of velocity slip 
parameter α1. By setting the other parameters fixed, it is established in Fig. 14 that when the value of α1 rises, the velocity slip at the 
wall also grows in both solutions. Additionally, compared to the upper branch velocity profiles, the lower branch velocity profiles 
reveal a larger boundary layer. Physically, the boundary layer bifurcation only occurs when the α1 velocity sip parameter experiences 
an abrupt controlling upward or forward movement λ < 0 shrinking surface. However, for temperature profiles Θ(η), contradictory 
responses are reported when the slip parameter is elevated. In both solution profiles, the hybrid nanofluid temperature is dropped with 
an increase in slip parameter. Because the flow resistance is reduced as a result of the surface shrinking, a higher degree of velocity slip 
is required to increase flow velocity. This increases the flow velocity and vice versa. The temperature profile for both solutions di
minishes as α1 increases. In Figs. 16 and 17, the varying non-dimensional velocity and temperature distributions against distinct 
shrinking parameter are displayed. It is observed from the curves that hybrid nanofluid velocity reduces with higher magnitude of 
shrinking parameter |λ| in upper branch, which is an inverse is noted in lower branch, as seen in Fig. 16. Similarly, a significant 
reduction in associated boundary layer thickness is noted in upper branch. According to this graph, the initial (stable) solution 
boundary layer thickness along the velocity profile grows as the shrinking parameter value increases. The second solutions show a drop 
in velocity and the thickness of its boundary layer due to an increase in λ. However, a significant enhancement in temperature profiles 
Θ(η) is exhibited through Fig. 17, with an increment in |λ|. The nanofluid temperature is demonstrated to increase with any increase in 

Fig. 10. f″(0) deviation for altered values of φ2 and β.  

Fig. 11. Nusselt variation for altered values of φ2 and β.  
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the value of the parameter in both the first (stable) solution and the third solution, however the second solution exhibits the opposite 
behavior when compared to the first solutions. As shown in Figs. 18 and 19, the distributions of hybrid nanofluids temperature with 
variation in Eckert number Ec and radiation parameter Rd are addressed at fixed values of other parameter. It is noticeable that in both 
of the solutions with greater radiation parameter Rd, the temperature of the functional fluid and the model system temperature in
crease, as displayed through Fig. 18. The radiation parameter affects the distribution of heat transfer rates. The critical value does not 
change when this parameter increases because the laminar-turbulent flow process is not affected by the energy transport mechanism 
from thermal radiation. Further observations can be made by looking at the thermal progress augments as the radiation parameter 
increases. In general, the radiation process through the conversion of thermal energy increased the working fluid thermal performance. 
However, in this work, the usage of shrinking sheets affect the heat transport by the nanofluids by impairing energy transfer. The 
temperature of the fluid is raised physically because of the energy that the radiation applied to the nanofluid particles. The system 
temperature is consequently increased for hybrid nanofluid. As illustrated in Fig. 19, when the Eckert number Ec increases, the non- 
dimensional temperature profiles in both solutions display an increasing behavior. The temperatures profile and temperature 
boundary layer thickness for the initial and subsequent solutions grow as the Eckert number Ec increases. The physical justification is 
that when Ec increases, fluid viscosity gains more energy, which is converted into internal energy and, as a result, raises the distri
bution of temperatures. 

Fig. 12. Velocity f′(η) performance for altered values of M.  

Fig. 13. Thermal performance Θ(η) for altered values of M.  
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Fig. 14. Velocity f′(η) performance for altered values of α1.  

Fig. 15. Thermal performance Θ(η) performance for altered values of α1.  

Fig. 16. Velocity f′(η) performance for altered values of λ.  
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6. Conclusion 

The dual solutions and flow separation separations for a nanofluid flow across a linearly shrinking/stretching sheet were examined 
in this paper. With the integration of hybrid nanofluid and the implementation of the bvp4c technique in the MATLAB programming 
environment, numerical computing has been effectively implemented to carry out magnetohydrodynamics and steady flow of viscous 
fluid. The quadratic sheet that was stretched and then shrink with a speed of general quadratic form, which enable the fluid to move. 
By dispersing the Al2O3 (φ1) and Cu (φ2) nanoparticles into water with sufficient proportions of solid nanoparticle volume fractions, 
the hybrid alumina–copper/water nanofluid (Cu− Al2O3/water) is created. In this work, the effects of the parameters for slip, un
steadiness, magnetic parameter, and nanoparticle volume fraction were examined. For a large variety of control parameters within the 
hybrid Cu− Al2O3/water nanofluid, the outcomes show the incidence of non-uniqueness solutions is conclusive. Both traditional Cu−
Al2O3/water nanofluid and hybrid Cu− Al2O3/water nanofluid exhibit increased values of local Nusselt number and skin friction 
coefficient with increasing nanoparticle volume fraction. In brief, by maximizing the concentration of nanoparticles, it has been 
demonstrated that the performance of heat transfer increases when the conventional nanofluid transforms into the hybrid Cu −
Al2O3/water nanofluid. The skin friction coefficient of the hybrid Cu− Al2O3/water nanofluid was increased as a result of the magnetic 
parameter at the controlling boundary layer system, eventually. It is demonstrated that the fluid thermal state is reduced, increasing 
the heat transfer rate in the hybrid Cu− Al2O3/water nanofluid. The efficiency of heat transport, on the other hand, is less affected by 
the unsteadiness parameter. The results of this work supported the presence of first and second solutions, which are non-uniqueness 
solutions, in the analysis of hybrid nanofluids within a particular range of shrinking parameters λ, while a unique solution is observed 

Fig. 17. Thermal performance Θ(η) performance for altered values of λ.  

Fig. 18. Thermal performance Θ(η) performance for altered values of Rd.  
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in the stretched case. The hybrid Cu− Al2O3/water nanofluid delays the movement of the conducting fluid at the boundary layer when 
the surface is a sheet. While two distinct solutions exist, the examination of solution durability has proved the initial solution’s 
steadiness and consistency, but the subsequent solution is unreliable and unpredictable. 
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