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Abstract
Suppose we have a sample of subjects in two treatment 
groups. To study the difference of the treatment effects, we 
can analyse the data using all subjects (overall analysis). 
We may also divide the subjects into several subgroups 
based on some covariates of interest (eg, gender), and 
study the treatment effects within each subgroup. The 
results of these two analyses may be different or even 
in opposite directions. In this paper, we give a general 
sufficient condition of consistency between the overall and 
subgroup analyses.

Introduction
Consider the following hypothetical example. 
Suppose the fourth grade students of two 
schools (1 and 2) in a school district took a 
state maths exam. The principals of these two 
schools wanted to know whether there was 
a difference in the performances between 
the two schools. They calculated the overall 
average score, the average score of girls and 
the average score of boys in each school. The 
result is presented as scenario B in table  1. 
After looking at the average scores of girls 
and boys, respectively, the principal of school 
1 was very happy as they were both one point 
higher than those in school 2. However, after 
looking at the overall average score of these 
two schools, the principal was very confused 
as the overall average score of school 2 was 
higher than that of school 1. Is there anything 
wrong in calculating the overall average 
score? What is the reason for the inconsis-
tency between the overall average scores and 
the average scores stratified by gender?

Before figuring out the reason for the 
inconsistency, let us take a look at scenario A 
in table 1. In this scenario, the overall average 
score, as well as the average scores of girls and 
boys in school 1 are all higher than those in 
school 2. A closer examination shows that the 
proportions of girls are different in scenarios 
A and B. In scenario A, 48% of students are 
girls in both schools. In scenario B, 40% and 
60% of students are girls in the two schools, 
respectively. Is the difference in the propor-
tions of girls sufficient to create this inconsis-
tency? The answer is negative. In scenario C 

in table 1, although the proportions of girls 
are different in the two schools, the overall 
average scores and the average scores by 
gender are higher in school 1.

Examples in table 1 indicate that the results 
between overall analysis and subgroup anal-
ysis may be very different. Now we show 
what overall analysis and subgroup analysis 
actually mean.1 Suppose we are interested 
in the treatment effect of a new drug D. We 
recruit some subjects and randomise them 
to two treatment groups (T and C). Subjects 
in groups T and C were administered drug 
D and placebo, respectively. After collecting 
the data, we calculate the average response of 
these two groups and use appropriate statis-
tical methods (eg, two-sample t-test, Pear-
son’s χ2 test, and so on) to compare them. 
This is called the overall analysis. However, we 
suspect the response of a subject may depend 
on his/her age. We divide the subjects in 
the study population into several subgroups 
based on their ages and study the treatment 
effect within each age group. This kind of 
analysis is called the subgroup analysis. The 
subgroup analysis may offer us more informa-
tion on the treatment effect of the new drug 
within each specific age group.

Results in table  1 indicate that even if in 
each subgroup, the new drug turns out to be 
better than the placebo, the overall response 
in the placebo group may be better than the 
new drug group. In this paper, we studied 
the reason for this counterintuitive phenom-
enon. The paper is organised as follows. 
Section 2 defines some notations. Section 3 
gives a very general sufficient condition of 
consistency. We give some practical guidance 
in dealing with inconsistency in real studies 
in section 4.

Notations
We used the example in table  1 to develop 
our notation. However, our results apply to 
both continuous and categorical outcomes. 
Let Yi denote the score of a randomly 
selected student from school i, and pi denote 
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Table 1  Average scores of a maths exam in two schools

Scenario School

Girls Boys

Overall average scoreN Average score N Average score

A 1 48 91 52 81 85.8

2 48 90 52 80 84.8

B 1 40 91 60 81 85.0

2 60 90 40 80 86.0

C 1 48 91 52 81 85.8

2 52 90 48 80 85.2

Table 2  All possible combinations of signs of Δ0, Δ1 and Δ

Combination Δ0 Δ1 Δ Combination Δ0 Δ1 Δ

1 >0 >0 >0 15 <0 <0 <0

2 >0 >0 =0 16 <0 <0 =0

3 >0 >0 <0 17 <0 <0 >0

4 >0 =0 >0 18 <0 =0 <0

5 >0 =0 =0 19 <0 =0 =0

6 >0 =0 <0 20 <0 =0 >0

7 >0 <0 >0 21 <0 >0 <0

8 >0 <0 =0 22 <0 >0 =0

9 >0 <0 <0 23 <0 >0 >0

10 =0 >0 >0 24 =0 <0 <0

11 =0 >0 =0 25 =0 <0 =0

12 =0 >0 <0 26 =0 <0 >0

13 =0 =0 >0 27 =0 =0 <0

14 =0 =0 =0

the proportion of girls in school i, i=1, 2. We define the 
following quantities: a10=average score of girls in school 
1, a11=average score of boys in school 1, a20=average score 
of girls in school 2, a21=average score of boys in school 2.

Then the overall average scores of these two schools 
are a1=p1a10+(1−p1)a11, and a2=p2a20+(1−p2)a21, respectively. 
They are the weighted averages of the subgroup averages.

We also define some differences in the score:
(1) The differences between girls and boys within each 
school: d1=a10−a11, d2=a20–a21.
(2) The difference in girls (boys) between the two schools 
(subgroup differences):
Δ0=a10–a20,
Δ1=a11–a21.

(3) The overall difference between the two schools:
Δ=a1–a2.
It is easy to prove that
Δ0–Δ1=d1–d2.

Sufficient condition of consistency
The inconsistency between the overall difference and the 
subgroup differences happens when Δ0 and Δ1 have the 
same sign but Δ has the opposite sign. In scenario B of 
table 1, the average scores of girls and boys in school 1 
are higher than those in school 2. However, the overall 
average score of school 2 is higher. The inconsistency 
between the overall analysis and subgroup analysis 
happens in this case. Since each of them can be >0, =0 
or <0, there are 27 possible combinations of the signs of 
Δ0, Δ1 and Δ. For the sake of completeness, we list all 27 
combinations in table 2.

There are many redundancies in table 2. If we exchange 
the labels of those two schools, combinations 1–13 
become combinations 15–27. Therefore, we do not need 
to consider combinations 15–27. There are still some 
other redundancies in combinations 1–14. For example, 
if we relabel girls and boys, combinations 4–6 become 
combinations 10–12. Combination 14 is of no interest in 
practice and will not be discussed further. Hence, we only 
consider combinations 1–9 and 13 in our discussion of 
(in)consistency.

The inconsistency between Δ0, Δ1 and Δ occurs if and 
only if one of the following occurs:
Δ0>0 and Δ1>0 but Δ=0,

Δ0>0 and Δ1>0 but Δ<0,
Δ0>0 and Δ1=0 but Δ=0,
Δ0>0 and Δ1=0 but Δ<0,
Δ0=0 and Δ1=0 but Δ>0.
Combinations 2, 3, 5, 6 and 13 in table  2 satisfy the 

conditions above.
From the previous section, we can see that
Δ=d1(p1−p2)+Δ1(1−p2)+Δ0p2=d2(p1−p2)+Δ1(1−p1)+Δ0p1.
Consider the following four cases:

(1) Two schools have the same proportion of girls, that is, 
p1=p2. The marginal difference is Δ=Δ0(1−p1)+Δ1p1=Δ0(1−
p2)+Δ1p2, which is a weighted average of the subgroup 
differences. There is no inconsistency between the 
subgroup and overall analyses. Scenario A in table 1 is an 
example of this case.
(2) There is no difference between the average scores 
of girls and boys in school 1, that is, d1=0. The marginal 
difference is Δ=Δ0(1−p2)+Δ1p2, which is a weighted average 
of the conditional differences. There is no inconsistency 
between the subgroup and overall analyses.
(3) There is no difference between the average scores 
of girls and boys in school 2, that is, d2=0. The marginal 
difference is Δ=Δ0(1−p1)+Δ1p1, which is a weighted average 
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Table 3  Numerical examples of Δ0, Δ1 and Δ when p1≠p2 
and d1d2≠0

Case p1 p2 d1 d2 Δ0 Δ1 Δ

1 0.4 0.5 2 2 1 1 1.2

2 0.4 0.5 −10 −10 1 1 0

3 0.4 0.5 −20 −20 1 1 −1

4 0.4 0.5 3 2 1 0 0.8

5 0.4 0.5 −5 -6 1 0 −1.4

6 0.4 0.5 −19 −20 1 0 −1.4

7 0.4 0.5 3.5 2 1 −0.5 0.6

8 0.4 0.3 1 −2 1 −2 0

9 0.4 0.5 −18 −20 1 −1 −1.8

13 0.4 0.5 20 20 0 0 2

of the subgroup differences. There is no inconsistency 
between the subgroup and overall analyses.
(4) Two schools have different proportions of girls, and 
the average scores of girls and boys are different within 
each school, that is, p1≠p2, d1≠0, d2≠0. This is the most 
general case in practice.

The first three cases indicate that p1=p2 or d1d2=0 is a 
sufficient condition of consistency between subgroup 
and overall analyses, as the overall difference is a convex 
combination of subgroup differences.

In table 3, we use numerical examples to show that if 
p1≠p2 and d1d2≠0, all combinations of 1–9 and 13 in table 2 
may occur.

The following theorem gives a more general suffi-
cient condition of consistency than the first three cases 
discussed above.

Theorem: given Δ0 and Δ1, for any p1 and p2 between 0 
and 1, there always exists a p between 0 and 1 such that 
Δ=Δ0p+Δ1(1−p) if and only if p1=p2 or d1d2≤0.

The proof of this theorem is available on request. Note 
that d1d2=0 implies d1d2≤0.

Unfortunately, if we are only given the information that 
p1≠p2 and d1d2>0, we cannot determine whether the incon-
sistency will happen. For example, combinations 1 and 3 
satisfy the condition of p1≠p2 and d1d2>0. In combination 
1, the overall difference is consistent with the subgroup 
differences, while it is not in combination 3.

Conclusion and discussion
Many publications of medical studies report the results 
of primary analysis based on all data and of subgroup 
analyses (with the same outcome in the primary anal-
ysis) based on partial data in the same study.2 Some-
times, the result from the primary analysis may be 
inconsistent with the subgroup analysis. In this paper, 
we give a general sufficient condition of consistency 
between the overall and subgroup analyses. However, 
examples in table  3 indicate that it is impossible to 
give a general necessary condition of consistency. We 
need to check the consistency case by case.

Like the well-known Simpson’s paradox,3–6 the 
inconsistency between the overall and subgroup anal-
yses seems to be counterintuitive for many people at 
first sight. Statistically speaking, the overall analysis 
and subgroup analysis use different parts of the data in 
the sample. The subgroup analysis uses only a partial 
sample of the study population, like the subgroup of 
girls in section 1. If the subgroup is not representative 
of the whole sample, inconsistency may occur. Both 
overall and subgroup analyses are valid methods to 
analyse data. They reveal different aspects of the data. 
The inconsistency is natural. We should interpret the 
results separately. It does not make sense to compare 
the results of the overall and subgroup analyses as 
they use different data. We can always write the overall 
analysis and subgroup analysis in the form of condi-
tional expectations.7 However, their conditional parts 
are different, and the results may be different.

From the example in section 1, we know that if two 
schools have the same proportions of girls, incon-
sistency will not happen. Like a randomised clinical 
trial, if the students were perfectly randomised to two 
schools, the proportion of girls will be very similar 
and the inconsistency will not happen in most cases. 
However, in most clinical trials, randomisation may 
not be balanced and inconsistency may still happen. 
On the other hand, if the data are from an observa-
tional study,8 inconsistency may happen with high 
probability.

Another related topic is covariate adjustment in 
data analysis. For example, suppose the subjects were 
randomised into two treatment groups (active treat-
ment and control). The primary outcome is binary 
(success or failure). We can use Pearson’s χ2 test to 
check the difference in success rates between the two 
groups. The odds ratio (OR) can be used to charac-
terise the association between the treatment and the 
outcome. If we also have some other covariates, such 
as the age or gender of the subjects, we may also run 
a logistic regression using the treatment indicator 
and other variables as covariates. They are both valid 
methods to analyse the data.9 However, the new OR 
may be different from the old one.
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