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Brain activity during sleep is a powerful marker of overall health, but sleep lab testing
is prohibitively expensive and only indicated for major sleep disorders. This report
demonstrates that mobile 2-channel in-home electroencephalogram (EEG) recording
devices provided sufficient information to detect and visualize sleep EEG. Displaying
whole-night sleep EEG in a spectral display allowed for quick assessment of general
sleep stability, cycle lengths, stage lengths, dominant frequencies and other indices of
sleep quality. By visualizing spectral data down to 0.1 Hz, a differentiation emerged
between slow-wave sleep with dominant frequency between 0.1–1 Hz or 1–3 Hz,
but rarely both. Thus, we present here the new designations, Hi and Lo Deep sleep,
according to the frequency range with dominant power. Simultaneously recorded
electrodermal activity (EDA) was primarily associated with Lo Deep and very rarely with
Hi Deep or any other stage. Therefore, Hi and Lo Deep sleep appear to be physiologically
distinct states that may serve unique functions during sleep. We developed an algorithm
to classify five stages (Awake, Light, Hi Deep, Lo Deep and rapid eye movement (REM))
using a Hidden Markov Model (HMM), model fitting with the expectation-maximization
(EM) algorithm, and estimation of the most likely sleep state sequence by the Viterbi
algorithm. The resulting automatically generated sleep hypnogram can help clinicians
interpret the spectral display and help researchers computationally quantify sleep stages
across participants. In conclusion, this study demonstrates the feasibility of in-home
sleep EEG collection, a rapid and informative sleep report format, and novel deep sleep
designations accounting for spectral and physiological differences.

Keywords: EEG, sleep, spectral decomposition, electrodermal activity, deep sleep, slow wave sleep, sleep scoring
algorithm

INTRODUCTION

Sleep is a requisite aspect of human existence whose most obvious function is to rejuvenate
the brain and body on a daily basis. How sleep achieves this result is not completely
understood, but over decades, research has revealed many physiological characteristics
of sleep, from molecules to behavior, that have initiated very compelling hypotheses
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(Tononi and Cirelli, 2006). Of course, many of the methods for
exploring the physiology are highly invasive and only conducted
on animals. However, human participants can be monitored
using a variety of devices to learn more about sleep patterns. For
example, simple movement measures from a wrist accelerometer
can roughly estimate total sleep time in a multi-day recording.
Likewise, heart rate and respiration could potentially differentiate
between sleep and wake time. However, brain activity that is
expressed in the electroencephalogram (EEG) as detected at the
scalp, along with eye and muscle movements, gives additional
insight into brain mechanisms of sleep, while still remaining
non-invasive and safe. Unlike accelerometers, EEG detects not
just lack of movement, but the sleep stages visited over the course
of the night.

The gold standard for sleep scoring remains visual scoring
of polysomnography (PSG), which includes EEG and heart
rate, as well as muscle and eye movement data, among other
measures (Rechtschaffen and Kales, 1969). Heart rate typically
drops with the onset of sleep (Baust and Bohnert, 1969); loss
of muscle tone and rapid eye movement (REM) are strong
indicators of REM sleep. PSG provides a summary hypnogram
of sleep architecture that is useful in sleep diagnosis and
yields an inter-rater consistency of about 80% (Danker-Hopfe
et al., 2009). However, visual scoring in 30-s increments is
limited since the human eye is minimally sensitive to slight
variations in frequency. For example, high- vs. low-frequency
spindles, or slow waves of variable frequency, can be difficult
to detect and quantify. Therefore, it would be useful to
include computational analysis to maximize observations that
may not be obvious to even the most trained eye of a sleep
technician.

Standard sleep scoring guidelines do not differentiate between
various frequencies of slow waves, as long as they are below
3 Hz. However, the research literature has distinguished EEG
oscillations below and above 1 Hz that are hypothesized to
originate in the cortex and thalamus, respectively (Steriade
et al., 1993). Despite this differentiation, slow oscillations
(<1 Hz) and delta (1–3 Hz) have never been considered
separate sleep stages, but rather different facets of the same
deep sleep phenomenon. Part of the reason for this may be
that early EEG amplifiers often had built in high-pass filters
around 0.1 Hz to prevent saturation from drift potentials,
so the lowest frequency slow waves may have actually
been absent. Modern amplifiers, which are capable of full
spectrum recordings that allow for detection and quantification
of slow oscillations, should therefore be re-examined using
computational tools that can quantify power in this very low
range.

Electrodermal activity (EDA), which is traditionally ameasure
of sympathetic nervous system activation, was first recorded
along with overnight PSG in the early 1960’s, showing, to the
surprise of most, that sleep was actually not as autonomically
quiescent as it might appear behaviorally. In fact, it was shown
that EDA was stronger during deep sleep than any other sleep
stage or even waking levels (Johnson and Lubin, 1966; Hori
et al., 1970). Skin conductance changes are divided into two
broad categories; skin conductance responses (SCRs) and skin

conductance level (SCL), which describe phasic and tonic shifts
in conductance, respectively. In the awake condition, both are
associated with increases in arousal (Dawson et al., 2007).
During sleep, both SCRs and SCL are elevated predominantly
during deep sleep, but these shifts are unlikely to be due to
heightened arousal, as they are in waking conditions (Hori
et al., 1970). EDA has several separate control mechanisms
in the awake animal, but the mechanism for EDA increase
during sleep has not been investigated. As such, it is unknown
if EDA during sleep is even mechanistically similar to waking
SCR and SCL signals. Despite the consistency of the EDA
signals during sleep, EDA recordings have somehow not become
a standard measure to help identify deep sleep (Sano et al.,
2014).

Various automatic sleep scoring algorithms have been
proposed over many years, but none have attracted enough
attention to replace or even supplement the accepted visual
scoring protocol (Rechtschaffen and Kales, 1969; Silber et al.,
2007). Various approaches have been proposed, from simple
rule-based decision trees (Liang et al., 2012) to supervised
classifiers (e.g., support vector machines or neural networks;
Pardey et al., 1996; Sousa et al., 2015), and finally unsupervised
classifiers such as Hidden Markov Models (HMMs; Flexer et al.,
2002, 2005; Pan et al., 2012). Because traditional PSG uses
several EEG channels along with electromyogram (EMG) and
electrooculogram (EOG) information, many automatic sleep
scoring algorithms use much of the same data associated
with PSG (Pan et al., 2012). Some have attempted 1 or
2 channel classification schemes in order to move toward a more
streamlined approach to sleep assessment (Flexer et al., 2005;
Berthomier et al., 2007). Most algorithms use a combination of
spectral measures (Pan et al., 2012; Yaghouby and Sunderam,
2015) as inputs to their algorithms, but some use raw data
measures (Flexer et al., 2005). The accuracy of the published
algorithms falls between 70% and 95% accuracy for at least
1 sleep stage, which is typically either slow-wave sleep or awake.
What most methods still lack is a way for clinicians to view an
entire night’s sleep as anything other than a final hypnogram,
which displays none of the actual data that led to the sleep
categorization. One group has introduced a whole-night sleep
visualization (Koupparis et al., 2014), but the final display
lacks the visual resolution to convey sleep architecture at a
glance.

The present study sought to alleviate some of the
disadvantages of prior sleep studies and sleep scoring
approaches by offering an intuitive display of whole-night
sleep architecture as a normalized time-frequency color image,
and importantly, as a dot matrix highlighting the relative
dominant frequency at each moment. This technique revealed
an important distinction within slow wave sleep between
dominant power above or below 1 Hz. The display also includes
a hypnogram produced by an HMM, which is implemented
with expectation-maximization (EM) model-fitting and Viterbi
sequence estimation to deduce sleep stages using only a single
channel of EEG data from the forehead. We used a mobile
2-channel EEG device for data collection that allows participants
to sleep in the comfort of their own homes at a much reduced
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cost. Using these techniques, sleep EEG activity can be easily and
inexpensively collected, assessed and quantified by researchers
or clinicians.

MATERIALS AND METHODS

Participants
Participants were recruited from the San Diego area by public
advertisement and included a total of 51 participants (26 males,
25 females) who were medication-free and self-reported
asymptomatic sleepers. Mean age of participants was 27.8 years
(standard deviation [SD] = 6.1; range 19–40). Participants
reported no neurologic or psychiatric disorders, and no history
of traumatic brain injury. Their mean Pittsburgh Sleep Quality
Index (PSQI) score was 2.5 (SD = 1.4). Mean ± SD self-reported
sleep quality for all participants on all nights was 7.0 ± 1.7 on
a scale of 1–10 (10 = excellent sleep). Coffee drinking up
to three cups per day was permitted, but participants were
asked to not consume any excess caffeine compared with
their normal amount on days of recordings. Participants were
also asked to refrain from alcohol consumption on recording
days.

Participants reported to the laboratory for consenting,
questionnaires, and explanation of how to use the mobile EEG
recording device. Once participants had completed three nights
of sleep recordings, which could be consecutive or not but
generally within 2 weeks, they returned the device and received
compensation for their participation.

Equipment
Each participant received one of two possible EEG recording
devices, both of which included four electrode placements: one
above each eye on the forehead and one behind each ear on
the mastoid. One device used standard electrocardiogram
(ECG) electrode wires leading off the pillow to a small
Avatar amplifier (EGI, Eugene, OR) placed above or to
the side of the pillow (used by 25 subjects). The Avatar
amplifier digitized the data at 500 Hz and has no hardware
filters. The other device was a headband design with wires
leading to a small recording unit which was attached to an
over-band on the top of the head (Cognionics, San Diego, CA,
USA). The Cognionics amplifier has no hardware filters
and digitized the data at 540 Hz (used by 26 subjects).
While each device recorded at different gains and therefore
different absolute measurement values, raw data from both
devices were comparable. When transformed into frequency
space, converted to dB and baselined relative to participant-
specific mean spectra, data from both devices produced
comparable spectrograms and hypnograms. Specifically,
absolute and percent time spent in each sleep stage was
not significantly different between devices. Therefore data
from both devices were merged in the final analysis. One
of the goals of this project was to develop a platform that
can use any EEG recording device and deliver comparable
analysis and visualization as output. EDA was collected
using a multifunctional wrist band that also collected

acceleration, heart rate and temperature (Empatica, Milano,
Italy).

Procedure
Participants were instructed to rub forehead and mastoids
with an alcohol preparation pad and then let the areas dry
completely. The standard ECG electrode stickers were applied
above each eye and behind both ears. Photographs with
proper placement were included with the device. Lead wires
were then snapped in place, and the Empatica device was
placed on the left wrist like a watch. When the subject was
ready to close their eyes to fall asleep, the Empatica device
was turned on, followed by the EEG device immediately
thereafter so that they were approximately synchronized. When
participants woke up in the morning, they turned off both
devices. Participants completed a brief sleep journal rating how
well they slept, how exhausted they were the night before,
and whether anything woke them up in the middle of the
night. Each subject repeated this procedure on three separate
nights that were expected to be unrestricted by abnormal time
constraints and consistent with their normal sleep patterns.
While laboratory sleep studies often disregard the first night of
recording as an accommodation night, we found no significant
differences between the first and third nights in terms of
absolute or percent time in each stage, total sleep time,
sleep onset latency, or EDA activity in any sleep stage. We
did find a significant difference in subjective sleep quality
(p < 0.02) indicating slightly improved impression of good
sleep on the third night compared to the first. However,
because none of the objective measures evaluated in this
report were correlated with these subjective evaluations, we
used all successfully recorded nights from each subject for
the subsequent analysis. Similarly, no significant differences in
objective sleep measures were detected between nights rated 5 or
less out of 10 for sleep quality, as compared to nights rated
6 or higher. Therefore, all successfully recorded nights were
included in the subsequent analysis regardless of subjective sleep
ratings.

Data Processing and Visualization
Data were imported into MATLAB (Mathworks, Natick,
MA, USA) and stored as EEGLAB datasets. Channels
FP1-A2 and FP2-A2 were analyzed independently. The
difference channel FP1-FP2 (forehead-forehead, or FF) was
also analyzed because it often showed equivalent results for
frequencies under ∼30 Hz, but showed significant reduction
in >30-Hz power that may have been muscle or temporal
lobe brain activity detected at the mastoid reference electrode.
Eliminating this high frequency activity by using the FF
channel decreased false awakening determinations. The
difference channel can also enhance spindle power—making
light sleep easier to detect—but it also eliminates waking
alpha power which is likely projected from a single occipital
source canceled in the difference. Occasionally the difference
between frontal electrodes can eliminate very low-frequency
oscillations that are synchronous at both forehead electrodes,
but usually the difference retains all pertinent features
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of individual channels with sufficient power. Practically
speaking, it is useful to look at all channels to gain a fuller
picture. However, for the purposes of this report, we will
discuss the FF channel because it shows the most reliable
hypnograms compared with either FP1 or FP2 referenced to the
mastoid.

The sleep scoring algorithm receives information from a
single channel of EEG for each calculation. The algorithm
transforms the temporal data into frequency power between
0.1–150 Hz for every 0.5-s time step. Spectral decomposition
was accomplished by Morlet wavelet analysis, using three cycles
at the lowest frequency and 30 cycles at the highest frequency;
frequencies in between used evenly distributed numbers of
cycles between 3 and 30. Thus, for a given time step, each
frequency considers a different amount of time, from 30 s at
0.1 Hz to 0.2 s at 150 Hz. The real portion of the power was
extracted by multiplying the complex power with its conjugate.
The result was converted to decibels (dB) by the formula
10∗log10(power). The spectrogram was smoothed across time
with a 40-s moving average for the display spectrogram only.
All other displays and computations used the unsmoothed
spectrogram. Large artifacts in the raw EEG data were assumed
to be movement and tagged in order to temporarily remove
them for calculation of the spectral baseline. Artifact was
defined by taking the maximum absolute value of each 30-s
stretch of EEG data minus its mean and then marking all
windows that exceed 5 SDs from all other windows of data
across the night. The 30-s window was chosen because it is
the longest window used in the spectral analysis, and 5 SDs
was chosen as a value that was well above normal variations
in sleep EEG so as to only tag the most extreme outlier
activity in the data. The average power spectrum across the
entire night was then calculated from all time points except
these large artifacts. The baseline spectrum was subtracted
from the raw spectrogram to improve visualization of relative
spectral changes over the night. Time windows that were tagged
as large artifact were not deleted or cleaned for calculations
or visualization; they were detected solely to ignore when
calculating the average power spectrum since large artifact can
skew the average and cause misleading relative spectrograms.
These artifactual time points are denoted in the sleep report
to aid interpretation and specify when spectral time points
were ignored for calculation of the spectral baseline. Line
noise was masked in specified frequencies (usually 50–70 Hz
but sometimes 110–130 Hz was additionally required) by
replacing line frequency values with the average of the two
frequency bins below and the two above the noise frequency
bins. The line noise frequencies were not used for hypnogram
determinations since the line noise masking only affects the
displays.

The dominant frequency display was calculated from the
unsmoothed, baselined spectrogram to enhance visual detection
of dominant frequencies, which is especially helpful for
low-spectral power states such as REM sleep. The dominant
frequency is determined by finding, at each time point, the
frequency with the maximum relative power from the baselined
spectrogram. The result is portrayed in the display as tiny dots

corresponding to the frequency with the highest relative power
at each time point and whose visual gestalt should immediately
convey the general sleep cycle pattern.

Sleep Scoring Algorithm
To create the input for the HMM algorithm, relative power
across the entire night was averaged in five frequency bands,
which roughly corresponded to five stages of sleep/wake (Wake:
37–47 Hz; REM: 16–30 Hz; Light: 10.5–16 Hz; Hi Deep:
1–3 Hz; Lo Deep: 0.1–1 Hz). Except for the differentiation
between Hi and Lo Deep sleep, these frequency bands were
based on conventional sleep scoring as well as other published
observations (Silber et al., 2007; Kokkinos et al., 2009; Koupparis
et al., 2014).

The relationships between sleep stages and the five EEG
frequency features across time intervals wasmodeled as anHMM
(Rabiner and Juang, 1986). In this model, each discrete time
unit corresponds to a 30-s epoch, and it is assumed that the
participant is in one of the five aforementioned hidden stages
of sleep or wake. This discrete time process was modeled as a
Markov process, where the transition probabilities are specified
by the 5 × 5 Q matrix, where Q(j|i) is the probability of being in
stage j at time t + 1 given that the participant is in stage i at time t.
Each 30-s interval of data was transformed into a 5-dimensional
observation vector, y, by extracting the average log power of the
EEG in each of the five bands in that time window. R(y|j) is the
conditional probability of observing the 5-dimensional feature
vector, y, in a specific window given that the participant was in
state j during that window. Here, wemodeled R(y|j) as a Gaussian
random vector with an expectation vector given by µj and a
covariance matrix given by Σj.

All of the parameters, namely Q and (µj, Σj) j = 1:5 were
estimated via the EM algorithm (Rabiner and Juang, 1986)
where the initial condition for the diagonal entries of Q
(pertaining to the probability of staying in the same stage as
the previous interval) were set at 0.95. All off-diagonal entries
in the initial condition were set at 0.0125. The estimated
parameters were given by Q∗ and (µ∗, Σ∗). Given these
estimates, the Viterbi algorithm was used to find the maximum
a posteriori estimate of the sequence of states. This was used
as our estimate of the 5-stage hypnogram. See Figures 1, 3 for
examples.

RESULTS

The visualization technique employed in this study provides a
means by which researchers or clinicians, and even patients,
can assess an entire night of sleep at a glance. Figure 1 shows
the basic view that includes a time-frequency decomposition
of a single channel of forehead EEG (baselined by mean
spectrum), a dot display highlighting the frequency with the
highest relative power at each time point, and a hypnogram
generated by the automated HMM algorithm, providing basic
guidance for the user to interpret the EEG spectral data plots
above it.

The most surprising novel observation that became
immediately clear from the whole-night sleep display was
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FIGURE 1 | Typical sleep report showing whole-night sleep electroencephalogram (EEG) from a single forehead electrode (referenced to mastoid).
This night shows Hi Deep sleep in the first and second cycles and Lo Deep sleep in the third and fourth cycles (with a final Lo Deep period before 7 h). Brief power in
the high frequency range is indicated with cyan vertical lines—moments of likely micro-arousals when electrodes were moved or high frequency brain activity was
temporarily active, or both.

that ‘‘Deep’’ sleep occupied two distinct frequency bands, which
generally occurred during separate cycles in the night. The
difference between what this report coins ‘‘Lo Deep’’ and ‘‘Hi
Deep’’ are clearly depicted in Figure 1. Lo Deep has dominant
power between 0.1–1 Hz; Hi Deep has very little power in the
lowest frequency range and dominant power between 1 Hz and
3 Hz. It is worth noting that, if Figure 1 was calculated and
plotted down to 1 Hz only, Hi Deep and Lo Deep would look
identical. Therefore, this finding is both a matter of optimal
visualization and lowering the frequency range below what is
typically considered.

Table 1 summarizes the average hours and percentage of the
night spent in each stage of sleep and wake after sleep onset,
according to the automatic sleep scoring algorithm. A total of
126 nights from 51 participants were used for these sleep stage
quantifications.

Figure 2A shows the total sleep time for this particular
set of participants. The shortest and longest sleep time was
4.2 h and 10.7 h, respectively, with a mean of 6.8 h.
Figure 2B shows the sleep onset latency in minutes, which
varied from 8.6 min to 214.3 min (M = 18.9 min). The
longest two sleep onsets of 167 and 214 min were both
achieved by one subject and not shown on the histogram.
Most nights (64%), participants fell asleep within 25 min
(Figure 2B).

EDA was recorded on the internal surface of the wrist using a
watch-like wristband that was approximately synchronized with
the EEG from the forehead. Two examples of sleep reports that
include EDA data are shown in Figure 3. As can be seen in the
second panel down in Figures 3A,B, the EDA measurement was
closely related to Lo Deep sleep stages, though the magnitude
of the EDA increase was inconsistent between different cycles.
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TABLE 1 | Duration and percentage of night in each sleep stage.

Awake Light Hi Deep Lo Deep REM

Number of hours 0.5 ± 0.4 1.9 ± 0.6 1.2 ± 0.6 1.5 ± 0.7 2.3 ± 0.8
Percentage of night 12.8 ± 8.9 26.0 ± 6.4 16.0 ± 7.6 21.2 ± 10.7 30.4 ± 6.9

Values are means ± standard deviations across participants, derived from the Hidden Markov Model/estimation-maximization automatic sleep scoring algorithm. “Awake”

is after sleep onset and does not include time to fall asleep at the beginning of the night. REM, rapid eye movement.

EDA appears to start rising close to the beginning of Lo Deep
stages, peaks at some point during Lo Deep (Figure 3B), or
more commonly rises until the last moment of the stage and
then quickly falls toward baseline after the Lo Deep stage ends
(Figure 3A). Importantly, it rarely rises during Hi Deep sleep
(Figure 3B).

EDA measurement was only successful in a subset of the total
participants recorded; therefore, the following results reflect EDA
data for 97 nights from 45 participants. To quantify the above
EDA observations, the mean EDA during each sleep stage was
divided by the mean EDA from all other stages combined. The
calculation was restricted to participants with mean EDA in any
stage above 0.25 µS because below this level the ratio of means
can seem significant with no peak in the EDA measurement.
The results show a consistent tendency for EDA to increase
most during Lo Deep than in any other sleep stage (Figure 4A).
In 10 nights (5 participants), EDA did not reach the threshold
value of 0.25 µS for any sleep stage. Of these five participants,
three showed minimal and relatively low spectral power Lo Deep
sleep that was often mixed with Hi Deep frequency range power.
One subject showed clear Lo Deep sleep during three nights,
but the EDA was low and erratic, possibly indicating a faulty
connection to the skin. The last subject showed clear Lo Deep
sleep stages, and EDA increases roughly correlated with Lo Deep
stages; however, the magnitude of EDA was so low that it did
not reach the threshold value of 0.25 µS over the course of the
night.

The highest mean EDA could be expressed in any quarter
of the night after sleep onset across participants and recordings
(Figure 4B). For the 40 participants (87 nights) with clear
peaks in EDA during the night, most nights showed the
maximum mean EDA during the second and third quarters of
the night (35% and 22%, respectively). Relatively fewer nights
showed maximum mean EDA during the first and fourth
quarters of the night (11% and 17%, respectively). Nights with
negligible EDA throughout the night were excluded from this
plot.

As shown in Figure 3, EDA tended to rise slowly during
Lo Deep and reach a maximum near the end of the stage. To
quantify this, mean EDA from stages lasting ≥8 min, with only
one or two sample excursions to other stages tolerated, were
taken from the first and last minute to show the difference
from beginning to end of each sleep stage category (Figure 4C).
Stages throughout the night were used for this analysis, even
though EDA can vary significantly from cycle to cycle. All
nights from all participants were included in this analysis to
portray the average activity for each stage regardless of the overall
pattern. Our analysis of variance (ANOVA) results demonstrate
that Lo Deep had a significantly higher mean difference from
beginning to end of stage compared with all other stages
(P < 0.0001, F = 55.8, effect size [difference/standard deviation]:
0.58 (Wake), 0.65 (Light), 0.71 (REM), 0.4 (Hi Deep)). Of the
sleep stages, REM appeared to show the most negative difference,
indicating that it generally starts higher than it ends, though

FIGURE 2 | Total sleep time for this population, shown in (A) varied from 4.2 h to 10.7 h (mean = 6.8 h). (B) Shows the sleep onset latency, which varied
between 8.6 min and 214.3 min with a median of 18.9 min. The vertical dotted lines in each plot indicate the mean or median of each distribution.
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FIGURE 3 | (A) Demonstrates how electrodermal activity (EDA; orange trace, second plot down) tends to peak during Lo Deep sleep, usually near the end of the
stage. EDA magnitude can vary across cycles. (B) Shows another example of EDA increasing during Lo Deep but not during Hi Deep sleep. In this case, EDA
peaked before the end of Lo Deep but still showed an accelerated decline at the offset of Lo Deep sleep.

it only differed significantly from Hi and Lo Deep sleep stages
(P < 0.0001, F = 55.8, effect size: 0.44 (Hi Deep), 0.71 (Lo
Deep)).

To further quantify this EDA behavior, the derivative of
the EDA signal was calculated for all nights and expressed as

the percentage of time that EDA was rising (positive derivative
above 0.0001). Using this metric, Lo Deep sleep again appeared
to spend the most time with increasing EDA (72%), while
all other stages showed rising EDA 25% of the time or less
(Figure 4D).
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FIGURE 4 | (A) The highest mean EDA was usually recorded in a Lo Deep stage of sleep. (B) The highest mean EDA was most commonly recorded in the second
quarter of the night, although the highest mean EDA could occur during any quadrant of the night. (C) EDA tends to be higher during the last minute of Lo Deep
stages compared with the first minute of the stage, meaning that EDA tends to rise during Lo Deep (error bars show the standard error of the mean). (D) Percentage
of time in each stage that EDA was rising rather than falling (using the derivative of EDA measurement). This pattern again shows that EDA tends to increase most
dramatically during Lo Deep sleep.

DISCUSSION

In this report, we have presented a method for whole-night
visualization of sleep EEG from a single channel that vividly
highlights the various dominant frequencies characterizing
different sleep stages throughout the night. The advantage to
this display is that it goes beyond the hypnogram to offer
researchers and clinicians an insight into patient sleep EEG
that is more comprehensive than the current sleep staging
categories. Being able to view the actual EEG data in spectral
form can help confirm the automatic sleep scoring, and
perhaps convey nuanced aspects of the data that may be
related to general sleep quality, although this idea must be
further investigated. Our results suggest that the spectrogram
and dominant frequency displays can provide complementary
descriptive information that can supplement what is provided
in the conventional hypnogram. At a glance, one will be
able to see if there are discernable cycles, their approximate
length, and what sleep stages were reached or missed.
Moreover, these descriptive tools will elucidate the number
and durations of awakenings, as well as the relative power
of dominant and possibly secondary frequencies in each sleep
stage.

In addition, we introduced in this report a novel
differentiation of deep sleep into Hi and Lo Deep sleep,
as defined by maximal power in the 1–3 Hz and <1 Hz
range, respectively. Slow wave sleep frequencies are referred
to as delta (1–4 Hz) or slow oscillations (<1 Hz) and are
suggested to reflect thalamo-cortical and intra-cortical processes,
respectively (Steriade et al., 1993). Slow oscillations appear
to synchronize faster oscillations in the delta, spindle and
even gamma ranges (Steriade, 2000). It is important to point
out that Lo Deep sleep, as it is denoted in this report, is
not devoid of delta power, rather oscillations below 1 Hz
are stronger than delta. That is to say if the spectral power
were only calculated down to 1 Hz, Hi and Lo Deep sleep
would appear identical. The presence of slow oscillations is
likely to initiate a unique network synchrony that presumably
performs necessary functions during sleep. For example,
slow oscillations may facilitate synaptic pruning (Tononi
and Cirelli, 2006), memory consolidation (Stickgold, 2005)
and/or neuroplasticity (Dickson, 2010). Thus, the balance
of time spent in Hi and Lo Deep sleep may indicate the
extent to which various critical neural processes are fulfilled
during sleep. The absence, especially, of Lo Deep sleep
may therefore hint at serious problems with brain health
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that could be detected with this simple and inexpensive
technique.

The Hi/Lo Deep sleep distinction is easily observed visually
in the spectrogram and dominant frequency displays, but it is
also usually clear because EDA increases most often during the
Lo Deep stage and rarely with the Hi Deep stage—suggesting
a physiological difference between the two stages. Until now,
Hi and Lo Deep sleep would have been considered the same
stage by conventional scoring procedures, which may have
confounded earlier studies looking for a consistent association
of EDA with ‘‘deep’’ sleep. Despite this, most EDA studies from
the 1960s until now have reported the strongest association
of EDA with ‘‘deep’’ sleep (Sano et al., 2014), confirming our
finding that EDA was not usually strongest during REM or Light
sleep.

In the present study, participants showed variable patterns of
Hi/Lo Deep sleep and corresponding EDA. Some participants
had a full one or two cycles at the beginning of the night that
included purely Hi Deep. These participants usually expressed
Lo Deep in subsequent cycles and, likewise, their EDA did not
rise until the third and later cycles along with the emergence
of Lo Deep sleep. Other participants immediately entered Lo
Deep during the first cycle and showed the corresponding EDA
at the same time. In addition, we also saw instances of EDA
and Lo Deep sleep emerging in separable parts of the night,
to include once or twice at the beginning of the night and
again during the last full cycle of the night. This variance in
Hi/Lo Deep patterns within and across participants may partially
account for inconsistent findings in the literature reporting that
EDA was not always associated with slow-wave sleep in some
cycles—thus leading to the conclusion that EDA is somewhat
loosely associated with slow-wave sleep (Sano et al., 2014). While
the most common sleep stage to show maximal EDA was Lo
Deep, we observed that EDA is not equally strong across all
cycles containing Lo Deep in a single night, which could also
account for apparently skewed correlations between EDA and Lo
Deep.

To date, no theories have been proposed to explain the
purpose or mechanism of the increase in EDA during slow-wave
sleep. During waking conditions, EDA is usually considered a
marker of sympathetic nervous system activation as it is often
triggered by emotional stimuli while awake (Sequeira et al., 2009).
However, non-REM sleep is associated with relatively more
parasympathetic and less sympathetic activity in general (Burgess
et al., 1997). Indeed, direct recording of sympathetic nerve
activity during sleep at the peroneal nerve near the knee shows
that nerve activity is mostly silent during deep sleep and highly
active during wake and REM (Somers et al., 1993). Nevertheless,
it is evidently possible to activate sweat glands, which are
exclusively innervated by the sympathetic nervous system, in
the absence of other typical sympathetic functions such as
increased heart rate and bronchodilation. One explanation for
the increase in EDA may be thermoregulation, which is active
during deep sleep but not during REM (Carskadon and Dement,
2011).

In rare instances, EDA was expressed in relatively high
magnitude in other sleep stages, especially during REM, which

may reflect an actual emotional response to a dream, as would be
the interpretation while awake. Our results also show it is possible
to express Lo Deep sleep EEG activity without measurable EDA
changes, meaning that EDA is not directly triggered by Lo Deep
sleep production but simply associated with it by unknown
mechanisms.

Interestingly, the hormone renin also increases during
slow-wave sleep and decreases during REM (Brandenberger
et al., 1990). Renin is a factor involved with regulation of
extracellular volume of blood, lymph, and interstitial fluid, and
is also a target of sympathetic nervous system activation. As
with EDA, the purpose and mechanism of this nocturnal pattern
is unknown, but appears to be adrenergically mediated since
it can be blocked by atenolol (Brandenberger et al., 1990).
Possibly, EDA and renin release work together by opening sweat
glands in case interstitial fluid levels require regulation through
sweating. However, this hypothesis would require explicit
testing.

Slow-wave sleep has recently been associated with an actual
shrinkage of brain size in rats to allow more cerebrospinal
fluid to flow through the brain and clear accumulated debris
from the intercellular space (Xie et al., 2013). While it is
difficult to say if slow-wave sleep is comparable in rats
and humans, including whether rats express both Hi and
Lo Deep sleep, it would be extremely valuable to know
if and in what stage humans show the same shrinkage
phenomenon. Potentially, lack of either Hi or Lo Deep sleep
could be correlated with insufficient brain shrinkage and
therefore inadequate clearance of proteins that could promote
various neurodegenerative diseases. With the low-cost sleep
monitoring and scoring presented in this report, patients
could be non-invasively identified as having potentially poor
cerebrospinal fluid flux well before any irreversible damage
occurred.

Finally, growth hormone (GH) is another factor that is
released in conjunction with onset of slow-wave sleep (Holl
et al., 1991). Responsible for muscle and bone growth, among
other functions, GH and slow-wave sleep are reduced in
normal aging, acute depression, and after administration of
corticotropin-releasing hormone (Steiger and Holsboer, 1997).
Knowing whether this is related to Hi, Lo, or all Deep sleep
and whether the magnitude of deep sleep’s spectral power
relates to the amount of GH release would enhance the
informative value of detecting the amount of Hi vs. Lo Deep
sleep.

Thus, a constellation of physiological events occur during
slow-wave sleep, and many events are still unknown. That these
factors may, like EDA, be associated with only Lo Deep sleep
suggests that monitoring patients for the ratio of Hi to Lo
Deep sleep could expose problems with sleep-related bodily
functions that would not otherwise be obvious from routine
sleep assessments. It may be that sleep complaints, in conditions
ranging from PTSD to advanced age, are due to skewed Hi/Lo
Deep sleep ratios. Additionally, the influence of pharmacological
medication on Hi vs. Lo Deep sleep ratios should also be
investigated since they may have consequences on sleep quality
that are as yet undetected.
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The sleep stages used in the present study contain both
Hi and Lo Deep categories and thus cannot be compared
with conventional scoring. However, the variance in values
seems to expose interesting differences between spectral and
temporal classification that should be highlighted. In the
present study, the percentage of the night spent in REM was
similar to commonly reported values (28.6% vs. 20%–25%;
Carskadon and Dement, 2011). In non-REM sleep, the values
for combined stages 3 and 4 are usually considered to be
in the range of 13%–23%, while stage 2 sleep is said to
consume approximately 45%–55% of the night. These values
contrast somewhat with the results presented here, which
showed Hi and Lo Deep sleep (should approximate stages
3 and 4) persisting for 53.2% of the night, on average, and
Light sleep (should be similar to stage 2) for 24.8%. This
apparent reversal of time spent in Light vs. Deep sleep might
be explained by the 12- to 14-Hz spindle activity (i.e., marker
of Light sleep) which is clearly strong during concurrent slow
waves. This observation implies that individual 30-s stretches
are likely to exist that contain <20% high-amplitude slow
waves and >0.5 s of spindle activity that would visually be
scored as stage 2 (Silber et al., 2007). Using the spectral
method presented here, the amplitude of frequency power is
the more important factor. Thus, large amplitude slow-waves
in only 20% of the epoch could appear to the algorithm
as Hi or Lo Deep sleep even in the presence of frequent
spindle activity. Also, slow waves are known to be stronger
at frontal electrodes (Kurth et al., 2010), but prior to new
guidelines in 2007, traditional scoring used central derivations
instead of the current standard which uses frontal electrodes for
visual scoring (Silber et al., 2007). This means that even visual
scoring of frontal electrode data is potentially incomparable
with commonly accepted values since the decision between
stage 2 and slow-wave sleep depends partly on the amplitude
of delta activity. However, the main reason for the difference
between values in the current results and commonly reported
values is likely that the scoring rules in this report did not
attempt to mimic standard visual scoring rules. Rather, our
algorithm uses the whole-night spectral macrostructure to
make data-driven differentiations between sleep stages based on
spectral rather than temporal dynamics. Importantly, both are
perfectly valid approaches to data interpretation; the current one
simply has the advantage of being far quicker and providing
more information to the end user through the spectrogram and
hypnogram.

The idea of whole-night sleep visualization using the
power spectrogram has been previously proposed (Kokkinos
et al., 2009; Koupparis et al., 2014). In these reports, the
authors point out several of the same findings, specifically
that imaging whole-night sleep can provide a quick and
efficient overview of the whole night and certain spectral
bands are highly correlated with certain sleep stages (e.g.,
spindles with light sleep and slow waves with deep sleep).
However, these reports did not indicate the presence of two
distinct frequency bands in deep sleep. There are several
possible reasons for this. First, the Cz derivation used or
the roll-off from the 0.05-Hz high-pass filter may have

obscured some of the Lo Deep sleep power. Alternatively,
the limitations of their display may have prevented visual
detection of the phenomenon, specifically the use of linear-
spaced frequencies in the spectrogram that allows very little
space for the entire low frequency range to be viewed. The
current report improves upon this approach by employing
log-scale frequency spacing that clearly distinguishes between
Lo Deep and Hi Deep. In addition, the color scaling and
smoothing, along with the dominant frequency display, provide
a more informative depiction of sleep EEG’s frequency
characteristics.

Our approach for automated sleep staging consists of
an HMM and performs maximum likelihood estimation
on the parameters (via the EM algorithm) and maximum
a posteriori estimation of the most likely hypnogram (via
the Viterbi algorithm). As a method for state classification,
the HMM/EM/Viterbi framework provides an unsupervised
approach for objectively identifying the hidden states of sleep
from continuous EEG observations. In general, HMMs are
widely studied and employed in fields such as speech recognition
(Rabiner, 1989) and gene editing (Eddy, 2004), hence they
are well characterized and amenable for use in the spectral
analysis of sleep EEG described here. In contrast to other
sleep scoring schemes employed in the literature (e.g., support
vector machines, neural networks, decision trees), HMMs
account for inherent temporal structure in an observed signal;
this signal allows for a statistical analysis that ultimately
constrains classification of hidden sleep states in a manner
commensurate with physiological manifestations and transitions
during sleep.

The current study utilized a 2-channel mobile EEG device
that participants were able to apply, and sleep with, in
the comfort of their own homes. This aspect of our study
means that we were able to acquire data that is closer to
natural sleep patterns; sleeping in one’s own bed is far more
comfortable than sleeping in a foreign bed with technicians
looking on. Furthermore, with repeated in-home EEG recordings
being relatively inexpensive, these devices allow for more
accommodation nights so that typical patterns for each patient
or participant can be more accurately determined. These devices
are becoming more available as applications for EEG expand
and methods like the one presented here provide a means for
clinicians or researchers to quickly and accurately analyze sleep
recordings.

Typically reported sleep onset latency ranges from about
15–20 min, on average (Ohayon et al., 2004), which was slightly
lower than the average in the present report. However, the
majority (64%) of the participants fell asleep in less than 25 min.
The current values are therefore similar to reported values in
most cases, demonstrating that most of the participants did
not experience problems falling asleep with the sleep recording
device on their heads.

In summary, we have presented evidence for a new
categorization of deep sleep that separates slow-wave sleep
according to the dominant frequency and coincident EDA
patterns. Finally, this report demonstrates the feasibility of
inexpensive, high quality, in-home sleep monitoring that can
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quickly assess sleep architecture and, potentially, overall sleep
quality.
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