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Abstract
COVID-19, whose etiological agent is the SARS-CoV-2 virus, has caused over 537.5 million cases and killed over 6.3 
million people since its discovery in 2019. Despite the recent development of the first drugs indicated for treating people 
already infected, the great need to develop new anti-SARS-CoV-2 drugs still exists, mainly due to the possible emergence 
of new variants of this virus and resistant strains of the current variants. Thus, this work presents the results of QSAR and 
similarity search studies based only on 2D structures from a set of 32 bicycloproline derivatives, aiming to quickly, repro-
ducibly, and reliably identify potentially useful compounds as scaffolds of new major protease inhibitors  (Mpro) of the virus. 
The obtained QSAR model is based only on topological molecular descriptors. The model has good internal and external 
statistics, is robust, and does not present a chance correlation. This model was used as one of the tools to support the virtual 
screening stage carried out in the SwissADME web tool. Five molecules, from an initial set of 2695 molecules, proved to 
be the most promising, as they were within the model’s applicability domain and linearity range, with low potential to cause 
carcinogenic, teratogenic, and reproductive toxicity effects and promising pharmacokinetic properties. These five compounds 
were then selected as the most competent to generate, in future studies, new anti-SARS-CoV-2 agents with drug-likeness 
properties suitable for use in therapy.
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Introduction

The COVID-19 virus, a disease caused by the SARS-CoV-2 
virus, has caused, since its discovery (November 2019) to 
date (June 2022), more than 537.5 million cases and has 
been responsible for the deaths of more than 6.3 million peo-
ple [1]. Moreover, an indefinite number of patients have neu-
rological, physical, and psychological sequelae. In addition 
to the damage to public health worldwide, this pandemic 

has also caused severe economic and political consequences 
[2], as have not been seen in society for a long time. The 
European continent stood out as the region with the highest 
number of cases (over 224.4 million), while the Americas 
had the highest number of deaths (over 2.75 million) [1]. 
However, there are strong indications of underreporting of 
cases and deaths, which are higher or lower according to 
the country and region. Approximately half of the recorded 
deaths, in absolute numbers, were concentrated in just 12 
countries: United States of America (USA), Brazil, India, 
Russian Federation, Mexico, Peru, United Kingdom, Italy, 
Indonesia, France, Iran, and Germany [3].

The disease manifests the first symptoms on average 
5.2 days after infection by SARS-CoV-2 [4]. The most com-
mon manifestations include fever, cough, myalgia, or fatigue, 
while less common symptoms include increased mucus pro-
duction, headache, hemoptysis, dyspnea, and gastrointestinal 
manifestations [5]. However, there are descriptions of sev-
eral even less common symptoms in the literature, such as 
skin rashes, brain fog, pink eyes, light sensitivity, sore eyes, 
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itchy eyes, delirium or severe confusion, and hair loss [6]. 
Even with this extensive symptomatology, most cases are 
benign or without symptoms. However, circumstances with 
severe progression and serious lung damage can arise in a 
much more significant proportion than other infections and 
can lead to death. These cases may require oxygen-therapy 
support, requiring, in more severe cases, ventilatory help to 
maintain the patient [7].

From the elucidation of the replication cycle of SARS-
CoV-2, it was possible to visualize promising targets for 
developing new drugs, either related to the virus cycle or 
to the host that allows or favors the virus entry and the 
establishment of the disease [8]. In this context, the major 
protease  (3CLpro or  Mpro) is one of the most critical and 
essential viral proteins in the cycle viral. It is responsible 
for cleavage at 11 sites in the immature polyproteins that 
will originate the viral proteins. For this reason, this enzyme 
has become an important target for developing new antiviral 
drugs [9–11], and some drugs that act on this target have 
been approved by the Food and Drug Administration (FDA). 
However, even with the approval of these drugs, as well as 
vaccines developed by several pharmaceutical companies 
and universities, there is still a great need for the develop-
ment of new preventive or therapeutic alternatives to fight 
this infection, mainly because of the potential emergence of 
new and resistant strains, and due to limited access to avail-
able immunizers, especially in the poorest countries [12], 
for instance, in some of the most recent periods of the pan-
demic, with the recurrent waves of infection caused by the 
Delta and Omicron strains [13]. The consequences of pos-
sible new waves of COVID-19 are unacceptable because of 
the high mortality rate, severe economic damage, and impact 
on the living habits of the population [14, 15].

Quantitative Structure–Activity Relationship (QSAR) 
methods are among the many approaches to accelerate 
the development of new drugs, including antivirals. This 
approach can assist in this process by having the ability 
to assertively predict essential characteristics for the bio-
logical activity of candidates for new bioactive molecules 
through validated multivariate mathematical models [16, 
17], besides being able to elucidate the complex relation-
ships between the independent and dependent variables of 
the study. Despite the considerable number of in silico stud-
ies published since the emergence of the pandemic [18], 
including even the development of specific tools for the 
theme [19], the number of QSAR studies using sets of active 
compounds against targets useful for drug development for 
the COVID-19 treatment is limited since, in temporal terms, 
the emergence of this disease is considerably recent. Thus, 
there has not been enough time to obtain and publish many 
in vitro or in vivo active derivatives that can be useful as 

“seeds” or “starting points” for new projects or even target 
existing ones.

Considering the scenario presented, the authors present 
the results of a QSAR based only on the simplified molec-
ular-input line-entry system (SMILES) strings [20, 21] of 
32 bicycloproline derivatives [15]. The strings were used to 
calculate 0D, 1D, and 2D molecular descriptors (i.e., that 
do not depend on geometry optimization and can be quickly 
obtained). Similarly, the authors searched for new molecular 
scaffolds using only the common 2D chemical structure of 
the congener series selected for the study [22]. The authors 
used this process to identify new chemical scaffolds poten-
tially helpful in developing new  Mpro inhibitors via a more 
straightforward and faster process, as the approaches used 
to deal with classical chemoinformatics, chemometrics, 
and QSAR procedures. In this context, the validation of the 
model received particular attention, as well as the evalua-
tion of its reliability regarding its use in a virtual screening 
step, aiming to strengthen the potential for success in future 
biological assays of the compounds selected at the end of 
the study.

Material and methods

Preparation of the dataset

The dataset consists of 32 bicycloproline derivatives syn-
thesized and tested for  Mpro inhibition by Qiao et al. [15], 
which derive from boceprevir and telaprevir, two molecules 
approved as drugs for treating hepatitis C virus (HCV) and 
which can inhibit  Mpro. This dataset is one with the most 
significant number of compounds active against the target 
of interest available to date.

The dataset’s antiviral activity showed a good and wide 
range of activity variation  (IC50 7.6 to 748.5 nM). The 
y-vector was preprocessed to minimize the prevalence of 
this range in later stages of the study [23] by converting 
the values to pIC50 (− log  IC50, or Log 1/IC50), a standard 
process in QSAR studies [16], with a new range of 6.12 to 
8.12 (i.e., two logarithmic units). This range is minimally 
acceptable considering the objectives of this study.

The editor ChemSketch 12.0 [24] allowed the construc-
tion of the dataset compounds’ structures and obtaining the 
respective SMILES strings [21]. The SMILES strings of 
the compounds, their basic structures, and their biological 
activities are available in Table 1. This structural represen-
tation aims to facilitate and simplify obtaining descriptors 
and reproducing results, although it does not encode infor-
mation about properties that depend on three-dimensional 
geometries.
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Table 1  Basic structures and SMILES strings of the derivatives in the dataset (DS) and their respective  IC50 and  pIC50 values

RSELIMS 1 IC50 (x10-9 M) pIC50

DS1 CC1(C)[C@H]2C(C(=O)N[C@H](C=O)C[C@@H]3CCNC3=O)N(C[C@H]21)C(=O)c1cc2ccccc2cc1 453.0 6.344

DS2 CC1(C)[C@H]2C(C(=O)N[C@H](C=O)C[C@@H]3CCNC3=O)N(C[C@H]21)C(=O)COc1cc2ccccc2cc1 52.1 7.283

DS3 CC1(C)[C@H]2C(C(=O)N[C@H](C=O)C[C@@H]3CCNC3=O)N(C[C@H]21)C(=O)CCc1cccc(F)c1 16.5 7.783

DS4 CC1(C)[C@@H]2C(C(=O)N[C@@H](C=O)C[C@@H]3CCNC3=O)N(C[C@@H]21)C(=O)COc1cc(F)cc(F)c1 18.5 7.733

DS5 CC1(C)[C@H]2C(C(=O)N[C@H](C=O)C[C@@H]3CCNC3=O)N(C[C@H]21)C(=O)COc1ccc(F)c(F)c1 13.2 7.879

DS6 CC1(C)[C@@H]2C(C(=O)N[C@@H](C=O)C[C@H]3CCNC3=O)N(C[C@@H]21)C(=O)COc1ccc(OC)c(OC)c1 14.5 7.839

DS7 CC1(C)[C@H]2C(C(=O)N[C@H](C=O)C[C@@H]3CCNC3=O)N(C[C@H]21)C(=O)COc1cc(ccc1)C(F)(F)F 43.3 7.364

DS8 CC1(C)[C@@H]2C(C(=O)N[C@@H](C=O)C[C@H]3CCNC3=O)N(C[C@@H]21)C(=O)COc1ccc(OC)c(F)c1 37.2 7.429

DS9 CC1(C)[C@H]2C(C(=O)N[C@H](C=O)C[C@@H]3CCNC3=O)N(C[C@H]21)C(=O)COc1ccc(OC(F)(F)F)cc1 15.2 7.818

DS10 CC1(C)[C@@H]2C(C(=O)N[C@@H](C=O)C[C@H]3CCNC3=O)N(C[C@@H]21)C(=O)COc1ccc(Cl)c(Br)c1 50.8 7.294

DS11 CC1(C)[C@@H]2C(C(=O)N[C@@H](C=O)C[C@@H]3CCNC3=O)N(C[C@@H]21)C(=O)COc1ccc(Br)cc1Cl 13.3 7.876

DS12 CC1(C)[C@@H]2C(C(=O)N[C@@H](C=O)C[C@H]3CCNC3=O)N(C[C@@H]21)C(=O)COc1ccc(Cl)cc1 19.0 7.721

DS13 CC1(C)[C@H]2C(C(=O)N[C@H](C=O)C[C@@H]3CCNC3=O)N(C[C@H]21)C(=O)COc1ccc(Cl)c(Cl)c1 12.4 7.907

DS14 CC1(C)[C@@H]2C(C(=O)N[C@@H](C=O)C[C@H]3CCNC3=O)N(C[C@@H]21)C(=O)COc1ccc(Cl)cc1Cl 13.0 7.886

DS15 O=C1NCC[C@@H]1C[C@H](C=O)NC(=O)C1[C@H]2CCC[C@H]2CN1C(=O)c1cccnc1 748.5 6.126

DS16 O=C1NCC[C@@H]1C[C@H](C=O)NC(=O)C1[C@H]2CCC[C@H]2CN1C(=O)c1cc2ccccc2[NH]1 153.1 6.815

DS17 O=C1NCC[C@@H]1C[C@H](C=O)NC(=O)C1[C@H]2CCC[C@H]2CN1C(=O)c1cc2ccccn2n1 298.8 6.525
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Molecular descriptors

Molecular descriptors are numerical representations rep-
resenting chemical information so that information sys-
tems and software can understand the characteristics of 
molecular structures [25]. Descriptors are unique pieces 
of information for each molecule. They are products of 
logical-mathematical processing, allowing the information 
of a given structure to be understood and processed by soft-
ware in chemometric studies [26]. Thus, to build the model, 
to obtain the independent variables, and organizing these 
data is initially necessary. This process was accomplished 

using the Dragon 6 [27], with SMILES strings as input data, 
enabling the rapid obtaining of molecular descriptors that 
depend only on 0D, 1D, and 2D information about the struc-
tures of interest. The classes of descriptors used in this work 
are available in Table 2.

However, modern descriptor calculation programs often 
generate hundreds of thousands of data, which is much more 
information than necessary to build a QSAR model. Many 
descriptors will be redundant, will not provide relevant infor-
mation to describe the biological activity, will be invariant or 
slightly variant (i.e., will not present quantitative data), and 
may encode high covariance, among other possible problems 

Table 1  (continued)

DS18 O=C1NCC[C@@H]1C[C@H](C=O)NC(=O)C1[C@H]2CCC[C@H]2CN1C(=O)/C=C/c1ccccc1 525.9 6.279

DS19 O=C1NCC[C@@H]1C[C@H](C=O)NC(=O)C1[C@H]2CCC[C@H]2CN1C(=O)/C=C/c1ccc(OC)cc1OC 195.6 6.709

DS20 CN(C)c1ccc(cc1)/C=C/C(=O)N1C[C@@H]2CCC[C@@H]2C1C(=O)N[C@@H](C=O)C[C@H]1CCNC1=O 375.0 6.426

DS21 O=C1NCC[C@@H]1C[C@H](C=O)NC(=O)C1[C@H]2CCC[C@H]2CN1C(=O)CCc1cccc(F)c1 7.6 8.119

DS22 O=C1NCC[C@@H]1C[C@H](C=O)NC(=O)C1[C@H]2CCC[C@H]2CN1C(=O)CCc1ccc(F)c(F)c1 17.4 7.759

DS23 O=C1NCC[C@@H]1C[C@H](C=O)NC(=O)C1[C@H]2CCC[C@H]2CN1C(=O)CCc1cc(F)cc(F)c1 7.6 8.119

DS24 CN(C)c1ccc(cc1)CCC(=O)N1C[C@@H]2CCC[C@@H]2C1C(=O)N[C@@H](C=O)C[C@H]1CCNC1=O 378.2 6.422

DS25 O=C1NCC[C@@H]1C[C@H](C=O)NC(=O)C1[C@H]2CCC[C@H]2CN1C(=O)COc1ccc(OC)cc1 36.2 7.441

DS26 O=C1NCC[C@@H]1C[C@H](C=O)NC(=O)C1[C@H]2CCC[C@H]2CN1C(=O)C(C)Oc1ccc(OC)cc1 69.1 7.161

DS27 O=C1NCC[C@H]1C[C@@H](C=O)NC(=O)C1[C@@H]2CCC[C@@H]2CN1C(=O)COc1ccc2OCCOc2c1 93.5 7.029

DS28 O=C1NCC[C@H]1C[C@@H](C=O)NC(=O)C1[C@@H]2CCC[C@@H]2CN1C(=O)COc1ccc(Cl)cc1 9.2 8.036

DS29 O=C1NCC[C@H]1C[C@@H](C=O)NC(=O)C1[C@@H]2CCC[C@@H]2CN1C(=O)COc1ccc(Cl)cc1F 34.7 7.460

DS30 O=C1NCC[C@H]1C[C@@H](C=O)NC(=O)C1[C@@H]2CCC[C@@H]2CN1C(=O)COc1ccc(Cl)cc1Cl 17.2 7.764

DS31 O=C1NCC[C@H]1C[C@@H](C=O)NC(=O)C1[C@@H]2CCC[C@@H]2CN1C(=O)COc1ccc(Cl)c(Cl)c1 30.0 7.523

DS32 O=C1NCC[C@H]1C[C@@H](C=O)NC(=O)C1[C@@H]2CCC[C@@H]2CN1C(=O)COc1ccc(Cl)cc1C 19.7 7.706
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[28]. Thus, one of the initial steps in building QSAR models 
is the variable reduction process, which consists of selecting 
variables that preserve the essential information in the entire 
dataset but eliminate redundancy; they are highly intercor-
related variables. The big difference from the variable selec-
tion process is that the unwanted descriptors are selected 
regardless of the dependent variable [25]. Thus, when 
exporting the descriptors calculated by Dragon 6, the follow-
ing variable reduction processes were performed: (i) removal 
of descriptors with constant values; (ii) removal of descrip-
tors with constant and near-constant variables; (iii) removal 
of descriptors with a standard deviation of less than 0.001; 
(iv) removal of descriptors with at least one missing value; 
and (v) removal of descriptors with a pair correlation larger 
than or equal to 0.90. Finally, the matrix went through a final 
reduction in the software QSAR Modeling [29] (download: 
http:// lqta. iqm. unica mp. br), where the descriptors with abso-
lute Pearson’s correlation coefficient (|r|) values with the 
vector y were lower than 0.2. This process was carried out 
to remove from the matrix descriptors that did not provide 
relevant information to explain the endpoint under study and 
could still impede the model building process.

Variable selection and model construction

The matrix resulting from the variable reduction step was 
submitted to variable selection. Typically, the number of 
descriptors in QSAR is much higher than the number of 

samples. For this reason, it is necessary to use method-
ologies that allow selecting that subset of descriptors (if 
present) that presents the most significant contribution to 
explaining an endpoint of interest. Currently, there are sev-
eral methods to perform this type of study, and in this study, 
the Ordered Predictors Selection (OPS) algorithm was used. 
This methodology is a procedure that allows the assignment 
of importance to each descriptor based on an information 
vector. The columns of the data matrix are reorganized so 
that the most relevant descriptors are presented first in the 
matrix [30]. This data selection makes it possible to use Par-
tial Least Squares (PLS) regression to run successive regres-
sions to generate several correlation models of the descrip-
tors with the biological activity using latent variables (LVs).

The best combinations found will then be used in model 
building. QSAR models are obtained through linear or 
non-linear regression methods, usually multivariate. These 
procedures evaluate the relationship between a dependent 
variable, y, and an independent variable, x [31]. The soft-
ware used to build the models was also QSAR Modeling 
[29]. Both in the variable selection and the construction of 
the models, the variables were autoscaled, the most suitable 
process for QSAR studies (and other chemometric problems) 
where variables with different scales of variation are used 
[29, 30, 32].

Model validation

QSAR models encode and correlate compounds’ phys-
icochemical properties with their biological activities. The 
equation should have statistical significance, and good pre-
dictive power should be robust and not present information 
resulting from spurious correlations. For this, the models 
must be statistically validated [16, 25, 32–42]. Usually, 
this process is divided into internal and external valida-
tion [36–46]. The internal validation evaluates the degree 
of model fit, the degree of significance, and its predictive 
ability, considering the same compounds used to construct 
the model [36, 43, 44]. This evaluation was carried out with 
statistical parameters generally utilized and recommended 
for QSAR studies, as summarized in Table 3.

Still, in the internal validation stage, it is recommended 
that the presence of random correlations (i.e., which are 
not real, even if they appear to be) between the descrip-
tors and the biological activity be evaluated through the 
y-randomization test. Here, the y-vector values are ran-
domized. The X-matrix is kept fixed, thus building new 
models, which should be poor [47]. It is also advised to 
assess robustness (i.e., whether the model can withstand 
small and deliberate variations in its composition), and one 
of the most used methods to evaluate this property is leave-
N-out cross-validation (LNO) [40, 48].

Table 2  Relation of calculated molecular descriptors in Dragon 6

* Total obtained before the variable reduction steps

Class Quantity*

Constitutional indices 43
Ring descriptors 32
Topological indices 75
Walk and path counts 46
Connectivity indices 37
Information indices 48
2D matrix-based descriptors 550
2D autocorrelations 213
Burden eigenvalues 96
P_VSA-like descriptors 45
Extended topochemical atom (ETA) indices 23
Edge-adjacency indices 324
Functional group counts 153
Atom-centered fragments 115
Atom-type E-state indices 170
CATS2D fingerprints 150
2D atom pairs 1596
Molecular properties 17
Total 3733
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The outlier detection test checks the dataset for qual-
ity and ensures that the samples form a homogeneous set. 
Removing these compounds can improve the quality of the 
model. However, since QSAR is a reductionist approach, it is 
recommended to avoid removal when possible, especially for 
sets with few samples. The presence of outliers was assessed 
based on the leverage values and the values of the studen-
tized residuals [45].

External validation, in turn, allows for a more effective 
analysis of the model’s predictive ability. A subset of sam-
ples (test set) is selected and removed for this. Then, using 
the model built with the remaining compounds (training 
set), this smaller set’s biological activity is calculated and 
compared with the experimental correspondent values [46, 
47]. However, a characteristic of the dataset used is its small 
number of compounds. According to Roy and Ambure [49], 
it is difficult to develop robust and predictive models from 
small datasets because a significant amount of information 
related to the dependent and independent variables can 
be lost due to the removal of samples to compose the test 

set. Therefore, in this study, an alternative approach based 
on studies conducted by one of the authors was adopted 
[50–52]: the dataset was randomly divided into 100 different 
test sets, starting from the initial model obtained (defined as 
the auxiliary model), with the same number of compounds 
for each test set (eight derivatives, 25% of the dataset). The 
average values and standard deviations of external validation 
metrics (also in Table 1) parameters were calculated for each 
test set. The same approach was performed for the inter-
nal validation metrics to evaluate the influence of removing 
the various test sets and if this also influences the obtained 
model’s robustness. This process was carried out using an 
in-house algorithm written in Python. The best auxiliary 
model obtained using this method was used as an aid tool in 
one of the virtual screening process steps.

2D similarity‑based virtual screening

A 2D similarity-based virtual screening [53, 54] was per-
formed on the SwissSimilarity web tool [55], enabling 

Table 3  Metrics used in the internal and external validation steps

* Some authors indicate that higher values can be accepted. A more demanding criterion was adopted, given the objectives of this study

Parameter Definition Expected/recommended result Refs

Internal validation
R2 Coefficient of determination  ≥ 0.6 [16, 25, 32]
RMSEC Root mean square error of calibration The smallest possible [16, 25, 32]
F F-test (Fp,n-p-1) at 95% significance (α = 0.05), with “p” 

as the number of variables in the model (including LVs) 
and “n” as the number of compounds used to construct the 
model

Greater than the tabulated critical value [16, 25, 32]

Q2
LOO Determination coefficient of cross-validation  ≥ 0.5 [16, 25, 32]

RMSECV Root mean square error of cross validation The smallest possible [16, 25, 32]
R2-Q2

LOO Difference between R2 and Q2
LOO  ≥ 0.1* [34]

Average rm2(pred)-LOO Scaled r2
m metrics (average value) for internal validation  ≥ 0.5 [16, 35]

Δrm2(pred)-LOO Scaled r2
m metrics (difference value) for internal validation  ≤ 0.2 [16, 35]

External validation
R2

pred Determination coefficient of external prediction  ≥ 0.5 [36–38]
RMSEP Root mean square error of prediction The smallest possible [16]
|R2

0-R2′0| Evaluation of the absolute difference between the values of 
the coefficients of determination centered on the origin of 
the two regressions

 ≤ 0.3 [39, 40]

k Slopes of the straight lines obtained by regression between 
observed and predicted values

0.85 ≤ k ≤ 1.15 [39–41]

k′ Slopes of the straight lines obtained by regression between 
predicted and observed

0.85 ≤ k′ ≤ 1.15 [39–41]

Average_r2
m(pred)-scaled Scaled r2

m metrics (average value) for external validation  ≥ 0.5 [16, 35]
Δr2

m(pred)-scaled Scaled r2
m metrics (difference value) for external validation  ≤ 0.2 [16, 35]

ARE (%) Average relative error The smallest possible [41]
MAE Mean absolute error For good predictions, ≤ 0.1 × training 

set range; in this study, ≤ 0.2
[42]

MAE (95%) Mean absolute error without 5% of dataset For good predictions, ≤ 0.1 × training 
set range; in this study, ≤ 0.2

[42]
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ligand-based virtual screening of several libraries of small 
molecules using different approaches. The search was car-
ried out in 31 databases [55]. With six bases it is possible to 
perform a combined search approach with the FP2 finger-
prints, Electroshape-5D, Spectrophores-3D, Shape-IT, and 
Align-IT approaches, while with 24 bases it is possible to 
use a combined approach with only the first three methods. 
The only database that does not allow this type of com-
bined search is the “By Click Chemistry from Sigma Aldrich 
library” database, where only the FP2 fingerprint search, 
which is the only one available for it, was used. The search 
was performed using the common main chain (Fig. 1) of 
the dataset (Table 1). After each database returned the sets, 
the duplicate structures and the structures with a similarity 
score less than 0.5 were removed. This value is equivalent 
to a minimum of 50% structural similarity to the structures 
used in the search and was selected arbitrarily. This value 
aimed to identify compounds not so similar to the dataset 
(which could lead to the identification of some samples from 
the dataset itself) but not so different as to allow the identi-
fication of hits without any potential to interact with  Mpro.

Applicability domain, in silico toxicity, activity 
prediction, and in silico ADME

Considering a large number of compounds returned when 
querying the available SwissSimilarity databases, it was 
necessary to outline a dataset reduction approach, aiming 
to obtain a manageable number of compounds that had the 
potential to become interesting scaffolds for developing new 
 Mpro inhibitors.

After performing tests (not shown), the Applicability 
Domain (AD) was selected as the first step of the process. 
The AD is the theoretical region in chemical space defined 
by the model descriptors and modeled response. This test 
is an important criterion to check, which enables judging 
the reliability of the predictive performance of a model [45, 
56]. It is an especially relevant concern as the drug discov-
ery space expands beyond small molecules to address the 
more challenging and novel target space with new modalities 
[57]. The selected approach was the Euclidean AD (using 

the Euclidean Applicability Domain 1.0, http:// dtclab. 
webs. com/ softw are- tools) because the hit compounds have 
no described activity, and the chemical space uses only the 
molecular descriptors of the dataset. To remain in the study, 
the hit should have a mean distance between 0 and 1, which 
is the criterion for defining whether the prediction of its 
activity is minimally reliable.

After this step, the set was reduced using in silico tox-
icity filters, using the VEGA QSAR 1.1.4 program [58]. 
Among the available models, compounds with the potential 
to trigger mutagenicity (AMES test), carcinogenicity, and 
developmental toxicity effects (all by CAESAR models) 
were evaluated. Those that had these effects predicted were 
removed from the set.

Next, the compounds had their activities predicted using 
the QSAR model obtained. The calculated values were eval-
uated for their inclusion in the two logarithmic unit linearity 
range of the dataset  (pIC50 6.12 to 8.12), where the model 
is valid and reliable. Those compounds that had their val-
ues predicted outside this range (i.e., these values derived 
from extrapolation) were removed since these predictions 
are unreliable even within the AD.

As a final step, several physicochemical properties and 
other important characteristics [58–60] of medicinal chem-
istry were evaluated using the free web tool SwissADME 
[60]. Among the several tools available, hits were also evalu-
ated by the BOILED-Egg model [59], an intuitive graphi-
cal classification model used to simultaneously predict the 
ability of a molecule to present both passive gastrointestinal 
absorption (HIA) and blood–brain barrier (BBB) permeation 
[58]. Along with these features, this web tool predicts the 
P-glycoprotein (P-gp) substrate, the most important active 
efflux mechanism involved in those biological barriers [60].

Results and discussion

Mechanistic interpretation

From the matrix with six descriptors used in the variable 
selection step with the OPS method, it was possible to obtain 
a PLS model formed by three latent variables (LVs) that 
originated from six molecular descriptors derived only from 
the SMILES strings of the dataset. One point to highlight 
is that, as proposed, SMILES strings (Table 1) were used 
to obtain the descriptors of each compound. This approach 
facilitates the reproduction and use of the models by poten-
tial stakeholders. Although these descriptors do not encode 
geometric properties of chemical compounds, SMILES-
based studies are widely carried out in chemoinformatic 
studies, including QSAR [61, 62], and several studies using 
only molecular descriptors obtained from SMILES have also 
been carried out [63–65]. Although in this work the authors Fig. 1  Common structure of dataset used for 2D similarity search
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used Dragon 6 to generate the descriptors, the classes of the 
selected descriptors can be found in other programs, such 
as ChemDes [66] or AlvaDesc [67]. The selected descrip-
tors are presented in Table 4, together with the self-scaled 
coefficients of each one, whose absolute values express the 
importance of each variable in the model obtained.

The VE2_B(m), the most important descriptor of the 
model, is a sum of the coefficient of the last eigenvector 
weighted by atomic mass—the greater the number of graph 
vertices (nSK), the greater its value. Since the coefficient of 
this descriptor is negative, this result indicates that smaller 
molecules will tend to be more active. This property can also 
be expressed by weighting by atomic mass.

The Eig12_AEA(bo), the second most important 
descriptor, is challenging to interpret. Considering that it 
is weighted by bond order and the sign of its coefficient is 
negative, it is possible to propose that molecules with more 
π electrons tend to be less active. This group has already 
attributed similar behavior in two other studies [68, 69] 
using descriptors of the same class and weighting. This 
interpretation can be attributed to a negative influence of 
the properties encoded in this descriptor on the studied com-
pounds’ hydrophobicity. If we consider the possibility of a 
similar interpretation in this study, it might be related to the 
importance of hydrophobic interactions in the active site of 
 Mpro. Most amino acid residues in the binding site exhibit 
hydrophobic characteristics [70].

Interestingly, this interpretation somewhat contradicts 
Eig08_AEA(dm), a molecular descriptor of the same class 
that is the only descriptor in the model that positively influ-
ences the activity. The weighting factor dm is the dipole 
moments of the chemical bonds in this descriptor [71]; thus, 
one can propose that the positive coefficient indicates that 
the presence of unsaturated bonds, which have higher dm, is 
positive for the activity. This relationship seems to contra-
dict Eig08_AEA(dm), but a higher number of unsaturations 
may favor the formation of charge-transfer complexes with 
aromatic rings at the binding site. In short, one can imagine 
that unsaturated bonds can be positive, but this is up to a 
certain number and size of the molecules, from which the 
activity will tend to decrease. Nevertheless, this descriptor 

is the fifth most important in the model, and the impact of 
this electronic characteristic is less relevant.

The descriptor F07[C-N] is a 2D frequency fingerprint 
descriptor. Its negative sign indicates that nitrogen in a topo-
logical distance (lag) of seven chemical bonds related to 
carbon atoms is detrimental to the activity. Indeed, it is pos-
sible to observe that compounds DS21 and DS23, the most 
potent in the dataset, do not have nitrogen in the side chain, 
while compound DS15, which is the least active and presents 
the highest value in the dataset for this descriptor, does. The 
first two have a lower number of coded lags in the descriptor 
(5 for both), reinforcing that the use of nitrogen substituents 
will likely generate less active compounds.

Sanderson’s electronegativity weights the MATS4e 
descriptor. When this property weights a topological 
descriptor, it is related to the importance of electrostatic 
interactions (i.e., hydrogen bonds) for binding the com-
pounds understudy to the binding site of interest. As in the 
case under study, the descriptor coefficient and the values 
of the descriptors are negative, indicating that descriptors 
with high values (i.e., “less negatives”) will likely favor the 
affinity of the compounds. Still, GATS7e, the least important 
descriptor of all, also has a negative signal for the coefficient 
but with a positive sign for each compound. Electronega-
tivity also weights this descriptor, but it also has a lag of 
7, so an interpretation similar to F07[C-N] can be consid-
ered in this case. This characteristic may indicate that atoms 
with higher electronegativity in the derivatives may posi-
tively influence the activity to some degree. However, this 
characteristic can be impaired by the size of the molecule, 
strengthening the proposal that hydrophobicity, along with 
the formation of aromatic-type or charge-transfer complex 
interactions, is the crucial factor for  Mpro inhibition for bicy-
cloproline derivatives.

Model validations

Although the interpretation of the model presents a reasona-
ble relationship with the  Mpro inhibition mechanism and with 
the structural variation compared to the dataset, increasing 
its reliability, the main point to be considered in a prediction 

Table 4  Definitions of the selected descriptors

Symbol Descriptor Class Autoscaled 
coefficient

Eig12_AEA(bo) Eigenvalue n. 12 from augmented edge adjacency mat. weighted by bond order Edge adjacency indices  − 0.431
Eig08_AEA(dm) Eigenvalue n. 8 from augmented edge adjacency mat. weighted by dipole moment 0.275
VE2_B(m) Average coefficient of the last eigenvector from Burden matrix weighted by mass 2D matrix-based descrip-

tors
 − 0.515

MATS4e Moran autocorrelation of lag 4 weighted by Sanderson electronegativity 2D autocorrelations  − 0.266
GATS7e Geary autocorrelation of lag 7 weighted by Sanderson electronegativity  − 0.169
F07[C-N] C-N frequency at topological distance 7 2D atom pairs  − 0.289
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model is its approval in validation procedures [72]. The 
first step corresponds to the internal validation, where the 
explained variance is assessed by analyzing the data fit 
and statistical significance of the calibration obtained. The 
predicted variance is the first test to evaluate the predic-
tive ability using leave-one-out cross-validation (LOO). 
Another OECD recommendation is to assess the robust-
ness and chance correlation [73]. Using these approaches, 
the model represented in multivariate linear regression by 
Eq. (1) was obtained (the values of the descriptors that gen-
erate the model are provided in Table 5). No outliers were 
identified, so the model can be built with the complete set, 
which is a great advantage in this study, considering the 
small number of samples. The results obtained for the inter-
nal validation parameters show that the model can explain 
and predict an adequate amount of information (89.6% and 

85.9%, respectively), which is considerably above the mini-
mum value recommended in the literature. The scaled r2

m 
metrics for internal validation are helpful to indicate whether 
there may be an error in obtaining Q2

LOO (since the high 
values of this parameter may not necessarily mean that the 
predicted values for the compounds in cross-validation are 
close to actual values) [16]. The results also showed good 
values, helping to confirm the model’s internal prediction 
ability. The F value obtained is considerably higher than the 
tabulated reference value (2.95, for p = 3, and n-p-1 = 28, 
with α = 0.05), showing that the calibration achieved is sig-
nificant. The R2-Q2

LOO difference value is well below the 
recommended minimum, indicating that the chance of the 
data overfitting is minimal. The leave-N-out test (Fig. 2a) 
(N = 8, 25% of the dataset) showed that the model is robust, 
with the average Q2

LNO being 0.852 (i.e., only 0.007 units 

Table 5  Values of selected descriptors for model 1, and the results of LOO cross validation

Compounds Eig13_EA(bo) VE2_B(m) MATS4e Eig08_EA(dm) F07[C-N] GATS7e pIC50 real pIC50 LOO Residuals

DS1 2.162 0.107  − 0.12 2.192 6 1.361 6.344 6.325 0.019
DS2 2.21 0.094  − 0.087 2.359 6 1.259 7.283 6.937 0.346
DS3 1.972 0.101  − 0.102 2.354 5 0.988 7.783 7.697 0.086
DS4 1.973 0.095 0.096 2.592 5 0.759 7.733 7.725 0.008
DS5 1.993 0.095  − 0.054 2.362 5 0.911 7.879 7.837 0.042
DS6 2.04 0.093  − 0.066 2.363 5 1.062 7.839 7.764 0.075
DS7 2.158 0.095  − 0.116 2.37 6 1.001 7.364 7.337 0.027
DS8 2.028 0.094  − 0.052 2.363 5 1.042 7.429 7.742  − 0.313
DS9 2.158 0.094  − 0.069 2.557 5 0.725 7.818 7.886  − 0.068
DS10 1.993 0.097  − 0.091 2.363 5 1.116 7.294 7.784  − 0.490
DS11 2.017 0.097  − 0.1 2.387 5 1.157 7.876 7.700 0.176
DS12 1.99 0.1  − 0.118 2.363 5 1.189 7.721 7.640 0.081
DS13 1.993 0.096  − 0.077 2.363 5 1.063 7.907 7.768 0.139
DS14 2.017 0.096  − 0.088 2.388 5 1.139 7.886 7.725 0.161
DS15 1.957 0.122  − 0.124 2.033 6 0.974 6.126 6.311  − 0.185
DS16 2.212 0.088  − 0.161 2.084 7 1.174 6.815 7.072  − 0.257
DS17 2.212 0.092  − 0.116 2.084 8 1.115 6.525 6.359 0.166
DS18 2.211 0.113  − 0.134 2.067 5 1.119 6.279 6.202 0.077
DS19 2.212 0.1  − 0.092 2.201 6 0.958 6.709 6.708 0.001
DS20 2.217 0.104  − 0.116 2.201 6 1.144 6.426 6.473  − 0.047
DS21 1.984 0.099  − 0.125 2.201 5 0.815 8.119 7.688 0.431
DS22 1.996 0.096  − 0.128 2.201 5 0.796 7.759 7.941  − 0.182
DS23 1.985 0.096  − 0.028 2.437 5 0.642 8.119 7.939 0.180
DS24 2.213 0.097  − 0.123 2.201 6 1.14 6.642 6.864  − 0.222
DS25 2.007 0.097  − 0.137 2.201 5 1.242 7.441 7.604  − 0.163
DS26 2.211 0.1  − 0.175 2.202 5 1.225 7.161 7.045 0.116
DS27 2.213 0.094  − 0.088 2.201 5 1.034 7.015 7.235  − 0.220
DS28 1.994 0.099  − 0.145 2.201 5 1.127 8.036 7.596 0.440
DS29 2.011 0.095  − 0.09 2.21 5 0.991 7.46 7.701  − 0.241
DS30 2.011 0.095  − 0.115 2.221 5 1.081 7.764 7.717 0.047
DS31 1.996 0.095  − 0.104 2.201 5 1.006 7.523 7.767  − 0.244
DS32 2.011 0.095  − 0.156 2.201 5 1.272 7.706 7.716  − 0.010
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of difference between Q2
LOO). The maximum variation was 

observed for Q2
L7O (where the standard deviation of the val-

ues obtained for the six replicates of the test at this point 
is only 0.023). The y-randomization test (Fig. 2b), on the 
other hand, showed that the model also exhibits no spurious 
correlations.

n = 32; Cumulated information: 67.411% (VL1: 41.135%; 
VL2: 17.236%; VL3: 9.041%);

(1)

pIC50 = 16.239 − 2.562∗
(

Eig12−AEA(bo)
)

− 48.672∗
(

VE2−B(m)
)

− 3.297(MATS4e) + 1.24∗
(

Eig08−AEA(dm)
)

− 0.245∗(F07[C − N]) − 0.604∗(GATS7e)

R2 = 0.896; RMSEC = 0.191; F3,28 = 80.410; Q2
LOO = 0.859; 

RMSECV = 0.221; R2-Q2
LOO = 0.037; Average_r2

m(LOO)-
scaled = 0.816; Δr2

m(LOO)-scaled = 0.101.
Model 1 has the largest structural information since this 

dataset consists of only 32 compounds. Unfortunately, the 
set under study can be considered small [49], although this is 
common in QSAR studies. In this context, Table 6 shows the 
mean values of the internal and external validation param-
eters for each of the 100 different models and 100 different 
test sets (all with ntraining = 24 and ntest = 8) and the respective 
standard deviations. All metrics adopted in this study were 
within the recommended limits (Table 2), even consider-
ing the number of test sets evaluated (and, consequently, a 

Fig. 2  Results of leave-N-out (LNO) cross-validation (A) and y-randomization (B) tests for model 1

Table 6  Average (Av) values of 
the results obtained during the 
performed internal and external 
validations with 100 different 
training and test sets

Parameter Average result Standard deviation Difference of model 1’s internal 
validation values with the means

Average values of the internal validation
Av_R2 0.901 0.021  − 0.005
Av_RMSEC 0.184 0.018 0.007
Av_F 64.450 19.580 15.960
Av_Q2

LOO 0.832 0.033 0.027
Av_RMSECV 0.240 0.021  − 0.019
Av_R2-Q2

LOO 0.069 0.019  − 0.032
Av_Average_r2

m(LOO)-scaled 0.767 0.048 0.049
Av_Δr2

m(LOO)-scaled 0.079 0.045 0.022
Average values of the external validation
Av_R2

pred 0.831 0.092
Av_RMSEP 0.228 0.051
Av_k 0.998 0.014
Av_k′ 1.001 0.014
Av_|R2

0-R2′0| 0.082 0.157
Av_ARE pred 2.911% 0.736
Av_Average_r2

m(pred)-scaled 0.721 0.151
Av_Δr2

m(pred)-scaled 0.115 0.079
Av_MAE 0.183 0.045
Av_MAE95 0.148 0.043
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greater possibility of selecting sets that would lead to poor 
results). All results also show adequate standard deviations 
regarding the numerical scale of each parameter. Minimal 
variations can also be observed between the values of the 

internal validation of model 1 and the averages of the same 
parameters. This indicates that each of the 100 different 
models generated has strong similarities with the original 
model, and this model 1 can be used for prediction purposes. 

Fig. 3  Plot of the Euclidean applicability domain (AD) analyses. The 
AD corresponds to the gray areas. The compounds with a normal-
ized mean distance > 1 are outside the AD. The compounds inside 
the small light gray rectangle near the data origin correspond to the 

dataset used for model building and consequent AD determination. 
The remaining compounds (1 to 2694) correspond to the composites 
obtained in the first stage of the virtual screening (without removal of 
duplicates)

Fig. 4  BOILED-egg plot for 
gastrointestinal tract absorption 
and brain permeation prediction 
of the 44 selected compounds 
after drug-likeness and lead-
likeness evaluations
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This is desirable in a situation like this, with a dataset with 
few compounds, since a model formed by all samples will 
encode as much structural information as possible. Thus, its 
AD will also be as broad as possible within the limitations 
imposed by the set size of such a study. Another information 
that can be obtained from this test is that, considering the 
minimal variation obtained in the mean parameters of the 
internal validations, the robustness property of model 1 is 
strengthened.

Virtual screening by 2D similarity

A set of 2694 hits with a similarity greater than 0.5 to the 
structure used for the search was initially obtained through 
the approach selected for this study (Fig. 1). The SMILES 
strings of the complete set of hits were used to calculate the 
same descriptors as the model in Dragon 6. This approach 
enabled the calculation of the Euclidean AD, shown in 

Fig. 3. After identification and removal of duplicates, only 
423 compounds (15.7%) were within the AD.

Next, the SMILES strings of these compounds were fil-
tered using algorithms available in VEGA QSAR software. 
Those compounds with any of the three selected toxicities 
predicted as possible were removed from the set, leaving 130 
hits (4.82% of the original set). However, it is important to 
note that even if a compound synthesized or obtained by vir-
tual screening shows undesirable toxicity profiles or biological 
activity in any test (in silico or experimental), its properties 
can be optimized by molecular modifications. This possibil-
ity fits the objectives of this work, which involves identifying 
new scaffolds that can originate, in further studies, new  Mpro 
inhibitors. Naturally, using a scaffold as a starting point that 
does not present toxic properties either (after confirmation by 
experimental tests) increases the chances of obtaining com-
pounds with a low toxicity profile, which, at some point, may 
give rise to new therapeutically useful drugs.

Fig. 5  Structures of the five-
hit compounds were selected 
as the most promising at the 
end of the study. ConsLogP 
arithmetic mean of five different 
LogP prediction methodologies 
(including WLogP) available 
in SwisADME, SA synthetic 
accessibility, CCSigma “By 
Click Chemistry from Sigma 
Aldrich” library
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Table 7  Structures (SMILES format) and molecular descriptors of the selected compounds

Hit NAME Eig12_EA(bo) VE2_B(m) MATS4e Eig08_EA(dm) F07[C-N] GATS7e pIC50 pred

1 CC(NC(= O)C1CCN(CC1)C(= O)
[C@H]1C[C@H]2[C@@H](N1)CCCC2)C

0.658 0.17  − 0.116 1.611 4 0.673 6.273

2 CC(NC(= O)C1CCN(CC1)C(= O)
[C@@H]1C[C@@H]2[C@@H](N1)CCCC2)C

0.658 0.17  − 0.116 1.611 4 0.673 6.273

3 O = C([C@H]1NCC2(C1)CCNCC2)N1CCN(CC1)
c1ccccc1

0.86 0.139  − 0.082 1.225 4 1.216 6.345

4 O = C([C@H]1CCCN1C(= O)C(C)(C)C)
N[C@H]1CCN(C1)C1CC1

0.273 0.155  − 0.188 1.278 4 1.444 7.348

5 O = C([C@H]1NCC2(C1)CCNCC2)
NC(CC1Cc2c(C1)cccc2)(C)C

0.987 0.104 0.036 1.82 4 1.593 7.844

6 O = C(N[C@]1(C)[C@@H]2CC[C@H](C1(C)C)
C2)CNCCN1CCCC1

0.438 0.153  − 0.034 0.983 4 1.245 6.269

7 O = C(C1NCC2(C1)CCNCC2)NC(CC1Cc2c(C1)
cccc2)(C)C

0.987 0.104 0.036 1.82 4 1.593 7.844

8 CC(NC(= O)C1CCN(CC1)C(= O)
[C@@H]1C[C@H]2[C@@H](N1)CCCC2)C

0.658 0.17  − 0.116 1.611 4 0.673 6.273

9 CN1CCC(CC1)CN(C(= O)CN1CCCCC1)CCc1c-
cccc1

1.04 0.12 0.003 1.535 6 1.473 6.268

10 CN1CC2(C[C@@H]1C(= O)NC1CCN(CC1)Cc1c-
cccc1)CCNCC2

1.368 0.115 0.021 1.519 3 0.985 6.621

11 O = C(N(C1CCCC1)CC1CCN(CC1)CCc1ccccc1C)
[C@@H]1CCCN1

1.628 0.103  − 0.059 1.641 6 0.862 6.294

12 Clc1ccc(cc1)CN1CC2(CC1 = O)CCN(CC2)C(= O)
[C@@H]1CCCN1

1.363 0.119  − 0.109 1.943 4 0.771 7.278

13 NC(= N)NCCCC1NC(= O)C2N(C1 = O)CCC2 0 0.185  − 0.221 1.115 5 0.696 6.701
14 CC(N1CCNCC1)C(= O)NCCC1CCC CCC C1 0.255 0.167  − 0.044 1.216 4 1.443 6.259
15 [H][C@@]12C[C@]1([H])N([C@@H](C2)C#N)

C(= O)[C@@H](N)C1CCN(CC1)C(= O)C(C)
(C)C

0.576 0.177  − 0.238 2.118 6 0.394 6.851

16 CC(C)[C@H](N)C(= O)N1CCC[C@H]1C(= O)
NCC1 = CC = CC = C1

0.5 0.147  − 0.182 1.129 5 1.044 6.948

17 CCN1CCC[C@H]1C(= O)NCC1CCN(CC1)C(= O)
C(C)C

0.236 0.174  − 0.195 1.198 4 0.81 6.825

18 CCN1CCC[C@H]1C(= O)N(C)CC1CCN(CC(C)
C)CC1

0.188 0.171  − 0.074 1.178 4 0.866 6.636

19 C[C@]1(CCCN1)C(= O)NCC1CCN(CC1)
C1CCCC1

0.214 0.159  − 0.153 1.077 5 1.008 6.958

20 C[C@]1(CCCN1)C(= O)NCC1CCN(CC1)C(= O)
C1CC1

0.217 0.173  − 0.273 1.177 4 0.872 7.116

21 CCN1CCC[C@H]1C(= O)N1CCC(CC1)C(= O)NC 0.153 0.189  − 0.04 1.179 5 0.237 6.734
22 CCN1CCC[C@H]1C(= O)N1CCC(CC1)C(= O)

N(C)C
0 0.197  − 0.204 1.179 2 0.343 7.088

23 CCN1CCC[C@H]1C(= O)N1CCC(CC1)C(= O)N 0.153 0.189  − 0.04 1.179 5 0.237 6.251
24 CCN1CCC[C@H]1C(= O)N1CCC(C)(CC1)C(= O)

N
0 0.193  − 0.171 1.077 3 0.508 6.703

25 CCN(CC)[C@H]1CC[C@@H](CC1)NC(= O)
[C@]1(C)CCCN1

0.184 0.177  − 0.157 0.803 4 0.608 6.319

26 CCN(CC)CCC[C@@H](C)NC(= O)
[C@H]1CCCN1C(= O)C

0.386 0.164  − 0.053 1.117 4 0.721 6.412

27 CCN(CC)CCC[C@@H](C)NC(= O)
[C@@H]1CCCN1C(= O)C

0.386 0.164  − 0.053 1.117 4 0.721 6.412

28 CCN(CC)C1CCC(CC1)NC(= O)[C@]1(C)CCCN1 0.184 0.177  − 0.157 0.803 4 0.608 6.319
29 CC1(CCN(CC1)C(= O)[C@H]1CCCN1)C(= O)N  − 0.239 0.208  − 0.221 0.803 3 0.569 6.373
30 CC1(CCN(CC1)C(= O)[C@@H]1CCCN1)C(= O)N  − 0.239 0.208  − 0.221 0.803 3 0.569 6.373
31 CC(C)(C)NC(= O)C1CCN(CC1)C(= O)[C@]1(C)

CCCN1
0 0.19  − 0.111 1.077 5 0.219 6.335
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Subsequently, the hits had their activities predicted using 
model 1. Of these, 44 hits (1.63%) showed values within the 
biological activity range (6.12 <  pIC50 < 8.12). For this rea-
son, removing these compounds from the set was necessary. 
The SMILES strings, descriptors, and predicted activities 
of these 44 hits are shown in Table 7. Since results outside 
the biological activity range are derived from extrapolation, 
they are less reliable.

Finally, using SwissADME [60], physicochemical prop-
erties and ADME predictions of the 44 compounds were 
obtained. All these hits passed the drug-likeness rules of 
Lipinski [74], one of the most widely used approaches, and 
Veber [75]. On the other hand, five compounds (3, 13, 23, 
29, and 30) showed a violation of Ghose’s rules [76] (all 
with WLOGP <  − 0.4), and nine (36 to 44) showed a viola-
tion of any of Muegge’s rules [77]. In addition, 20 com-
pounds (5, 7, 9 to 12, 14, 26, 27, 29, 30, and 36 to 44) vio-
lated one or more of Teague’s lead likeness rules [78]. Of 
the total, 21 compounds passed all criteria.

Figure 4 shows the Egan BOILED-Egg plot of the 44 
hits (Table 5). This approach aids in evaluating the predic-
tion of gastrointestinal absorption (HIA) and brain pen-
etration or accessibility (BBB) of the hits under study. 
The yellow field corresponds to the molecules that pre-
sent hydrophobicity (expressed by the WLogP algorithm) 
and polarity (represented by the topological polar surface 
area, TPSA), which allow them to present good HIA and 
BBB. In contrast, the white field corresponds to those 
molecules with only good HIA [60]. The predicted mol-
ecules as potential substrates of P-gp (PGP +) are shown as 
blue dots, while those predicted as non-substrates (PGP-) 
are shown as red dots [60]. It can be seen that while all 

compounds show good HIA and can be passively absorbed 
by the gastrointestinal tract, only compounds 2, 5, 6, 7, 
10, 11, 12, 13, 15, 18, 19, 20, 26, 27, 33, 39, 41, and 43 
have the same property for the blood–brain barrier (BBB) 
characteristic. However, only 1, 5, 6, 10, 11, 12, 17, 19, 26, 
32, 40, and 42 were predicted as PGP + ; i.e., they can be 
eliminated from the interior of the central nervous system 
(CNS) more efficiently, a desirable effect for drugs that 
are not intended to act in the CNS, decreasing the risk of 
neurotoxicity. In addition, compounds with this charac-
teristic have a more significant potential to be distributed 
throughout the body [60].

Of these 12 compounds, only 1, 6, 17, 19, and 32 (Fig. 5) 
are among those that did not violate any rules of drug-likeness 
or lead-likeness. Moreover, while this point does not lead to 
a mandatory elimination of the remaining hits, particularly 
since the properties responsible for each violation can be opti-
mized via structural modifications (the same being true for 
potential toxic effects), the five selected can be considered 
the most promising. These five compounds were also not pre-
dicted to be inhibitors of common CYP450 isoforms (1A2, 
2C19, 2C9, 2D6, and 3A4), indicating that they are at low risk 
of triggering hepatotoxicity [79]. None showed PAINS and 
BRENK structural toxicity alerts [80, 81]. Finally, considering 
that the approach indicating the degree of synthetic acces-
sibility ranges from 1 (very easy) to 10 (very difficult), all 
hits show a good score for this characteristic, with 17 stand-
ing out. Therefore, these five hits were selected as the main 
candidates to be submitted to the inhibition assay of Mpro of 
SARS-CoV-2 to confirm the presence of activity and, conse-
quently, their usefulness as new scaffolds for design of new 
antiviral agents.

Table 7  (continued)

Hit NAME Eig12_EA(bo) VE2_B(m) MATS4e Eig08_EA(dm) F07[C-N] GATS7e pIC50 pred

32 O = C([C@H]1CCCN1)N1CCC(CCN2CCCCC2)
CC1

0.306 0.171  − 0.057 1.077 4 0.547 6.345

33 O = C([C@H]1CCCN1)N1CCC(CCN2CCCC2)CC1 0.093 0.174  − 0.044 1.077 4 0.552 6.699

34 O = C([C@@H]1CCCN1)N1CCC(CCN2CCCCC2)
CC1

0.306 0.171  − 0.057 1.077 4 0.547 6.345

35 O = C([C@@H]1CCCN1)N1CCC(CCN2CCCC2)
CC1

0.306 0.171  − 0.057 1.077 4 0.547 6.699

36 O = C(NCC1CC1)[C@H]1CCCN1  − 1 0.232  − 0.203  − 0.527 0 0.404 6.281
37 O = C(NCC1CC1)[C@@H]1CCCN1  − 1 0.232  − 0.203  − 0.527 0 0.404 6.281
38 O = C(NC1CCCC1)[C@H]1CCCN1  − 0.785 0.226  − 0.081 0.301 0 0.361 6.673
39 O = C(NC1CCCC1)[C@@H]1CCCN1  − 0.785 0.226  − 0.081 0.301 0 0.361 6.673
40 C[C@]1(CCCN1)C(= O)NCC1CCC1  − 0.764 0.225  − 0.231 0 1 0.836 6.257
41 C[C@]1(CCCN1)C(= O)NCC1CC1  − 0.823 0.22  − 0.278  − 0.527 0 0.406 6.658
42 C[C@]1(CCCN1)C(= O)NC1CCCC1  − 0.618 0.213  − 0.175 0.322 0 0.328 7.233
43 C[C@]1(CCCN1)C(= O)NC1CCC1  − 0.958 0.243  − 0.208 0 0 0.221 6.418
44 C[C@]1(CCCN1)C(= O)N1CCCCC1  − 0.688 0.227  − 0.216  − 0.172 0 0.198 6.332
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Conclusion

In this study, QSAR and virtual screening studies, based 
only on 2D structures and molecular descriptors derived 
from SMILES strings, were performed based on a set 
of bicycloproline derivatives described as inhibitors of 
SARS-CoV-2 Mpro. The adopted internal and external 
validation metrics indicated that the obtained model is 
significant, robust, does not show chance correlation, and 
has good external predictability. This allowed this model 
to be used as a support tool for the virtual screening 
stage, helping to identify a set of 44 hits, where five (1, 
6, 17, 19, and 32) stood out as the most promising (con-
sidering the combination of several parameters related 
to reliability of predicted activities, toxicity, drug, and 
lead-likeness) to be used as new scaffolds in the design of 
new antiviral agents. Further assay studies will confirm 
whether each hit is indeed capable of inhibiting  Mpro. If 
this is confirmed, structural optimization is expected to 
lead to developing new classes of anti-COVID-19 agents 
with potential therapeutic use. The obtained QSAR 
model could also be helpful as a support tool for synthe-
sizing the new derivatives.
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