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Coronavirus disease 2019 (COVID-19) is a highly prothrombotic viral infection that
primarily manifests as an acute respiratory syndrome. However, critically ill COVID-19
patients will often develop venous thromboembolism with associated increases in
morbidity and mortality. The cause for this prothrombotic state is unclear but is likely
related to platelet hyperactivation. In this review, we summarize the current evidence
surrounding COVID-19 thrombosis and platelet hyperactivation. We highlight the fact that
several studies have identified a soluble factor in COVID-19 patient plasma that is capable
of altering platelet phenotype in vitro. Furthermore, this soluble factor appears to be an
immune complex, which may be composed of COVID-19 Spike protein and related
antibodies. We suggest that these Spike-specific immune complexes contribute to
COVID-19 platelet activation and thrombosis in a manner similar to heparin-induced
thrombocytopenia. Understanding this underlying pathobiology will be critical for
advancement of future research and therapeutic options.

Keywords: COVID-19, platelet, antigen-antibody complex, immune complex, thrombosis, thrombocytopenia,
heparin, VITT
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (1, 2). It has resulted in a global pandemic
and is characterized by a highly inflammatory and prothrombotic state. Pulmonary involvement is
the primary clinical manifestation but subsequent multi-organ failure and death can occur in severe
cases (3–5). The prevalence of COVID-19 thromboembolism is quite variable across studies but
appears to be highest in the critical care population, where estimates range from 20-65% (5–9).
These can be both arterial and venous thromboses, making COVID-19 a unique prothrombotic
state. Although the exact mechanisms underlying thrombosis are likely multifactorial, mounting
evidence suggests that platelets play a crucial role.

Platelets have long been known to function as mediators of thrombosis and hemostasis but have only
recently gained recognition in their role as immune mediators (10, 11). These anucleate cells mediate
various immune related roles throughout the body, from antigen presentation to immune complex
signaling. Of particular interest is their role in viral infection, where platelets are able to internalize and
degrade pathogen as well as release soluble immune mediators (12). This likely contributes to their
org March 2022 | Volume 13 | Article 8079341
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important role in COVID-19 and explains, at least in part, how
platelet hyperactivation increases thrombotic risk.

In this review, we summarize the general thrombotic nature
of COVID-19 and the importance of understanding this process
in regards to therapeutic options. Subsequently, we review
platelet physiology and their current recognized functions as
immune cells. We also review platelet activation in heparin-
induced thrombocytopenia (HIT) and how this parallels platelet
activity in COVID-19. Finally, we discuss the novel entity of
vaccine-induced thrombotic thrombocytopenia (VITT) and the
role of platelets in this unique COVID-19 associated disorder.
COVID-19 AND THROMBOSIS

COVID-19 is a severe viral infection that was identified in
Wuhan, China in late 2019. It initially presents as a respiratory
tract infection, including fever, dyspnea, and myalgias, but can
rapidly progress to a more severe form (1). These critically ill
COVID-19 patients are characterized by excess inflammation
and a prothrombotic state. COVID-19 thrombosis features both
arterial and venous thromboembolic events, often with
concomitant thrombocytopenia (7, 13). In one retrospective
study of 1476 hospitalized COVID-19 patients, 20.7% were
found to have thrombocytopenia (where 125 x 109/L was the
lower limit of normal) (14). The degree of thrombocytopenia has
also been shown to independently associate with mortality
outcomes, suggesting that platelet activation plays an
important role in disease severity (14).

Thrombosis is particularly prevalent amongst critically ill
COVID-19 patients, with some studies identifying deep vein
thrombosis in up to 79% of patients through ultrasound
screening (9). Unusual thrombi are also more prevalent
amongst COVID-19 patients, including ischemic stroke, limb
ischemia, and aortic thrombi (15). Up to 27.6% of
thromboembolic events in critically ill patients occur even in
the setting of prophylactic anticoagulation, emphasizing the
extreme nature of this thrombotic state (16). Therapeutic
dosing of anticoagulation may thus be required in COVID-19
hospitalized patients.

This observation has resulted in several randomized clinical
trials demonstrating a benefit of therapeutic-dose low molecular
weight heparin in hospitalized COVID-19 patients. In the
ATTACC, ACTIV-4a, and REMAP-CAP multi-platform trial,
therapeutic doses of heparin increased the probability of organ
support-free days in non-critically ill patients (odds ratio 1.27,
95% credible interval 1.03-1.58) (17). However, there was no
significant benefit for survival until hospital discharge, although
there was a trend towards benefit (adjusted odds ratio 1.21, 95%
credible interval 0.87-1.68). Interestingly, the RAPID trial did
demonstrate a significant mortality benefit from therapeutic
heparin in hospitalized, non-critically ill patients (odds ratio
0.22, 95% confidence interval 0.07-0.65) (18). Therefore,
therapeutic anticoagulation is likely to benefit COVID-19
patients who are hospitalized without critical illness. It should
be noted, however, that therapeutic anticoagulation showed no
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benefit to mortality or reduced organ support in critically ill
COVID-19 patients (19). It may be that anticoagulation in these
patients was introduced at an overly advanced stage of disease.
Nonetheless, it implies that critically ill patients differ
significantly in their underlying physiology and require
unique therapies.
PLATELETS AND THEIR ROLE AS
IMMUNE CELLS

Prior to delving into platelet activation in COVID-19, it is
important to gain a basic understanding of how platelet
synthesis and function are intimately related to immunity.
Platelets are produced in the bone marrow from progenitor
cells, termed megakaryocytes, through a complex process of
hematopoietic stem cell differentiation (20). Their production
is primarily driven by the cytokine mediator, thrombopoietin
(TPO), which is synthesized by both the liver and kidneys. TPO
is known to be upregulated by inflammatory cytokines, such as
IL-6, and contributes to the rapid platelet production seen with
inflammation (21). This is secondary to a subgroup of “pre-
differentiated” stem cells that are biased towards the
megakaryocyte lineage and rapidly differentiate on TPO
exposure (22–24). The hematopoietic system is thus efficiently
designed to produce platelets in the context of infection,
suggesting an important role in immunity.

Once released into circulation, platelets are equipped with
various intracellular materials (over 300) to mediate their effector
functions (25). These include inflammatory cytokines (e.g. IL-
1b), procoagulant factors (tissue factor, serotonin), and
angiostatic molecules (platelet-factor 4/PF4) (26–28). These
molecules are released upon platelet activation, which is
mediated through various cell surface receptors. Many of these
cell surface receptors also contribute to immune cell interaction
and function. For example, the GPIb receptor is normally
involved in platelet adhesion at sites of vascular injury through
von Willebrand factor binding. However, GPIb is also capable of
binding to von Willebrand factor exposed on immune cells
infected with bacterial pathogen, such as hepatic Kupffer cells
(29). It has been shown in a mouse model that this interaction is
crucial for platelet aggregation around infected cells and host
survival. P-selectin is another platelet surface receptor that is
known to be upregulated with platelet activation. It is capable of
binding to leukocytes through the P-selectin glycoprotein ligand-
1 to mediate intracellular leukocyte signaling and neutrophil
rolling (30–32). This process is crucial for leukocyte mobilization
and concentration at sites of infection. Indeed, the P-selectin
dependent interaction between neutrophils and platelets has
been shown to contribute to acute lung injury in mouse
models (33, 34). Platelet depletion or P-selectin inhibition both
reduced subsequent neutrophil recruitment and lung injury.
Platelets are thus equipped, through both intracellular and cell
surface proteins, to mediate various immune functions. These
interactions may contribute to the lung pathology seen in
COVID-19 through immune cell recruitment.
March 2022 | Volume 13 | Article 807934
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IMMUNE COMPLEXES ARE CAPABLE OF
PLATELET ACTIVATION

Immune complexes are important initial defenses against
pathogen infection and are formed from antibody binding to
soluble antigen. They often consist of immunoglobulins (Ig) of
the IgG or IgM type but can also be IgA (35, 36). Immune
complexes primarily mediate function through binding to cell
surface receptors found on various cell types, including platelets.
Most binding occurs through the Fcg receptors II (FcgRII) and
III, which are either activating (a) or inhibiting (b), respectively
(35). Platelets contain only one Fc receptor (FcgRIIa) on their
surface and thus are able to bind IgG-specific immune complexes
(37). Immune complex binding to the platelet receptor leads to
subsequent activation and release of intracellular molecules such
as serotonin. This promotes a prothrombotic state and has been
implicated in various autoimmune conditions. The most well-
characterized platelet-mediated immune complex disorder is
heparin-induced thrombocytopenia (HIT) (38, 39).

HIT is a prothrombotic autoimmune disorder characterized by
the presence of thrombocytopenia (low platelets) and thrombosis
that shares many features with COVID-19. It most commonly
presents in hospitalized patients who are receiving unfractionated
heparin anticoagulationand is characterizedbyantibodies targeting
platelet factor 4 (PF4)-heparin complexes (39). PF4 is a positively
charged protein released from platelets that is capable of binding
negatively charged molecules, such as heparin (40). Certain
individuals develop anti-PF4/heparin IgG antibodies that form
immune complexes. These immune complexes activate the
FcgRIIa on platelets resulting in thrombocytopenia that is often
accompanied by thrombosis, which is secondary to the release of
serotonin and other procoagulant platelet microparticles.
Circulating anti-PF4/heparin antibodies can be found in up to
50% of patients exposed to heparin (41, 42). However, only a
minority of these will be functional and lead to disease
presentation. This is secondary to the unique epitope specificity
required for immune complex formation and platelet activation
(43). Therefore, it is important to use functional platelet activation
assays to diagnose HIT.

One of the international reference assays for diagnosing HIT,
developed at our institution, is the serotonin release assay (SRA).
Briefly, platelets fromhealthydonors are incubatedwith radioactive
14C-serotonin allowing uptake into platelets. These modified
platelets are subsequently exposed to patient plasma, in the
presence and absence of heparin, which allows formation of anti-
PF4/heparin immune complexes (44). These immune complexes
subsequently activate platelets through the FcgRIIa leading to
release of 14C-serotonin, which is then measured by beta
radioactivity. The addition of exogenous heparin is vital for this
activation in HIT to facilitate formation of appropriate antigen
complexes. However, certain samples tested in the SRA forHITwill
demonstrate heparin-independent platelet activation (45). This is
inconsistent with a diagnosis of classical HIT, meaning that the
assay may detect additional mechanisms of platelet activation.
Therefore, the SRA can be modified to study platelet
hyperactivation innovel diseases, suchasCOVID-19 (seeFigure1).
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PLATELETS ARE HYPERACTIVATED IN
CRITICALLY ILL COVID-19 PATIENTS

To this point, many studies have confirmed that platelets in
COVID-19 patients display a hyperactivated phenotype with
altered gene expression. In a cohort of 115 COVID-19 patients,
featuring both non-severe and severe disease, platelets secreted
increased IL-1beta and soluble CD40 ligand compared to healthy
controls (46). Furthermore, circulating levels of serotonin and PF4
were increased in patient serum, suggesting platelet degranulation.
Common cell markers of platelet activation, including P-selectin
and CD63, are also increased in critically ill COVID-19 patients, but
not those with mild disease (47). Platelets from critically ill COVID-
19 patients also demonstrated increased markers of apoptosis, such
as phosphatidylserine externalization and cleaved-caspase 9, which
correlate with thromboembolic events (48). In addition to platelet
activation, there is evidence of unique transcriptome changes that
occur in platelets fromCOVID-19 patients. Using RNA-seq analysis
on platelets from 10 COVID-19 patients, Manne et al. demonstrated
significant upregulation of genes involved in antigen presentation
(49). Platelets are thus significantly altered to a more active
phenotype in COVID-19, particularly in critically ill patients, and
may contribute to clinical presentation.

One mechanism by which platelets may contribute to COVID-
19 presentation is through neutrophil recruitment and aggregation.
As previously noted, platelet P-selectin is able to bind neutrophil
ligands to induce rolling and aggregation at sites of activation (50).
This interaction can lead to prothrombotic platelet-neutrophil
aggregates as well as the formation of neutrophil extracellular
traps. For example, plasma from hospitalized COVID-19 patients
demonstrates increased circulating platelet-neutrophil aggregates
onflowcytometry compared tohealthy controls (51). Furthermore,
autopsies in COVID-19 patients confirm the presence of
microvascular thrombi consisting of neutrophil extracellular traps
and platelets (52, 53). These platelet-neutrophil interactions are
more prominent in critically ill COVID-19 patients, where there is
evidence of a hyperactivated platelet phenotype (52, 54). Therefore,
hyperactivated platelets inCOVID-19 also contribute to neutrophil
activation, which fuels the thrombo-inflammatory milieu.

It is still unclear as to what triggers such drastic platelet changes
in critically ill patients. Some have hypothesized that SARS-CoV-2
directly interacts with platelets to mediate these observed effects.
Evidence for this is supported by the presence of viral RNA in
platelets of infected individuals, although this is only seen in up to
24% of patients (46, 49, 55). However, aside from a single study (55),
multiple studies have failed to demonstrate ACE2 expression on the
platelet surface or evidence of ACE2 RNA in platelets (46, 49). The
cause of this discrepancy is unclear and may be related to different
techniques for platelet isolation (56). Regardless, SARS-CoV-2 RNA
has been consistently found within platelets and thus suggests that
ACE2-independent mechanisms of entry exist. Interestingly, when
critically ill COVID-19 patient plasma is incubated with platelets
from healthy volunteers, there is a similar increase in platelet
activation markers (P-selectin, CD63) (47). While circulating virus
may account for this change as well, other soluble mediators should
be considered.
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THE “COVID COMPLEX” – IMMUNE
COMPLEX MEDIATED
PLATELET ACTIVATION
Immune complexes are one potential circulating factor that could
contribute to platelet activation in COVID-19. As previously
mentioned, immune complexes activate platelets through the
FcgRIIa and may be formed from antibodies against self or
exogenous antigens. Viral illnesses are well documented to
produce ant ibod ies aga ins t se l f -ant igens , such as
antiphospholipid antibodies, through a process called molecular
mimicry. Early reports in COVID-19 patients highlighted the
presence of these antibodies in association with thrombosis,
including anti-beta-2 glycoprotein and non-specific inhibitor
(57–59). Injection of the serum IgG fraction from these patients
Frontiers in Immunology | www.frontiersin.org 4
into mice resulted in significantly increased thrombus formation
compared to controls (59). However, this thrombus formation was
also seen with COVID-19 patient serum that had low levels of
antiphospholipid antibodies. This suggests that antiphospholipid
antibodies are not the sole antibodies associated with this
prothrombotic state.

Another potential hypothesis is that HIT antibodies are
contributing to the IgG-mediated platelet activation seen in
COVID-19 patients. This is supported by the observations that
COVID-19 and HIT share many clinical similarities; COVID-19
patients are often exposed to heparin in the context of
hospitalization; and a high proportion of COVID-19 patients
test positive for anti-PF4/heparin antibodies on further testing
(60, 61). However, in a cohort of ten critically ill COVID-19
patients with high suspicion of HIT, we found no evidence of
A

B

C

FIGURE 1 | Platelet activation mechanisms and assay patterns in various thrombotic-thrombocytopenic syndromes. Patients who present with evidence of thrombosis
(arterial or venous) and thrombocytopenia should be considered for hematology referral and specialized testing for platelet activation disorders. These can include heparin-
induced thrombocytopenia (HIT, A), COVID-19-related platelet activation (B), and vaccine-induced thrombotic thrombocytopenia (VITT, C). The suspected platelet
activation disorder will depend on the clinical context and known exposure to antigen (e.g. heparin, SARS-CoV-2, or adenovirus-based COVID-19 vaccine). Each of these
disorders is characterized by platelet activation through the FcgRIIa via unique immune complexes. These include: anti-PF4/heparin (HIT), unidentified immune complexes
(COVID-19), or anti-PF4 (VITT). Serum testing from patients will also feature unique platelet activation schemas in functional activation assays, such as the serotonin
release assay (examples shown on the right). In the classic HIT-SRA (top right), addition of exogenous UFH significantly increases immune complex formation and platelet
activation, which is inhibited by IV.3. Contrastingly, UFH inhibits immune complex formation in COVID-19 and VITT thrombotic patients. Instead, alternate antigens (Spike
protein and PF4, respectively) are required for significant platelet activation. Dashed lined represents 20% platelet activation, which is the positive cut-off for the SRA.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jevtic and Nazy Platelet Activation in COVID-19
platelet-activating HIT antibodies, which has been replicated by
others (61, 62). Interestingly, six of these samples were able to
activate platelets in the serotonin release assay in the absence of
heparin. This activation was inhibited by IV.3, an FcgRIIa
inhibitor, thus confirming immune complex mediated platelet
activation. Furthermore, all patients with platelet activation also
contained anti-Spike IgG antibodies targeting SARS-CoV-2. It is
plausible that Spike-specific IgG antibodies bind circulating
Spike protein in viremic, critically ill patients to form platelet-
activating immune complexes. This mechanism has previously
been shown to occur with H1N1 influenza virus whereby
influenza antibodies bind to virus to form immune complexes
(63). These immune complexes activate platelets through the
FcgRIIa and likely contribute to the pulmonary thrombosis seen
with H1N1 infection (64). Most recently, one in vitro study
confirmed that recombinant anti-Spike IgG is able to activate
platelets through the FcgRIIa (65). This was determined through
in vitro thrombus measurement using microfluidic flow chips and
confocal microscopy. Thrombus formation only occurred in the
presence of Spike protein and an “inflammatory signal” (von
Willebrand factor in this study). Interestingly, anti-Spike IgG and
Spike protein alone did not lead to significant thrombus formation.
How exactly von Willebrand factor interacts to promote platelet
activation is unclear but may be through facilitating platelet
aggregation. Glycosylation status of anti-Spike IgG was also
found to be a significant factor in the ability of these complexes to
activate platelets. Therefore, certain anti-Spike IgG activate platelets
in the context of COVID-19 infection, but this remains to be
validated in the clinical context.
VACCINE INDUCED THROMBOTIC
THROMBOCYTOPENIA (VITT)

It would be remiss to avoid a discussion of vaccine-induced
thrombotic thrombocytopenia (VITT) in the context of platelet
activation and COVID-19. Although this platelet activation is not
directly related to SARS-CoV-2 viral infection, it has important
clinical and public health implications. VITT is a novel, “drug”
related disorder attributed to vaccination by adenoviral vector-
based SARS-CoV-2 vaccines. This primarily includes the ChAd-
Ox1 (produced by AstraZeneca) and Ad26.COV2.S (Johnson and
Johnson) vaccines. VITT was first described in eleven patients,
predominantly female, who presented with unusual thromboses
(cerebral venous sinus thrombosis, splanchnic-vein thrombosis)
and thrombocytopenia (66). Patients often present a median of 14
days fromvaccination and can be critically ill – estimatedmortality is
22% in one cohort of 220 VITT cases (67). This mortality is
significantly reduced from initial reports (55%), likely due to a
combination of increased recognition and better treatment
implementation (66). Given the parallels to HIT, it was
hypothesized that similar platelet activating antibodies may be the
underlying cause. This proved to be the case, with all patients
featuring high titers of anti-PF4/heparin antibodies that were able
to activate platelets in functional assays (66). Interestingly, these
antibodies did not require the presence of heparin to form immune
complexesand thusareable to targetPF4 independently (i.e. anti-PF4
Frontiers in Immunology | www.frontiersin.org 5
antibodies). The binding site for these antibodies is located in the
heparin-binding site on PF4, as shown by alanine-scanning
mutagenesis, thus allowing them to form tetrameric immune
complexes and activate platelets through FcgRIIa (68). This
competitive binding to the heparin site likely explains why heparin
inhibits VITT platelet activation in vitro (unlike in HIT, where
heparin facilitates activation; see Figure 1). As previously
mentioned, anti-PF4/heparin antibodies do not appear to be
responsible for the thrombosis and platelet activation seen in
COVID-19. In a cohort of 222 COVID-19 patients with
thrombosis, only nineteen (8.6%) tested positive for anti-PF4/
heparin antibodies (69). None of these were able to activate
platelets in the functional platelet assay. Therefore, anti-PF4
antibodies are likely not responsible for the thrombosis seen in
COVID-19 patients and do not demonstrate cross reactivity with
the Spike protein. This understanding is important for future vaccine
development and management of these rare cases.
SUMMARY

AlthoughthefieldofCOVID-19 thrombosis is in its infancy, there is
sufficient evidence to support a major role for platelets in disease
pathogenesis. Platelets have been shown to be hyperactivated in
critically ill patients and secrete excessive procoagulant molecules.
Furthermore, they are able to interact with other immune cells to
mediate the immune response. However, this excess inflammation
may also contribute to tissue damage and ultimately, mortality.
Targeting these pathways in order to dampen the excess immune
response may thus present attractive therapeutic targets.

Immune complexes also appear to contribute significantly to
these platelet changes in a manner similar to HIT and other
immune-complex mediated disorders. The antigen specificity
and additional characteristics of these immune complexes
remain to be determined but will be crucial to the
development of therapeutic targets. Identifying the specific
antibodies involved may also allow clinicians to risk stratify
patients who are at high risk of severe disease or thrombosis, thus
offering the potential for prophylactic anticoagulation.
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