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Abstract: Low-contrast or uneven illumination in real-world images will cause a loss of details
and increase the difficulty of pattern recognition. An automatic image illumination perception and
adaptive correction algorithm, termed as GLAGC, is proposed in this paper. Based on Retinex theory,
the illumination of an image is extracted through the discrete wavelet transform. Two features that
characterize the image illuminance are creatively designed. The first feature is the spatial luminance
distribution feature, which is applied to the adaptive gamma correction of local uneven lighting. The
other feature is the global statistical luminance feature. Through a training set containing images
with various illuminance conditions, the relationship between the image exposure level and the
feature is estimated under the maximum entropy criterion. It is used to perform adaptive gamma
correction on global low illumination. Moreover, smoothness preservation is performed in the
high-frequency subband to preserve edge smoothness. To eliminate low-illumination noise after
wavelet reconstruction, the adaptive stabilization factor is derived. Experimental results demonstrate
the effectiveness of the proposed algorithm. By comparison, the proposed method yields comparable
or better results than the state-of-art methods in terms of efficiency and quality.

Keywords: adaptive gamma correction; image illumination correction; wavelet transforms; image
enhancement; illumination perception

1. Introduction

Uneven or insufficient illumination will cause the contrast of an image to be too low,
making it difficult to observe the details of the image. We usually pursue for the enhance-
ment results that local variation is obvious while the global variation is in accordance with
the original intensity, which is denoted as naturalness preservation. Researchers have
proposed many enhancement methods to make these images have a more pleasing visual
effect or to obtain high-visibility effects.

Pixel modulation schemes, such as statistics-based method histogram equalization
(HE), directly adjust the pixel intensity of the image to achieve enhancement. This kind of
method may cause artifacts and the loss of naturalness. The nonlinear gamma correction
approach uses different mapping curves to achieve excellent performance in complex
lighting conditions [1], but the parameters need manual design with prior knowledge, and
the spatial information is not considered [2] when operating on each pixel.

Converting pixel information to other domains can yield more internal information of
the image, such as discrete Fourier transform, discrete cosine transform (DCT), and discrete
wavelet transform (DWT). These solutions achieve effects through filters in the frequency
domain and reconstruction in the spatial domain, such as homomorphic filtering, which
may result in the loss of potentially useful visual cues [3].
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To conduct an analysis from the perspective of the image physical process, Retinex
theory is proposed to simulate the relationship between the illumination component and
the reflection component of an image [4,5]. A series of methods were derived, such as the
single-scale Retinex (SSR) algorithm [6] and multiscale Retinex (MSR) algorithm [7], to
enhance the image details. However, the naturalness of the images may be destroyed, and
it is unreasonable to treat only the reflectance layer as the enhanced image [8].

As a spatial-frequency analysis tool, the DWT is applied to decompose and enhance
image features at different resolutions. It has been utilized by researchers in the fields such
as image resolution enhancement [9] and image denoising [10].

Existing methods have difficulty balancing brightness correction, naturalness preser-
vation, color restoration, and algorithmic efficiency. A simple but efficient algorithm for
image illuminance perception and correction in the wavelet domain is proposed in this
paper. The DWT is used to separate the illuminances in the low-frequency subband, which
will be enhanced by adaptive gamma correction considering both the spatial and statistical
characteristics of the image. For naturalness preservation, adaptive punishment adjustment
is applied for the high-frequency subband. Finally, a stabilization factor is designed for
color restoration so that the extralow illumination can be corrected with noise suppression.
To the best of our knowledge, no work has proposed an adaptive dual-gamma correction
method in the wavelet domain.

The rest of the paper is organized as follows: Section 2 provides a brief discussion of
related works. Section 3 presents the detailed process of the proposed method. In Section 4,
the superiority of the proposed method is supported by experimental results and relevant
evaluation with state-of-the-art models. Finally, the conclusions are presented in Section 5.

2. Related Works

To solve the problems mentioned above, improvements have been proposed in earlier
works. There are several variations of the HE method, such as contrast-limited adaptive
histogram equalization (CLAHE) [11] and brightness-preserving bi-histogram equalization
(BBHE) [12]. In the frequency domain, improved methods such as illuminance normal-
ization based on homomorphic filtering [3], color image enhancement by compressed
DCT [13], and the alpha-root method based on the quaternion Fourier transform [14] are
proposed. The following methods are comparable to our work:

• Improved gamma correction: For parameter adjustment, some adaptive methods are de-
rived, such as adaptive gamma correction based on cumulative histogram (AGCCH) [15],
adaptive gamma correction to enhance the contrast of brightness-distorted images [16],
adaptive correction with weight distribution (AGCWD) method [17], and a 2-D adaptive
gamma correction method [18], which takes into account the variable brightness map
of image spatial information while excessive contrast enhancement may occur. In addi-
tion, few methods consider both local and global enhancement, and overenhancement
sometimes appears in some portions of the image.

• Retinex-based model: Fu et al. [19] proposed a simultaneous illumination and re-
flectance estimation (SIRE) method to preserve more image details when estimating
the reflection intensity. Wang [20] used Retinex theory to construct an image prior
model and used a hierarchical Bayesian model to estimate the model parameters
and achieved good results. Cheng [21] proposed a nonconvex variational Retinex
model to improve the brightness while maintaining the texture and naturalness of
an image. These models based on Retinex theory can achieve pleasing reflection
separation through iterations. However, the algorithms are time-consuming and may
limit their practical applications. Low-light image enhancement via well-constructed
illumination map estimation (LIME) was proposed by Guo [2]. Oversaturation in
some portion of an image usually occurs.

• Combining the wavelet transform approach: By introducing the wavelet transform,
a nonlinear enhancement function was designed based on the local dispersion of
the wavelet coefficients [21]. Zotin [22] proposed an algorithm combining the MSR
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algorithm with the wavelet transform algorithm and achieved a better correction effect
in terms of efficiency. A dual-tree complex wavelet transform for low-light image
enhancement was proposed in [23]. However, it is unreasonable to utilize only the
low-frequency subband for illumination enhancement. The image edges will appear
jagged after transformation according to our experiments.

3. Proposed Method: GLAGC
3.1. Algorithm Scheme

Gamma correction [17] is a common method for illumination enhancement and is
defined as:

I′ = Imax × (
I

Imax
)γ (1)

where I′ is the corrected image, Imax is the maximum intensity value of the original image,
I is the original image, and γ is the parameter. For different values of γ, the resulting
image has different enhancement results, as shown in Figure 1. When γ < 1, low-intensity
pixels will be increased more than high-intensity pixels. When γ > 1, the opposite effect is
generated. When γ = 1, the input and output intensities are equal.
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Figure 1. An example of gamma correction, the enhanced images with different parameters γ.
(a) Original image. (b) γ = 0.1. (c) γ = 0.3. (d) γ =0.8. (e) γ = 1.2. (f) γ = 1.5. (g) The curve along with
different parameters γ.

The limitations of the conventional gamma correction method are obvious: (1) The
selection of the parameters requires experience. (2) Spatial information such as uneven
lighting of the image is not considered. (3) The overall illumination cannot be perceived,
and overexposure sometimes occurs.

For this reason, a novel adaptive gamma correction method, called global statistics and
local spatial adaptive dual-gamma correction (GLAGC), is proposed in this section. First,
the V component of from HSV model of the input image is converted to the logarithmic
domain. Through the DWT, the illumination information of the image is obtained from
the low-frequency subband LL. The dual-gamma correction γ(θ[χ,σ]) based on spatial and
statistical information is applied to subband LL:

LL′ = IMAX × (
LL

IMAX
)

γ(θ[χ,σ])

(2)

where IMAX is the maximum pixel value of the LL subband and LL′ is the corrected low-
frequency subband.

For naturalness preservation, adaptive punishment adjustment is applied in the LH,
HL, and HH subbands. Then, the corrected V component is obtained through the inverse
wavelet transform. Finally, the enhanced image is reconstructed by converting it to the RGB
color space through color restoration. The process flow of the proposed image enhancement
method is shown in Figure 2.
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Figure 2. Flowchart of GLAGC method.

3.2. Luminance Extraction in the Wavelet Domain

According to Retinex theory, an image can be expressed as the multiplicative combi-
nation of the reflection intensity and the illumination brightness, namely:

S(x, y) = L(x, y)× R(x, y) (3)

where S(x, y) is the pixel information of the image and R(x, y) is the reflection intensity,
reflecting the surface properties of the object color, texture, etc. that correspond to the
high-frequency information of the image; L(x, y) is the environmental illumination, which
depends on the external lighting conditions and corresponds to the low-frequency in-
formation of the image. Since the operation in the logarithmic domain is closer to the
visual characteristics perceived by the human eye, the image is converted to the logarith-
mic domain to obtain the additive combination of reflection intensity and illumination
brightness:

s(x, y) = l(x, y) + r(x, y) (4)

where s(x, y) = log(S(x, y)), r(x, y) = log(R(x, y)), and l(x, y) = log(L(x, y)). To obtain
the illumination component l(x, y), a center/surround Retinex method such as the SSR
algorithm uses the convolution of the Gaussian function and the image s(x, y):

l(x, y) = s(x, y) ∗ G(x, y) (5)

G(x, y) = k× e
−(x2+y2)

c2 (6)

where * is a convolution operation, G(x, y) is the Gaussian convolution function,
s

G(x, y) = 1;
c is the scale factor, and k is the normalization constant. The MSR algorithm uses multiscale
Gaussian functions:

l(x, y) = ∑N
n=1 vn × {s(x, y) ∗ Gn(x, y)} (7)

where Gn (x, y) is the Gaussian function of the n-th scale and the weight vn satisfies
∑N

n=1 vn = 1.
State-of-the-arts methods like SSR and MSR obtain illumination feature by using

Gaussian convolution within certain perception domain. Gaussian convolution will cause
computational complexity. Moreover, the neighboring pixel information also includes
the edge of the image, texture and other redundant details that do not contribute to the
illuminance features. This paper takes a different approach that illumination extraction
is conducted in the low frequency sub-band of the wavelet domain, while the details of
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image are extracted in high frequency sub-band. The DWT [24] of a digital image f (x, y)
can be expressed as:

Wφ(j0, m, n) =
1

M× N ∑M−1
x=0 ∑N−1

y=0 f (x, y)ϕj0,m,n(x, y) (8)

Wi
ψ(j0, m, n) =

1
M× N ∑M−1

x=0 ∑N−1
y=0 f (x, y)ψi

j0,m,n(x, y) i ∈ {H, V, D} (9)

where ϕ is the scale function; ψ is the wavelet function; (M, N) is the size of the image;
j0 is the initial scale; Wφ (j0, m, n) is the low-frequency wavelet coefficient, which is an
approximation of f (x, y); index i identifies the directional wavelets in terms of values of H,
V, and D; and Wi

ψ(j, m, n) is the high-frequency wavelet coefficient. When the scale j ≥ j0,
it means the horizontal, vertical, diagonal details in three directions.

The DWT uses low-pass and high-pass filters to decompose the pixel information of the
image into 4 subbands, namely, LL, LH, HL, and HH. LL denotes the low-pass subband, and
LH, HL, and HH denote the vertical, horizontal and diagonal subbands, respectively, where:

LL = Wφ(j0, m, n) (10)

LH, HL, HH = Wi
ψ(j, m, n), i ∈ {H, V, D} (11)

From the perspective of the frequency domain, the high-frequency subband after
applying the wavelet transform contains only detailed information, such as the edge of the
image object, which ensures that the illumination component of the image is included in
the low-frequency subband LL. Therefore, the illumination of the image can be corrected by
using only the low-frequency subband. After illuminance correction in the low-frequency
subband, we can use the inverse wavelet transform to obtain the reconstructed image:

O(x, y) = iDWT{W ′φ(j0, m, n), Wi
ψ
′(j, m, n)} (12)

where W′φ(j0, m, n), Wψ
i′(j, m, n) is the corrected coefficient, iDWT{} represents the inverse

wavelet transform, and O(x, y) denotes the corrected image. Next, the proposed adaptive
dual-gamma correction method for low-frequency subband LL based on the extracted
illumination features is described.

3.3. Local Spatial Adaptive Gamma Correction (LSAGC)

A spatial luminance distribution feature (SLDF) is proposed, which is defined as:

SLDF(x, y) = ∑N
n=1 vn × {LL ∗ Gn(x, y)} (13)

where SLDF(x, y) obtains the pixel neighborhood information by applying a convolution
operation to estimate the local spatial distribution of the image′s illumination.

Figure 3 illustrates the SLDF(x, y) of an image, its frequency domain analysis diagram
and time-consumption analysis of our method and MSR. In Figure 3b, the Y-axis denotes
the average Fourier log intensity [25] of the image, and the X-axis denotes the frequency. In
Figure 3c, the Y-axis denotes the average time consumption of illumination extraction, and
the X-axis denotes the image size.
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From Figure 3b,c we found:

(1) The frequency components of the illumination extracted by the MSR algorithm are
included in the frequency components of the LL subband, which means that the
illumination of the image can be extracted only in the LL subband.

(2) As the frequency increases, the amplitude of SLDF (x, y) attenuates faster. This
property is helpful in preserving the image details from the perspective of the local
illumination characteristics.

(3) For images with common image sizes, the proposed SLDF illumination extraction
time is much less than that of the MSR algorithm, and the benefit of the SLDF scheme
compared with the MSR algorithm increases as the image size increases.

The uneven spatial distribution of the image illuminance appears as overexposure
or underexposure in certain areas. The proposed local spatial adaptive gamma correction
(LSAGC) method is applied to LL, which is defined as:

γ(Θχ) = (MSLDF/IMAX)
σ (14)

σ = 2× [MSLDF − SLDF(x, y)]/IMAX (15)

where MSLDF is the average of SLDF (x, y) and σ is the difference between the brightness of
a certain pixel and the average intensity. When the spatial brightness of the image is evenly
distributed, (MSLDF/IMAX) is close to 1, and the γ(Θχ) correction ability becomes weak.
When SLDF (x, y) is greater than MSLDF, strong illumination appears, which makes σ < 0;
thus, the illumination will be reduced by (14). In contrast, the brightness of the dark area
will be increased, so uneven lighting is improved through adaptive correction. Applying
γ(Θχ) to LL:

LLLS = IMAX × (
LL

IMAX
)

γ(Θχ)

(16)

where LLLS indicates the low-frequency subband corrected by LSAGC.
Figure 4 illustrates the LSAGC results. An image with uneven illumination is shown

in Figure 4a. The LL subband obtained by wavelet transform is shown in Figure 4b, and
SLDF (x, y) is shown in Figure 4c. The reconstructed image by iDWT{LLLS,Wψ

i (j, m, n)} is
shown in Figure 4d.
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Figure 4. Result of the LSAGC method. (a) Original image. (b) LL. (c) SLDF (x, y) of LL. (d) Recon-
structed image after applying LSAGC.

It can be seen from Figure 4d that although the uneven spatial illumination distribution
of the image has been corrected, the overall brightness is still low, resulting in unclear
details, such as the human face and horse body. Further, more overall luminance correction
is required.

3.4. Global Statistics Adaptive Gamma Correction (GSAGC)
Global Statistical Luminance Feature (GSLF)

The information entropy of the image represents the aggregation feature of the
grayscale value distribution, which is defined as:

Entropy = −∑255
i=0 pi × log 2pi (17)

where pi is the probability of a certain grayscale value. Figure 5a–f show images of different
luminance conditions with their grayscale distribution histograms. When the image is
properly exposed, the grayscale distribution histograms show uniform distributions, and
their information entropy is the largest, as shown in Figure 5g.
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Figure 5. Comparison of the entropy among different images. (a–f) Images with different luminance
values. (g) Entropy comparison.

The probability density function (pdf ) and cumulative distribution function (cdf ) of
the image are defined as follows:

pd f (i) = ni/N (18)

cd f (i) = ∑i
k=0 pd f (k) (19)

where i is the pixel intensity, ni is the number of pixels with intensity i, and N is the total
number of pixels in the image. According to the maximum discrete entropy theorem, the
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image with the largest entropy has a uniformly distributed grayscale histogram, and its
cdf (i) has linear characteristics, namely:

∀i, pd f (i) = c, cd f (i) = c× i (20)

Here, (20) is converted to the logarithmic domain:

cd f (l) = exp(l) (21)

where l = log(c × i) and c is a constant. In our research, the cdf (l) of subband LL of the
image with the largest entropy in the logarithmic domain through wavelet decomposition
is constructed as an intensity-guided distribution (IGD) function. It plays a guiding role in
image illumination correction. The IGD function is defined as:

IGD(l) =
1

exp(Imax)
exp(l), l ∈ (0, Imax) (22)

The pdf (l) of the subband LL is normalized as:

pd fnorm(l) =
pd f (l)− pd fmin

pd fmax − pd fmin
(23)

where pdf max and pdf min are the maximum and minimum values of the image pdf, respec-
tively. According to the difference between cdf (l) of the input image and IGD(l) of the ideal
image with the largest entropy, pdfGW(l) and cdfGW(l) are designed as follows:

pd fGW(l) = pd f (l)1−{1−[cd f (l)−IGD(l)]}
norm (24)

cd fGW(l) = ∑l
k=0 pd fGW(K) (25)

Figure 6 demonstrates three different images of the same scene, which appear un-
derexposed in Figure 6a, properly exposed in Figure 6d and overexposed Figure 6g. A
comparison of pdfnorm (l) and pdfGW(l) is shown in Figure 6b,e,h, respectively. The relation-
ship among cdf (l), cdfGW(l) and IGD(l) is shown in Figure 6c,f,i, respectively. The luminance
distribution can be estimated according to the difference between cdfGW(l) and cdf (l). For
an underexposed image, the area enclosed by cdf (l) and the X-axis is far larger than the
area enclosed by cdfGW(l) and the X-axis. For a properly exposed image, the area enclosed
by cdf (l) and the X-axis is close to the area enclosed by cdfGW (l) and the X-axis. For an
overexposed image, the area enclosed by cdf (l), and the X-axis is close to the area enclosed
by cdfGW (l) and the X-axis but smaller than that of IGD(l).

For the correction of the overall illumination brightness of an image, a global statistical
luminance feature (GSLF) is designed to evaluate the difference between cdf (l) and cdfGW(l),
which is defined as:

GSLF = ∑
∣∣∣∣ cd fGW(l)− cd f (l)

cd f (l)

∣∣∣∣ (26)

In our research, a global statistics adaptive gamma correction (GSAGC) method is
proposed as γ(Θσ), which is applied to subband LL:

LLGS = IMAX × (
LL

IMAX
)

γ(Θσ)

(27)

where LLGS indicates the corrected low-frequency subband by GSAGC. Through a training
set containing images with various illuminance conditions, the relationship between γ(Θσ)
and the GSLF will be estimated.



Sensors 2021, 21, 845 9 of 21

Sensors 2021, 21, x FOR PEER REVIEW 8 of 20 

where l = log(c×i) and c is a constant. In our research, the cdf(l) of subband LL of the image 
with the largest entropy in the logarithmic domain through wavelet decomposition is con-
structed as an intensity-guided distribution (IGD) function. It plays a guiding role in im-
age illumination correction. The IGD function is defined as: 

1( ) exp( ), (0, )
exp( ) max

max

IGD l l l I
I

= ∈ (22)

The pdf(l) of the subband LL is normalized as: 

min

max min

( )
( )norm

pdf l pdf
pdf l

pdf pdf
−

=
− (23)

where pdfmax and pdfmin are the maximum and minimum values of the image pdf, respec-
tively. According to the difference between cdf(l) of the input image and IGD(l) of the ideal 
image with the largest entropy, pdfGW(l) and cdfGW(l) are designed as follows: 

1 {1 [ ( ) ( )]}( ) ( ) cdf l IGD l
GW normpdf l pdf l − − −= (24)

0
( ) ( )l

GW GWk
cdf l pdf K

=
=   (25)

Figure 6 demonstrates three different images of the same scene, which appear under-
exposed in Figure 6a, properly exposed in Figure 6d and overexposed Figure 6g. A com-
parison of pdfnorm (l) and pdfGW(l) is shown in Figure 6b,e,h, respectively. The relationship 
among cdf(l), cdfGW(l) and IGD(l) is shown in Figure 6c,f,i, respectively. The luminance dis-
tribution can be estimated according to the difference between cdfGW(l) and cdf(l). For an 
underexposed image, the area enclosed by cdf(l) and the X-axis is far larger than the area 
enclosed by cdfGW(l) and the X-axis. For a properly exposed image, the area enclosed by 
cdf(l) and the X-axis is close to the area enclosed by cdfGW (l) and the X-axis. For an overex-
posed image, the area enclosed by cdf(l), and the X-axis is close to the area enclosed by 
cdfGW (l) and the X-axis but smaller than that of IGD(l). 

Figure 6. (a,d,g) Original image. (b,e,h) The comparison of pdfnorm(l) and pdfGW (l). (c,f,i) The com-
parison of cdf(l), cdfGW (l) and IGD(l). 

For the correction of the overall illumination brightness of an image, a global statis-
tical luminance feature (GSLF) is designed to evaluate the difference between cdf(l) and 
cdfGW(l), which is defined as: 

( ) ( )
( )

GWcdf l cdf l
GSLF

cdf l
−

=  (26)

Figure 6. (a,d,g) Original image. (b,e,h) The comparison of pdfnorm(l) and pdfGW (l). (c,f,i) The
comparison of cdf (l), cdfGW (l) and IGD(l).

Training Datasets: This article has established an image dataset collected from related
works [2,15,18,20–22,26] containing different luminance conditions, including underexpo-
sure, proper exposure, and uneven exposure.

Loss Function: To judge whether the overall illumination intensity of an image satisfies
the maximum entropy criterion, we introduce the information entropy loss function to
obtain the global statistics adaptive gamma γ(Θσ), namely:

LossEntropy(D) = −
N

∑
α=1

Entropy(Dα) (28)

Dα = iDWT{LLGS, Wi
ψ(j, m, n)} (29)

where D is the training dataset, Dα is a reconstruction sample, and N is the number of
samples in the training dataset. When the information entropy loss function of the recon-
structed images is minimized, the regression curve indicating the relationship between
γ(Θσ)1×1×N and GSLF1×1×N is obtained in Figure 7:

γ(Θσ) = 8.224× GSLF2 − 5.534× GSLF + 1.093 (30)
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According to the above, the proposed adaptive dual-gamma correction function,
GLAGC, which takes into account the γ(Θχ) by LSAGC and the γ(Θσ) by GSAGC, is
given as:

γ(Θ[χ,σ]) = γ(Θχ)× γ(Θσ) (31)

3.5. Smoothness Preservation

Since GLAGC is adopted in the low-frequency subband LL in the wavelet domain,
the high-frequency subband needs to be adjusted correspondently. Otherwise, jaggedness
will appear at the image edges after inverse wavelet transformation, as shown in Figure 8.
Thus, we introduce a smoothness adjustment to the wavelet high-frequency subband,
denoted by:

Wi
ψ = L(Θγ)×Wi

ψ (32)

where Wψ
i is the high-frequency wavelet coefficient and L(Θγ) is the adjustment coefficient.

Considering that the high-frequency subbands in the three directions have the same
importance, the same punishment coefficient is used.
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According to discrete wavelet inverse transform, the image reconstructed by the scale
coefficients is defined as s1 (x, y), the image reconstructed by the wavelet coefficients is
denoted by s2(x, y), and the final reconstructed image ς(x, y) is defined as:

ς(x, y) = s1(x, y) + s2(x, y) (33)

s1(x, y) =
1√
MN

∑M ∑N Wφ(j0, m, n)ϕj0,m,n(x, y) (34)

s2(x, y) =
1√
MN

∑
i=H,V,D

∑
j=j0

∑M ∑N Wi
ψ(j, m, n)ψi

j,m,n(x, y) (35)

Figure 9 shows the relationship between the images reconstructed by the scale coeffi-
cients and the wavelet coefficients. According to the correlation between adjacent pixels in
the image, when the 3 neighboring pixels are on a straight line, the edge of the object can
be considered smooth and not jagged; we define it as the edge smoothness preservation
constraint, namely:

2× ς(x + 1, y) = ς(x, y) + ς(x + 2, y) (36)
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Substituting (33) into (36) yields:

2× [s1(x + 1, y) + s2(x + 1, y)] = [s1(x, y) + s2(x, y)] + [s1(x + 2, y) + s2(x + 2, y)] (37)

The low-frequency coefficient after adaptive gamma correction is defined as Wφ
′(j0, m,

n); the corresponding reconstructed image of s1
′(x, y) is defined according to (34):

s1
′(x, y) = 1√

MN ∑
M

∑
N

Wφ
′(j0, m, n)ϕj0,m,n(x, y) = 1√

MN ∑
M

∑
N

IMAX(
Wφ(j0,m,n)

IMAX
)

γ
ϕj0,m,n(x, y)

= IMAX
1−γ

√
MN ∑

M
∑
N
(Wφ(j0, m, n))γ ϕj0,m,n(x, y)

(38)

The gradient comparison of any pixel (xi, yi) between s1 (x, y) and s1
′(x, y) is:

∆s1
′(xi, yi)

∆s1(xi, yi)
= I1−γ

MAX ×
(Wφ(j0, mi, ni) + ∆)γ −Wφ(j0, mi, ni)

(Wφ(j0, mi, ni) + ∆)−Wφ(j0, mi, ni)

γ

≈ I1−γ
MAX × γ×Wφ(j0, mi, ni)

γ−1 (39)

The high-frequency coefficients are adjusted by L(Θγ) to obtain the reconstructed
image s′2 (x, y):

s2
′(x, y) =

L(Θγ)√
MN

∑
i=H,V,D

+∞

∑
j=j0

∑M ∑N Wi
ψ(j, m, n)ψi

j,m,n(x, y) = L(Θγ)× s2(x, y) (40)

By substituting (39) and (40) into the edge smoothness preservation constraint (37),
the punishment coefficient can be obtained:

L(Θγ) = I1−γ
MAX × γ×Wφ(j0, m0, n0)

γ−1 (41)

L(Θγ) can adjust the high-frequency coefficient adaptively with γ(Θ[χ,σ]) to maintain
the smoothness of the image edges.

3.6. Color Restoration

The HSV color model is used in our research because it is consistent with the human
eye’s perception of color. It includes three characteristics: hue (H), saturation (S) and value
(V). The V component represents the luminance intensity. GLAGC is performed on the V
component. To restore the color information of the observed image, the output color image
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in RGB color space can be obtained by a linear transform [21], and the following improved
operations are defined:

R′(x, y) = V′(x,y)
V(x,y)+ζ(x,y)R(x, y)

G′(x, y) = V′(x,y)
V(x,y)+ζ(x,y)G(x, y)

B′(x, y) = V′(x,y)
V(x,y)+ζ(x,y)B(x, y)

(42)

where V(x, y), R(x, y), G(x, y), and B(x, y) are the V, R, G, and B components before correction.
V′(x, y), R′(x, y), G′(x, y), and B′(x, y) are the corresponding components after correction.
ζ(x, y) is an adaptive stability factor that plays a role in low-illumination noise suppression,
which is defined as:

ζ(x, y) = β× V′(x, y)
V(x, y)

(43)

where β is the adjustment coefficient. In general, β = 0.005.
To sum up, we describe the algorithm of the proposed GLAGC method in Algorithm 1.

Algorithm 1 Algorithm for the adaptive dual-gamma function for image illumination perception
and correction in the wavelet domain (GLAGC)

Algorithm’s inputs: Original image S(x, y)
Algorithm’s output: Enhanced image O(x, y)
Step (1):Convert to HSV space to obtain the V component
Step (2):Convert image to the logarithmic domain v = log(V + 1)
Step (3): Fast illuminance extraction in the LL subband by the wavelet transform
Step (4): Illuminance feature extraction:

Spatial luminance distribution feature (SLDF)
Global statistical luminance feature (GSLF)

Step (5): Adaptive dual-gamma correction γ(Θ[χ,σ]) for the LL subband
γ(Θχ) (obtained by the SLDF)
γ(Θσ) (obtained by the GSLF and Gamma training)

Step (6): Smoothness preservation L(Θγ) for high-frequency coefficients
Step (7): Inverse wavelet and inverse logarithmic transform
Step (8): Color restoration

4. Experiments

During the experiments, first, the performances of LSAGC and GSAGC are veri-
fied. Next, image naturalness preservation through punishment adjustment and low-
illumination noise suppression is illustrated. Then, the GLAGC method is qualitatively
compared with several state-of-the-art methods. All the experiments are run in MAT-
LAB R2017b for Windows 7 on a computer equipped with an Intel(R) Core (TM) i7-
4790 CPU at 3.60 GHz and 8 GB memory. All the test images are sourced from related
work [2,15,18,20–22,26] and benchmarks that have been commonly used for performance
verification.

Four state-of-the-art algorithms were used for the comparison experiments, includ-
ing the variational-based method SIRE [19], the AGCWD method combined with his-
tograms [17], the 2-D adaptive gamma correction method (Sungmok Lee′s method) [18],
and LIME based on Retinex theory [2]. All the parameters in the competing methods are
chosen according to their original articles.

Four evaluation indicators were selected in the experiments:

(1) The computational cost of the algorithm;
(2) The information entropy, which is used to quantify and evaluate the information

richness of the enhanced image;
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(3) The absolute mean brightness error (AMBE) [27], which is used to evaluate illumi-
nance retention, is defined as follows:

AMBE(x, y) = |xm − ym| (44)

where xm and ym represent the average value of the input image and output image,
respectively.

(4) The lightness order error (LOE), which is used to evaluate the naturalness of image
enhancement [26]:

LOE = 1
mn ∑m

i=1 ∑n
j=1 RD(i, j)

RD(x, y) =
m
∑

i=1

n
∑

j=1
U(L(x, y), L(i, j))⊕U(Le(x, y), Le(i, j))

U(x, y) =
{

1 x > y
0 else

(45)

where m, n is the image size, RD(i, j) is the relative order of pixels (i, j), ⊕ is the
exclusive or (XOR) operator, and L(x, y) and Le(x, y) are the original image and
enhanced image, respectively. The smaller the LOE value is, the better the naturalness
of the original image that can be maintained.

4.1. LSAGC Tests

This section will discuss the spatial distribution characteristics of different images
and the influence of the proposed LSAGC function on the image spatial illumination
distribution.

Figure 10 shows two images with uneven illumination distributions. The area where
the lawn is located at the bottom of image (a) is in a weakly exposed state, and images (b)
and (c) are the conditions without or with the LSAGC function, respectively. At the bottom
of image (c), by LSAGC, the lawn becomes more obvious, and more detailed textures
are also highlighted. Figure 10d shows the normal exposure of the sky in the middle of
the image, and the indoor area next to it is weakly exposed. Without LSAGC, the sky
area in the middle of the image becomes saturated after enhancement, resulting in the
loss of texture and other information. When LSAGC is used, the texture of the sky is not
overexposed, and information is not lost.
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It can be seen from the above two examples that LSAGC sufficiently considers the
spatial characteristics of the illumination distribution and redistributes the uneven spatial
illumination to make it more uniform. Histogram analysis is given in Figure 11. It can
be seen that in the absence of LSAGC, more high pixel values will lead to overexposure;
LSAGC can avoid this situation, and low-value pixels have also been better improved,
improving the image illumination quality.



Sensors 2021, 21, 845 14 of 21

Sensors 2021, 21, x FOR PEER REVIEW 13 of 20 

enhanced image, respectively. The smaller the LOE value is, the better the 
naturalness of the original image that can be maintained. 

4.1. LSAGC Tests 
This section will discuss the spatial distribution characteristics of different images 

and the influence of the proposed LSAGC function on the image spatial illumination dis-
tribution. 

Figure 10 shows two images with uneven illumination distributions. The area where 
the lawn is located at the bottom of image (a) is in a weakly exposed state, and images (b) 
and (c) are the conditions without or with the LSAGC function, respectively. At the bot-
tom of image (c), by LSAGC, the lawn becomes more obvious, and more detailed textures 
are also highlighted. Figure 10d shows the normal exposure of the sky in the middle of 
the image, and the indoor area next to it is weakly exposed. Without LSAGC, the sky area 
in the middle of the image becomes saturated after enhancement, resulting in the loss of 
texture and other information. When LSAGC is used, the texture of the sky is not overex-
posed, and information is not lost. 

It can be seen from the above two examples that LSAGC sufficiently considers the 
spatial characteristics of the illumination distribution and redistributes the uneven spatial 
illumination to make it more uniform. Histogram analysis is given in Figure 11. It can be 
seen that in the absence of LSAGC, more high pixel values will lead to overexposure; 
LSAGC can avoid this situation, and low-value pixels have also been better improved, 
improving the image illumination quality. 

Figure 10. Effect of LSAGC. (a,d) Original images. (b,e) Enhanced images without LSAGC. (c,f) Enhanced images with 
LSAGC. 

Figure 11. Histogram analysis: (a) images from Figure 10a–c; (b) images in Figure 10d–f. 

4.2. GSAGC Tests 
This experiment discusses the adaptive correction effect of the GSAGC method in the 

proposed algorithm on images with different global illumination values. Figures 12–14 
shows three sets of images, in which each experimental input sample is five images with 
different exposures from dark to bright, and we process them with the proposed algo-
rithm, the parameters of which have been trained. The experimental results show that for 
images with different exposures, the proposed algorithm can automatically perceive the 
exposure level and generate high-quality images with almost the same exposure. Figure 

Figure 11. Histogram analysis: (a) images from Figure 10a–c; (b) images in Figure 10d–f.

4.2. GSAGC Tests

This experiment discusses the adaptive correction effect of the GSAGC method in the
proposed algorithm on images with different global illumination values. Figures 12–14
shows three sets of images, in which each experimental input sample is five images with
different exposures from dark to bright, and we process them with the proposed algorithm,
the parameters of which have been trained. The experimental results show that for images
with different exposures, the proposed algorithm can automatically perceive the exposure
level and generate high-quality images with almost the same exposure. Figure 15 uses the
GSLF as the Y-axis of the above three sets of experimental input images and the mean of
the image as the X-axis. The size of the circle indicates the AMBE value.
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The GSLF defined in (26) is a measure of the global statistical illumination characteris-
tics of an image. The larger the value is, the weaker the exposure. As shown in Figure 15,
as the brightness of the input image gradually increases, the average value of the image
gradually increases. When GSLF decreases, the exposure level is increasing, and the AMBE
also subsequently decreases, indicating that the image brightness has been maintained
and has not continued to increase when the image is properly exposed. This experiment
shows that the proposed algorithm can enhance low-exposure images while maintaining
normal-exposure images.

4.3. Naturalness Preservation

This section will explain the impact of adjustment on the high-frequency coefficients
and the impact of adaptive stabilization factors on the image quality.

Figure 16 shows the edge smoothness preservation test. When the high-frequency
coefficients are not corrected, the edge smoothness of the image object will be destroyed. As
shown in Figure 16b, when the adaptive adjustment is obtained when the edge smoothness
preservation constraint is used, the image maintains the edge smoothness after being
enhanced, improving the visibility of the images.
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Figure 17 illustrates the low-illumination noise suppression test. When the input
image is extremely weakly exposed, as Figure 17b shows, considerable noise will appear at
low-exposure areas after color restoration. By the adaptive stability factor defined in (43),
the image quality is enhanced while noise is suppressed, as shown in Figure 17c.
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4.4. Comparative Experiments

We compare images under a series of illuminance scenarios through different algo-
rithms, and the results obtained are shown below. As shown in Figures 18–20, a group of
images with uneven illumination distributions are called urban, baby, and street.
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Figure 18 shows the experiments under the urban image. The AGCWD and SIRE
methods cannot significantly enhance the dark areas surrounding the buildings. Moreover,
the AGCWD method causes saturation on the upper part of the image; the LIME method
can enhance the overall brightness of the image, but it causes overexposure; Lee’s method
and the proposed method achieve good performances.

Figure 19 displays the results of the experiments on the baby image. The AGCWD and
LIME methods both overenhance the background areas; moreover, the AGCWD method
cannot increase the brightness in the baby’s clothes. The result from Lee’s method is
overnormalized, and similar results are obtained by the LIME method and the proposed
method.

Figure 20 presents the situation for the Street image, for which the best performance is
achieved by our method. The AGCWD and SIRE methods cannot enhance the dark areas at
the bottom of the image; the overall picture by Lee’s method is still dark; the LIME method
seems to yield a bright image, but it causes oversaturation in the sky.

The other image samples (composed of the building, goddess, and landscape images)
have evenly distributed spatial illumination but with different global illumination, as
shown in Figures 21–23.
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Figure 21 reveals the algorithms’ performance in complex lighting conditions. For
shadow areas in the Buildings image in Figure 18. Our method outperforms all the other
methods; the LIME and AGCWD methods cannot restore the colors of the dusk area; Lee’s
method caused ripple distortions in the sky area.

Figure 22 is the comparison for the Goddess image. Lee’s method results in excessive
contrast enhancement. Overenhancement is produced in the face region by the LIME
and AGCWD methods; furthermore, the AGCWD method cannot remove the shadows
in the background. The SIRE method achieves the best naturalness preservation, but the
computational cost is much greater than that of our method, which will be discussed later.

Figure 23 shows the landscape image with pleasant visual effects, which are used to
test the performance of avoiding overexposure. The mountain in the background becomes
blue and loses its original color with Lee’s method; oversaturation occurs in the LIME
method; the AGCWD and SIRE methods and our method all have good results.

Figure 24 provides more experimental results by GLAGC. Table 1 shows the entropy,
LOE and AMBE performance of the different algorithms. The proposed algorithm achieves
the maximum value of the average information entropy of the enhanced image, which
reveals that the proposed algorithm can obtain the most abundant image information. In
terms of the preservation of naturalness, the proposed method has the lowest LOE after
the AGCWD method, which is inferior to ours. Regarding the AMBE, the maximum is
achieved by our method for dark illumination scenarios such as buildings, revealing its
overall boosting on low illumination, while the minimum is obtained in normal-exposure
scenes (Landscape), which presents brightness maintenance. Table 2 shows the average
computational costs of the different algorithms under the same computational conditions,
and the image resolution is 512 × 512. It can be seen that the proposed algorithm can
achieve good results in a short amount of time.

In summary, by comparison experiments, the proposed method has good performance
in low illumination enhancement, uneven illumination improvement and illumination
maintenance. Lee’s method may cause ripple distortion and excessive contrast enhance-
ment; the LIME method can handle the various illuminance conditions while the results will
be oversaturated in some regions; the AGCWD method formulates the gamma mapping
curve according to the histogram of the image without considering the spatial information,
which results in degrading performance in uneven illumination images; and the SIRE
method is relatively good. Nevertheless, its practicality is limited by time consumption.
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Table 1. Quantitative comparisons of different methods in terms of the entropy, LOE and AMBE.

Images Index LIME Lee’s
Method AGCWD SIRE GLAGC

Urban
Entropy 7.59 7.62 7.67 7.72 7.78

LOE 204.36 171.13 39.70 29.05 118.32
AMBE 59.62 19.50 34.80 9.82 37.92

Baby
Entropy 7.09 7.77 7.67 7.83 7.76

LOE 333.85 100.08 176.69 120.13 111.95
AMBE 49.18 3.83 25.78 15.78 14.98

Street
Entropy 7.57 7.68 7.57 7.67 7.82

LOE 282.43 93.54 89.56 141.58 173.6
AMBE 56.03 15.48 24.46 18.29 39.15

Building
Entropy 7.54 7.11 7.50 7.42 7.35

LOE 191.90 162.11 30.19 147.51 177.09
AMBE 49.29 41.17 43.97 41.98 64.93

Goddess
Entropy 7.49 7.38 7.79 7.70 7.47

LOE 199.21 283.96 43.77 192.93 105.01
AMBE 72.12 19.35 44.42 34.17 43.87

Landscape
Entropy 7.83 7.64 7.78 7.46 7.82

LOE 84.73 152.60 59.83 172.58 85.30
AMBE 14.41 18.60 16.32 33.83 9.33

AVE.
Entropy 7.52 7.53 7.66 7.63 7.67

LOE 204.36 138.24 66.04 127.58 115.88
AMBE 50.111 19.66 31.62 27.31 35.03

Table 2. Average computational time (unit: seconds) of the different methods.

Lee’s Method LIME AGCWD SIRE Ours (GLAGC)

0.067 0.21 0.136 8.51 0.095

5. Conclusions

In this article, we propose an adaptive image illumination perception and correction
algorithm in the wavelet domain. We use the wavelet transform to obtain features of
illuminance, and then the creative global statistical illuminance features and local spa-
tial illuminance features are proposed as the foundation of perceived illuminance. An
adaptive dual-gamma correction function is carried out accordingly; moreover, the edge
smoothness is retained by adaptive adjustment. In addition, the proposed stabilization
factor can suppress low-illumination noise. It is verified by comparative experiments that
the adaptability, preservation of naturalness and efficiency of this algorithm on different
images are improved compared with previous state-of-the-art methods. In addition to
image enhancement, for a certain camera, our algorithm is promising for automatically
providing an appropriate gamma factor through learning only several captured images.
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