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Hydrocephalus is a common neurological condition that can have traumatic ramifications and can be lethal without treatment.
Nowadays, during therapy radiologists have to spend a vast amount of time assessing the volume of cerebrospinal fluid (CSF)
by manual segmentation on Computed Tomography (CT) images. Further, some of the segmentations are prone to radiologist
bias and high intraobserver variability. To improve this, researchers are exploring methods to automate the process, which would
enable faster and more unbiased results. In this study, we propose the application of U-Net convolutional neural network in order
to automatically segment CT brain scans for location of CSF. U-Net is a neural network that has proven to be successful for various
interdisciplinary segmentation tasks. We optimised training using state of the art methods, including “1cycle” learning rate policy,
transfer learning, generalized dice loss function, mixed float precision, self-attention, and data augmentation. Even though the
study was performed using a limited amount of data (80 CT images), our experiment has shown near human-level performance.We
managed to achieve a 0.917mean dice score with 0.0352 standard deviation on cross validation across the training data and a 0.9506
mean dice score on a separate test set. To our knowledge, these results are better than any known method for CSF segmentation in
hydrocephalic patients, and thus, it is promising for potential practical applications.

1. Introduction

1.1. Background. With an incidence of 1 in every 500 children
[1], hydrocephalus is a common neurological condition. By
definition, it is an increased amount of cerebrospinal fluid
(CSF) in the ventricular system and/or subarachnoid space.
There are multiple causes of hydrocephalus, from genetic
disorders to traumas. Irrespectively of the cause, without
treatment, this condition may be lethal, and the ramifications
in treated cases range from infections caused by surgery
to neurological disorders such as vision problems, epilepsy,
neuroendocrine problems, and chronic headache.

Treatment involves placement of a ventriculoperitoneal
shunt or endoscopic ventriculostomy that enables outflow

of excessive fluid. Regardless of the implemented method,
patients have high readmission rates, which is related to
surgical complications like shunt infection, as well as shunts
malfunctions such as overdrainage, underdrainage, or ob-
struction. When the patient suffers neurological symptoms
on readmission, a common strategy used by neurosurgeons
is to assess the change in CSF volume. The cause of these
symptoms might be due to an increase in volume, as well
as a volume decrease from overdrainage. Usually, it is the
radiologist who provides a description of the dynamics in
CSF volume changes. When volume increases by a small
amount, observation is the foundation of treatment. In con-
trast, a major rise in CSF volume requires surgical in-
tervention. The reports from radiologists vary greatly in
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Figure 1: Variability in the size, shape, and distribution of CSF. Sagittal reconstructions from images of three different patients from our
dataset that were treated for hydrocephalus. Examples include (a) a patient with encephalocele (treated surgically before the CT scan) and
((b) and (c)) patientswith prematurity-associated intraventricular haemorrhage grade IVwith bleeding extending into the brain tissue around
the ventricles. Patients were treated with a ventriculoperitoneal shunt. Ventricular system boundaries are marked with a yellow line.

precision, depending on the methods of measurements.
Objective methods for hydrocephalus diagnosis and moni-
toring include Evans’ ratio, frontal and occipital horn ratio,
and frontal horn radius [2], which are all methods of approx-
imation of complex three-dimensional (3D) structures from
measurements standardized in two dimensions. Ventricular
system shapes may vary greatly, motivating the search for
methods that do notmake assumptions about the shape of the
ventricles and measure the actual volume directly. Figure 1
demonstrates the diversity in size, shape, and distribution of
CSF within the ventricular system, using examples from our
dataset. These differences are the consequence of different
hydrocephalus manifestations and evolutions, but age-related
anatomical differences have to be taken into account as well.
Because of such a variable age group (0–18 years old), the
differences in skull shape and size are also important factors
that standardmethods (based on selectivemeasurements) fail
to incorporate.

In recent years researchers used automated segmentation
methods to address different medical problems, among them,
coronary wall and atherosclerotic plaque segmentation [3],
retinal vessel segmentation [4], brain segmentation [5], heart
ventricle segmentation [6], andmore generalized approaches,
such as multiorgan segmentation [7, 8].

1.2. Related Work. To our knowledge, this is the first CSF
segmentation attempt in hydrocephalic patients using deep
learning techniques. Many other methods of physiological
ventricular system segmentation have been proposed in the
past [9–11]; unfortunately, there is no standardized dataset
(such as ImageNet [12] for image classification tasks) that
those methods could use as a benchmark. The first pub-
lishedmethods were based on thresholding techniques which
assumed that CSF is homogeneous in terms of radiodensity

measured in Hounsfield units and were later joined by
edge-detection, boundary-following methods, and a combi-
nation of the two [11]. While magnetic resonance imaging
is the most popular choice among other authors [13, 14]
we chose CT as an imaging modality because of its greater
availability and lower cost. Most of the software providers
[15, 16] for radiology departments provide some sort of
semiautomated segmentation module, but the details of the
underlying technology are not available; therefore, we were
unable to compare to them.

CSF segmentation of patients without hydrocephalus was
previously addressed by other authors, most recently by
Chen et. al. [17]. They proposed architecture dedicated to CT
images segmentation, which outperformed U-Net on their
dataset. However, our work differs in terms of the addressed
issues and analysed data. Hydrocephalus can manifest as
an enlargement of numerous, often asymmetrical regions,
whereas the physiological ventricular system maintains well-
defined symmetry.

Other approaches include analysis of cranial ultrasound
for ventricular system segmentation [18]; however, sonogra-
phy andCTare imagemodalities that differ greatly.Therefore,
we were not able to compare those results with ours.

1.3. Objective. The purpose of this study was to develop
fully automated system that, given CT examination of the
hydrocephalic patient, will calculate CSF volume within the
ventricular system. An important modification was to create
a system capable of comparing two examinations that yielded
exact changes in volume between them.

2. Materials and Methods

2.1. Dataset Collection and Data Preprocessing. All CT
scans were selected retrospectively from the department of
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Table 1: Low dose and standard dose CT scan protocols along with reconstruction parameters. All scans were acquired using a Siemens
Somatom Definition AS.

Low dose protocols
Average effective dose 1.85
mSv (std. 0.58 mSv)

For children over 1 but under 6
years of age

Tube current: Eff mAs CARE Dose4D
Tube potential: 120 kV

Reconstruction algorithm: Kernel C30s med. smooth FR
Reconstructed slice thickness: 1.0 mm

For children over 6 years of age

Tube current: 200 effective mAs
Tube potential: 120 kV

Reconstruction algorithm: Kernel H31f medium smooth +
Reconstructed slice thickness: 1.0 mm

Standard dose protocols
Average effective dose 3.16
mSv (std. 0.75 mSv)

For children under 6 years of age

Tube current: Eff mAs CARE Dose4D
Tube potential: 120 kV

Reconstruction algorithm: Kernel C30s med. smooth FR
Reconstructed slice thickness: 1.0 mm

For children over 6 but under 10
years of age

Tube current: Eff mAs 286
Tube potential: 120 kV

Reconstruction algorithm: Kernel H30s medium smooth
Reconstructed slice thickness: 1.0 mm

For children over 10 years of age

Tube current: Eff mAs 343
Tube potential: 120 kV

Reconstruction algorithm: Kernel H30s medium smooth +
Reconstructed slice thickness: 1.0 mm
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Figure 2: Patient age distribution in the dataset. This research
included patients between 0 and 18 years of age. The most prevalent
age in the dataset was between 2 and 3 years of age and between
13 and 14 years of age with nine examinations per group. The least
represented groups were patients between 8 and 9 years of age and
between 11 and 12 years of age with one examination in each group.

radiology database at Karol Jonscher University Hospital,
Poznan, Poland. Inclusion criteria consisted of patients aged
between 0 and 18 years and either a new diagnosis of
hydrocephalus or active treatment for this condition. We
collected 80 CT scans from 63 patients. 46% of examinations
were performed on female patients and 54% onmale patients.
Figure 2 shows patient age distribution in the dataset. We
analysed data as two-dimensional arrays; therefore, our data
consisted of 19,443 2D images with approximately 240 images
per examination.

In 43 CT scans, a low dose protocol was used, and in the
remaining 37 a standard CT protocol was followed. Technical
parameters of CT protocols are summarized in Table 1.

We randomly split our data into a training set containing
73 CT scans and a test set with the remaining 7 scans. The
test set was kept separate for the whole process of training
and refinement of our methods. It was used only once at the
very end, after the training algorithm was used with optimal
parameters.

For data segmentation, a 3D Slicer version 4.10 [19] was
used. Each CT examination was segmented by radiologist in
training and verified by radiology specialist with experience
in paediatric hydrocephalus imaging. Segmentations and
corresponding scans were stored as DICOMfiles. To facilitate
data preparation, after obtaining 50 segmentations we trained
amodel that was used as a tool for preliminary segmentation.
Those images were corrected afterwards by radiologist in
training and verified by specialists in the same fashion as the
first 50 examinations.

Raw data was transformed to match the visual settings
used by radiologists to assess the extent of hydrocephalus.
Transformations consisted of clipping pixel values outside
the range of -100 to 100 and projecting those values to 0
to 255 array of integer values and subsequently applying
histogram equalization, a method used to increase the global
contrast of the image. Clipping pixel values of the images to
this range was chosen experimentally. Figure 3 demonstrates
preprocessing visually.

2.2. Algorithm Architecture and Training Process. U-Net,
a network introduced by Ronnenberger et. al. [20], was
our architecture of choice. It contains important features
different from previous research approaches: downsampling
(encoder) and upsampling (decoder), part of neural networks
and so-called skip connections between those two. While
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Figure 3: Two steps of preprocessing applied to every image in our dataset. Lower images show histograms at each state of the preprocessing
(i.e., distribution of pixel values). First step (yellow arrows) consists of clipping pixel values outside -100 and 100 range and projecting those
values to 0 to 255 array of integers. Second step (blue arrows) is a histogram equalization, a process of redistribution of most frequent intensity
values on the image to increase global contrast.

Table 2: Parameters of neural network architecture that were used consistently during training.

Network architecture Training Optimization
Encoder ResNet34 Learning rate 1e-4 Optimizer Adam
Image size 512 x 512 Number of epochs 4 Learning rate policy 1cycle
Self-attention True Batch size 10 Loss Generalized dice loss
Precision FP16 Weight decay 1e-7

introducing those novelties it was able to outperform state-of-
the-art methods at the time of publication in biomedical data
segmentation [20] and still remains the method of choice for
many segmentation problems. Figure 4 presents a conceptual
architecture of U-Net.

In our modification of U-Net, ResNet34 [21] was used
as an architecture for the encoder, and accordingly the
decoder, which let us apply the idea of transfer learning. We
initialized the encoder with weights learned on ImageNet
dataset. This allowed the network to understand basic shapes,
like edges and their composition [22]. As an upsampling
method, we chose a pixel shuffle with subpixel convolution
initialization [23] to reduce any checkerboard artefact effect.
To improve regular convolution, a self-attention mechanism
was used, which initially worked very well with Generative
adversarial networks [24] and later proved to work with other
architectures. The fastai library [25] was used for training,
validation, and testing. The encoder (ResNet34) was trained
using regular images with all three channels (RGB). As our
data is a 512 by 512 pixel grayscale image, transfer learning
was applied by copying the same image to all RGB channels.
Neural networks were trained with batches of ten 2D images,
which is the maximum we were able to fit into the GPU
memory (12 GB) used. Hyperparameters of the network were

chosen by running a series of experiments where their impact
was analysed. During training, the “1cycle” [26] learning rate
policy was utilized instead of a flat learning rate, which is
an improved version of cyclical learning rates [27]. Half-
precision training was also used, which allowed us to both
accommodate bigger batches within the GPU memory and
improve results. Another advantage of training with lower
precision is that it may be easier to deploy trained model
in the future. During the training process we used the
Adam [28] optimization algorithm. To reduce the problem of
unbalanced classes, the generalized dice loss [29] was applied
as a loss function. Table 2 summarizes hyperparameters along
with other net parameters.

2.3. Postprocessing. We trained the model using 2D images.
Predictions might contain inconsistencies because they were
made one slice at the time, without knowing what was on
the slice above and the slice below. That issue was addressed
in postprocessing by removing or adding segmented pixels
depending on the neighbour slice predictions. The algorithm
was as follows:

(1) All slices of an examination are predicted.
(2) Each slice (except first and last ones) was processed

by analysing its pixels and the pixels from the slice
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Figure 4: U-Net architecture consists of encoder and decoder steps.The encoder is based on ResNet34, which is the downsampling step.The
decoder consists of symmetric layers that perform the upsampling step.Themodel uses skip-connection for better reconstruction of original
image and prevention of vanishing gradient problem. The output is a probability matrix specifying whether given voxel is CSF.

above and the slice below, according to precise
rules:

(a) If both pixels on the slices above and below have
been segmented as CSF and the current slice’s
pixel was not, then it was relabelled as CSF.

(b) If the opposite situation happened (i.e., both
neighbours segmented as non-CSF, while

current slice was labelled as CSF), then the pixel
was relabelled to non-CSF.

An example of postprocessing is demonstrated as follows.

Postprocessing Example on 4 × 4 Matrix. In this setting, “1”
represents CSF

Predictions

Slice below

[[[[[
[

0 0 0 0
0 1 1 0
0 0 1 0
0 0 0 0

]]]]]
]

Current slice

[[[[[
[

0 1 0 0
0 0 1 0
0 1 1 0
0 0 1 0

]]]]]
]

Slice above

[[[[[
[

0 0 0 0
0 1 1 0
0 0 0 0
0 0 1 0

]]]]]
]

→

Processed current slice

[[[[[
[

0 0 0 0
0 1 1 0
0 0 1 0
0 0 1 0

]]]]]
]

(1)

2.4. Evaluation. The model performance was evaluated via
10-fold cross validation [30]. Our data contains patients that
have more than one segmented examination (63 patients,

80 CT scans). To prevent overfitting and data leakage, scans
were grouped via patients, not examinations. As the number
of patients with multiple examinations was smaller than
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Table 3: Folds used for cross-validation.

Fold Patients in validation set Number of examinations in validation set
0 P26,P31,P17,P40,P52,P25 6
1 P12,P33,P36,P20,P15,P39 7
2 P7,P28,P53,P34,P14,P41 7
3 P9,P56,P54,P24,P43,P47 7
4 P11,P13,P16,P21,P45,P38 7
5 P8,P27,P22,P6,P48 7
6 P3,P30,P55,P23,P35 7
7 P1,P4,P29,P49,P32 7
8 P5,P2,P37,P50,P51 8
9 P10,P19,P44,P46,P18 9

Table 4: Aggregated results for 10-fold cross validation.

Without post-processing With post-processing
Mean Std Mean Std

Dice 0.9153 0.0351 0.9174 0.0352
IOU 0.8499 0.0553 0.8535 0.0557
Accuracy 0.9970 0.0016 0.9971 0.0016
Precision 0.9352 0.0236 0.9402 0.0213
Recall 0.9036 0.0445 0.9033 0.0462
Volumetric similarity 0.9644 0.0173 0.9637 0.0186

Table 5: Aggregated results for test set.

Without post-processing With post-processing
Mean Std Mean Std

Dice 0.9482 0.0288 0.9506 0.0276
IOU 0.9027 0.0515 0.9069 0.0494
Accuracy 0.9969 0.0022 0.9970 0.0021
Precision 0.9433 0.0436 0.9463 0.0424
Recall 0.9549 0.0386 0.9566 0.0367
Volumetric similarity 0.9766 0.0223 0.9778 0.0218

ten, each of those patients was first assigned to different
folds and all the remaining patients were randomly sampled.
This assured that each fold had a comparable number of
examinations and patients. Details of the folds used can be
found in Table 3.

For each of the folds, the modelwas trained with the exact
same hyperparameters for four epochs using the training set.
For evaluation, the following metrics were used: accuracy,
dice, IOU (Intersection over Union, or the Jaccard Index),
precision, recall, and volumetric similarity. Comprehensive
explanations and comparison of these metrics can be found
in [30]. Each metric was calculated on a single examination
(3D image) and averaged between all patients in the fold.
Those results were then aggregated using mean and standard
deviation to show variability between folds.

3. Results

Detailed results of the 10-fold cross validation can be found
in Table 4.With postprocessing, this fully automated method

of segmentation achieved 0.9174mean dice score with 0.0352
standard deviation (std). Applying postprocessing improved
the results for dice, IOU, and precision metrics. The impact
on other metrics was insignificant.

Detailed results of the test set evaluation can be found
in Table 5. Mean dice score 0.9506 with 0.0276 standard
deviation was achieved. Applying postprocessing improved
dice, IOU, and precisionmetrics.The impact on othermetrics
was insignificant. The effect of postprocessing resembles the
one in cross validation.

4. Discussion

While previously published methods concerning CSF seg-
mentation were based on thresholding techniques, edge-
detection, boundary-following methods, or a combination of
these [11], theywere based on a few assumptions. For example,
thresholding, which assumes that CSF is homogeneous in
terms of radiodensity as measured in terms of Hounsfield
units, is unable to take into account differences between
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various CT scanners; therefore, five different research groups
came up with five different cut-off values when exploring
those methods [29]. Novel techniques of medical image
segmentation include convolutional neural networks, which
do not rely on small numbers of well-defined rules, but by
definition have millions of parameters.

We propose a fully automated segmentation method that
addresses specific clinical problem, i.e., monitoring outcomes
in patients with hydrocephalus. This method, based on deep
convolutional neural networks, uses two CT scans of the
patient as the input and provides the answer to the question
asked by paediatric neurosurgeons—did the volume of CSF
increase, and if yes, by what amount? The motivation for our
work comes from an observation that current methods face
two fundamental problems. They are either very subjective
(without any consistent approach) or time-consuming (man-
ual workwith a rigorous approach). Both of these are harmful
to the quality results of patient examination and healthcare
costs; therefore, faster andmore objective solution are in high
demand.

Code for this research was based on the fastai library
[25], which offers ready-to-use innovative deep learning
tools and algorithms. By applying such state-of-the-art deep
learning methods for this task, human-like performance
was achieved. However, exploration of other deep learning
methods, especially 3D analysis, could further improve the
results. Other researchers have reported improvements in
segmentation scores when applying 3D analysis to their
data [31]. Unfortunately, due to hardware restrictions, 3D
analysis could not be performed at this stage of research.
Figure 5 demonstrates examples of mistakes made by auto-
mated segmentation on sagittal reconstruction of CT scans.
A lack of 3D analysis of the examinations can be observed
in discontinuity of CSF regions when visualized in sagittal
plane (algorithm makes predictions on axial scans). Another
potentially beneficial field of subsequent research would be
increasing the number of CT scans analysed; howevermanual
segmentation (which is crucial for data preparation) is time-
consuming task.

All code used for this research is available on GitHub
repository [32]. With the provided code, it is possible to
reproduce the process of training on another dataset.

During the fine-tuning of the algorithm, many parame-
ters were tested, and we think that sharing some of the paths
that lead to worse performance would benefit the research
community. We explored progressive resizing of input data
during training, which consists of a training algorithm on
the same dataset performed a few times, but with increasing
resolution. An example of this approach would be training
on 64 × 64 images, then 128 × 128, and finally 512 ×
512 pixels data. Combining three consecutive CT slices as
image channels was also tested, as it was presumed that it
would provide more information about the 3D context of
the image being segmented. None of these were showing
significant improvements to the results, and some proved to
be computationally more challenging.

Limitations of this study include potential bias in the
algorithm performance due to small number of radiolo-
gists that performed segmentation tasks. Even though we

Figure 5: Examples of automatic segmentation (right column, blue
line) and ground truth (left column, yellow line). Ground truth
in our dataset is obtained by manual segmentation of ventricular
system by radiologist in training and verification by the radiology
specialist.

validated our data carefully, there might be mistakes in
our segmentation that we are not aware of, which the
algorithm will reproduce. Another limitation is a derivative
of our dataset. Hydrocephalus is a condition that affects also
adults. Unfortunately our hospital is focused on treatment of
paediatric patients; therefore, it was not evaluated on adult
hydrocephalic patients due to the lack of data.

5. Conclusions

In summary, automated methods of CSF segmentation using
deep learning state-of-the-art techniques were proven to
work in highly diverse dataset of hydrocephalic, paediatric
patients. With scores indicating near human-level perfor-
mance, this method may be applied in a clinical setting as an
aid to paediatric radiologists or neurosurgeons, providing a
time-saving and reliable alternative to manual segmentation.
To facilitate implementation in a clinical setting in other
hospitals and to encourage further research in the field, we
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provide free access to all the code we produced for this
research.

Data Availability

The CT scans used to support the findings of this study
are available from the corresponding author upon request
for researchers who are able to provide data anonymization
framework implementing techniques, such as skull stripping
[33]. Additional consent from the bioethical commission
and Hospital board may be required. We provide GitHub
repository with the code used in this project for possible
improvements of our methods by other researchers. With
the provided code, it is possible to reproduce the process of
training on another dataset. Additionally, we plan to create a
website where other researchers and radiologists may try our
method on their own datasets. The link to it will be available
on the GitHub repository.
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