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a b s t r a c t

Emerging infectious diseases are one of the global public health problems which may lead
to widespread epidemics and potentially life-threatening infection. Integrated vaccination
and physical distancing interventions are two elementary methods for preventing infec-
tious diseases transmission. In this paper, we construct a continuous age-structured model
for investigating the transmission dynamics of an emerging infection disease during a
short period. We derive the basic regeneration number R 0, the spectral radius of the next
generation operator K , which determines the disease outbreak or not. Furthermore, we
propose an optimal control problem to take account for the cost-effectiveness of social
distancing intervention and vaccination. We rigorously obtain sufficient conditions for a L1

control problem. Numerical simulations show that coupling integrated vaccination and
physical distancing intervention could effectively eliminate the infection, and such control
strategy is more sensitive for people aged 10e39 and over 60.

© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Emerging infectious diseases are infections that have recently appeared within a population or those whose incidence or
geographic range is rapidly increasing or threatens to increase in the near future (Jones et al., 2008). Since 1940, there has
been reported more than 335 emerging infectious diseases caused by pathogens, including newly evolved strains of path-
ogens (muti-strain resistent tuberculosis and chloroquine-resistent malaria), novel pathogens (HIV-1, SARS and COVID-19),
and historically existing and recently increasing pathogens (Lyme and Ebola). The continuous outbreaks of emerging in-
fectious diseases have led to some extremely serious impacts on global public health and economics. As reported, about
575,400 people worldwide died from H1N1 infection in 2009, SARS firstly reported in 2003 has spread more than 29
countries with 8096 cases and with 774 deaths, Ebola periodically appears and leads to more than 27,000 infectives andmore
than 11,000 deaths. Especially, COVID-19 has caused by a new coronavirus, and SARS-CoV-2 has resulted in more than 200
million cases and with 2.5 million deaths and it plausibly survives together with mankind. Hence, it is an ungent need to find
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suiTable quantitative and qualitative theories and approaches for exemplifying key principles and providing pertinent control
measures.

The mathematical modeling of infectious diseases is an useful tool to understand the mechanisms of infectious diseases,
which can anticipate their future development trend and evaluate control measures (Martcheva, 2015a). Pandemic H1N1 is
transmitted by person-to-person (Fraser et al., 2009); Middle East Respiratory Syndrome-associated coronavirus (MERS-CoV)
is driven by zoonotic infections from camels (Cauchemez et al., 2016); Ebola is spread through direct with serious sick or dead
individuals (Agua-Agum et al., 2016); Zika virus has proved through mosquito-to-human (Majumder et al., 2018); COVID-19
can be transmitted by both person-to-person and environment-to-human (Eslami & Jalili, 2020). These identified mecha-
nisms are in favor of understanding the principles of the disease dynamics and designing corresponding control strategies. To
evaluate the seriousness of emerging infectious diseases, forecasting future epidemic trajectory and potential numbers of
unobserved cases become an ungent issue. Bayesian probability models are usually employed to predict the incidence cases
and correct the underestimations for fatality rate (Ghani et al., 2005). Facing an emerging infectious disease outbreak, one
commonsense view is to develop a instant vaccine and exploit antiviral therapy, as well as improve the early detection, isolate
the diagnosed cases and quarantine those individuals close contacting with confirmed cases for reducing the prevalence.
Antimicrobial use and antiviral prophylaxis have been illustrated effectively to develop resistance and delay the spread of
influenza pandemic (Glass et al., 2006) and it also involves social distancing measures such as isolation of suspected cases,
school closures, travel restrictions and cancellation of mass gathering (Gojovic and SanderFisman, 2009). Massive vaccination
has been extensively programmed to prevent the transmissions of COVID-19, HBV and HPV (Beutels, 1988; Lazarus et al.,
2021).

Most of epidemic models have been assumed to bewell-mixed with homogeneous disease infection between susceptibles
and infectives. Generally, such homogeneous assumptions are suiTable to study the diseases well established in a population
and it means that the transmission equally happens among humans, regardless of their age or any other behavior traits.
However, some evidences and serological surveys have shown that the frequency of immunity to disease increases with age
(Anderson&May 1974). The gradual increase of age-dependent variation in severity has been observed (Gao et al., 2016). The
influenza mortality rate ranks children, young adults and the elderly (Oei&Nishiura, 2012). About 31e59% of the most severe
symptomatic cases and particularly fatal cases of COVID-19 caused by SARS-Cov-2 have age from 75 to 84 (Ahmed et al.,
2020). Understanding the role of age in transmission and disease severity is significant for determining the likely impact
of social distancing interventions and vaccination programmes. Age-structured epidemic models have been proposed to
characterize the heterogeneous transmission such as variable infectivity and variable susceptibility to infection (Li et al.,
2020; Metz, 1978).

Response to an emerging infectious disease, policymakers and public health governments instantly take quarantine,
isolation, treatment and vaccination for curbing the disease dispersion. Limitation to the knowledge of the disease, various
resource productionwould likely be insufficient (Matrajt et al., 2021) and then effective disease controls will become a critical
problem. The optimal control theory (Lev Semenovich Pontryagin, 1987; Wendell & Rishel, 2012) is a practical theory in
epidemic control (Blayneh et al., 2009; Lenhart&Workman, 2007) with goals of reducing the deaths of infected individuals to
project cost-effective intervention measures. Most of optimal control problems described by ordinary differential equations
can be resolved by Pontryagins Maximum Principle, however, it is not always useful for studying such problems in L1 space
due to lack of the regularity of the solution of the state equations. As the aforementioned matter, age-heterogeneity is a key
factor affecting the emerging infectious diseases spread. Hence, using time-dependent and age-specific control functions to
measure the effectiveness of strategies is a feature of emerging infection disease model (Lee et al., 2012). Kwon et al.
investigated the optimal treatment strategies with an age-structured model of HIV infection, and numerical simulations have
demonstrated that the dynamic treatment strategy delays the peak arrival time of viral loads and reduces the sizes of that
load (Kwon et al., 2012). Demasse et al. proposed three control strategies, such as minimizing immunization of young adults,
the reduction of perinatal infection and treatment of HBV symptomatic infections, to optimize HBV-related deaths through
the cost-effective analysis. They showed that mass vaccination in infants might be not enough to eradicate the virus, and an
optimal control strategy is a combination of immunization of young adults and treatment of HBV symptomatic infections
(Demasse et al., 2016).

The main contributions of this paper contain two aspects. One is that we construct a mathematical model to characterize
the age-heterogeneity of an emerging infectious disease model and furthermore, we propose two age-time varying control
measures-reducing social distance and mass vaccination to reduce the deaths of infected cases. To overcome the regularity
problem of a L1 control problem, we rigorously prove the existence of the optimal control and clarify the specific conditions of
such existence by Ekerland variational principle.

The structure of this paper is organized as follows. In Section 2, we propose an age-structured model, calculate the basic
reproduction number and completely study the global stability of the disease-free steady state. In Section 3, we take account
for an optimal control problem dealing with mass vaccination efforts and reducing physical distancing. In this part, we take a
great effort to prove the sufficient and necessary conditions of the existence of the optimal control pairs. Section 4 is conduct
to the numerical experiments for identifying the optimal control strategies. The paper ends with a brief discussion in the last
section.
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2. Age-structured model formulation

In this paper, we focus on infections recently appeared within a population in a short period. In this case, we ignore the
demography of the population, and consider the age heterogeneity.

Facing an emerging disease, vaccination is one of the effective control strategies for combating it. We divide the total
population into six disjoint classes: susceptible, the latent, the infected, the hospitalized, the recovered and the vaccinated.
S(t, a) denotes the density of susceptibles of age a at time t; E(t, a) denotes the density of the exposed of age a at time t; I(t, a)
denotes the density of infectives of age a at time t; H(t, a) denotes the density of the hospitalized of age a at time t; V(t, a)
denotes the density of the vaccinated of age a at time t; R(t, a) denotes the density of the recovered of age a at time t. Sus-
ceptibles with age a can be infected by infected individuals of age b at rate b(a, b) andmove to the exposed class. A susceptible
is vaccinated at rate j(a) and then becomes a vaccinator. The exposed transfer to the infected at rate a(a). Infectious in-
dividuals have been confirmed to be hospitalized individuals at rate h(a), and both infected and hospitalized individuals are
recovered at rate g(a) and die at rate d(a). The vaccinated individuals can be infected at a reduced coefficient d compared with
an original infection. To address the above mechanisms, we propose an age-structured emerging disease model as follows:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

vSðt; aÞ
vt

¼ �Sðt; aÞ
Zu
0

bða; bÞ Iðt; bÞ
Nðt; bÞdb� jðaÞSðt; aÞ;

vEðt; aÞ
vt

¼ ðSðt; aÞ þ dVðt; aÞÞ
Zu
0

bða; bÞ Iðt; bÞ
Nðt; bÞ db� aðaÞEðt; aÞ;

vIðt; aÞ
vt

¼ aðaÞEðt; aÞ � ðhðaÞ þ gðaÞ þ dðaÞÞIðt; aÞ;
vHðt; aÞ

vt
¼ hðaÞIðt; aÞ � ðgðaÞ þ dðaÞÞHðt; aÞ;

vVðt; aÞ
vt

¼ jðaÞSðt; aÞ � dVðt; aÞ
Zu
0

bða; bÞ Iðt; bÞ
Nðt; bÞ db;

vRðt; aÞ
vt

¼ gðaÞHðt; aÞ þ gðaÞIðt; aÞ;

(2.1)
where u is the maximal active age for a person. System (2.1) has the following initial and boundary conditions:

Sð0; aÞ ¼ S0ðaÞ; Eð0; aÞ ¼ E0ðaÞ; Ið0; aÞ ¼ I0ðaÞ;
Hð0; aÞ ¼ H0ðaÞ; Vð0; aÞ ¼ V0ðaÞ; Rð0; aÞ ¼ R0ðaÞ:
The total population N(t, a) ¼ S(t, a) þ E(t, a) þ I(t, a) þ H(t, a) þ V(t, a) þ R(t, a) satisfies

vNðt; aÞ
vt

þ vNðt; aÞ
va

¼ �dðaÞ½Iðt; aÞþHðt; aÞ�; Nð0; aÞ ¼ N0ðaÞ:
To study the dynamics of model (2.1), we make following assumptions on the model parameters from biological and
mathematical view of points.

Assumption 2.1. (1) The functions b2CBUðRþ � Rþ; RþÞ, where CBU is the set of all bounded and uniformly continuous
functions from Rþ � Rþ to Rþ(2) jð,Þ;að,Þ;hð,Þ;dð,Þ;gð,Þ2L∞þ ðRþÞ, L∞þ ðRþÞ is the positive cone of L∞ðRþÞ.

Obviously, system (2.1) always has the following disease-free equilibrium E0:

(1) If j(a) ¼ 0, system (2.1) has a disease-free equilibrium E01 ¼ (S0(a), 0, 0, 0, 0, 0);
(2) If j(a) s 0, system (2.1) has a disease-free equilibrium E02 ¼ (0, 0, 0, 0, V0(a), 0).

Linearising system (2.1) around E01 in the disease invasion phase, we have that
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8>>><
>>>:

vEðt; aÞ
vt

¼ S0ðaÞ
Zu
0

bða; bÞ Iðt; bÞ
N0ðbÞ

db� aðaÞEðt; aÞ;

vIðt; aÞ
vt

¼ aðaÞEðt; aÞ � ðhðaÞ þ gðaÞ þ dðaÞÞIðt; aÞ;

(2.2)
where NðaÞ
0 is the initial total population with age a. Let us define a linear operator F : Rþ/Rþ by

F½4�ðaÞ ¼ S0ðaÞ
Zu
0

bða; bÞ 4ðbÞ
N0ðbÞ

db:
Dropping off the term F and solving the first equation of (2.2) result in

Eðt; aÞ ¼ E0ðaÞe�aðaÞt : (2.3)
Substituting (2.3) into the second equation of (2.2), we obtain

Iðt; aÞ ¼ I0ðaÞe�ðhðaÞþgðaÞþdðaÞÞt þ E0ðaÞ
�
1� e�aðaÞt

�
: (2.4)
Without loss of generation, let us assume E0(a) ¼ 0 for any a2Rþ. Hence, the inverse of V is calculated by

V�1½I�ðaÞ ¼
Z∞
0

Iðt; aÞdt ¼ I0ðaÞ
hðaÞ þ gðaÞ þ dðaÞ:
Therefore, the next generation operator K is defined by

K ½4�ðaÞ ¼ FV�1½4�ðaÞ ¼ S0ðaÞ
Zu
0

bða; bÞ4ðbÞ
N0ðbÞðhðbÞ þ gðbÞ þ dðbÞÞ db: (2.5)
Thus, the reproduction number R 01 is defined by

R 01 ¼ rðK Þ; (2.6)
where r denotes the spectral radius. Similarly, let us proceed the above process around the other disease-free equilibrium E02.
We obtain the reproduction number for Case (2) as follows

R 02 ¼ rðK 1Þ; (2.7)
where

K 1½4�ðaÞ ¼ dV0ðaÞ
Zu
0

bða; bÞ4ðbÞ
N0ðbÞðhðbÞ þ gðbÞ þ dðbÞÞdb:
Theorem 2.1. Let R 0jðj¼ 1;2Þ be defined in equations (2.6) and (2.7). If R 0j <1ðj¼ 1;2Þ, then the disease-free equilibrium
E0j(j ¼ 1, 2) is locally asymptotically stable.

Proof. Linearising system (2.1) around E01, one reaches
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8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

vsðt; aÞ
vt

¼ �S0ðaÞ
Zu
0

bða; bÞ iðt; bÞ
N0ðbÞ

db;

veðt; aÞ
vt

¼ S0ðaÞ
Zu
0

bða; bÞ iðt; bÞ
N0ðbÞ

db� aðaÞeðt; aÞ;

viðt; aÞ
vt

¼ aðaÞeðt; aÞ � ðhðaÞ þ gðaÞ þ dðaÞÞiðt; aÞ;

vhðt; aÞ
vt

¼ hðaÞiðt; aÞ � ðgðaÞ þ dÞhðt; aÞ:

(2.8)
Letting s(t, a)¼ x(a)elt, e(t, a)¼ y(a)elt, i(t, a)¼ z(a)elt, and h(t, a)¼ l(a)elt, and then replacing them in (2.8), one arrives at

8>>>>>>>>>><
>>>>>>>>>>:

lxðaÞ ¼ �S0ðaÞ
Zu
0

bða; bÞzðbÞ
N0ðbÞ

db;

ðlþ aðaÞÞyðaÞ ¼ S0ðaÞ
Zu
0

bða; bÞ zðbÞ
N0ðbÞ

db;

ðlþ ðhðaÞ þ gðaÞ þ dðaÞÞzðaÞ ¼ aðaÞyðaÞ;
ðlþ ðgðaÞ þ dðaÞÞlðaÞ ¼ hðaÞzðaÞ:

(2.9)
If l s � (h(a) þ g þ d(a)), one has that

zðaÞ ¼ aðaÞyðaÞ
lþ hðaÞ þ gðaÞ þ dðaÞ:
Replacing z(a) in the second equation of (2.9) leads to

ðlþaðaÞÞyðaÞ ¼ S0ðaÞ
Zu
0

bða; bÞ aðbÞyðbÞ
ðlþ hðbÞ þ gþ dðbÞÞN0ðbÞ

dbdK ½ay�ðaÞ: (2.10)
Suppose by argument, provided (2.10) has an eigenvalue l with non-negative real parts, then the left modulus of (2.10) is
larger than kað,Þyð,ÞkL1 . On the other hand, the right side of (2.10) is less kað,Þyð,ÞkL1 if R 0 <1. This leads to a contradiction.
Hence, the roots of equation (2.10) have only negative real parts.

If l ¼ � (h(a)þ g(a) þ d(a)), then one has that y(a) ¼ 0 for a.e. a2Rþ. From the second and the fourth equations of (2.9), it
follows that

zðaÞ ¼ lðaÞ ¼ 0; a:e:a2Rþ:
Substituting these quantities into the first equation of (2.9), one must concludes that x(a) ¼ 0, for a.e. a2Rþ, or l ¼ 0. The
first case is impossible since (x,y,z,l)T is an eigenvector associated an eigenvalue l. For the last case, for ε > 0 small enough,
then for any

Ru
0 js0ðaÞ� xðaÞjda< ε=2,

Zu
0

jsðt; aÞ � xðaÞjda �
Zu
0

jsðt; aÞ � s0ðaÞj þ js0ðaÞ � xðaÞjda ¼ 2
Zu
0

js0ðaÞ � xðaÞjda< ε: (2.11)
Therefore, for any case, the disease-free equilibrium E01 is locally asymptotically sTable if R 01 <1.
Proceeding the similar process, we can conclude the local stability of E02 if R 02 <1. This completes the Proof.

Theorem 2.2. Suppose d(a) ¼ 0 for all a2Rþ. If R 0j <1ðj¼ 1;2Þ, then the disease-free equilibria E0j is globally asymptotically
stable.

Proof. Provided j(a) ¼ 0 for any a2Rþ, then we have from the first and fifth equations known that for a2Rþ,
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Sðt; aÞ � S0ðaÞ; lim
t/þ∞

Vðt; aÞ ¼ 0:

If d(a) ¼ 0, adding all the equations of (2.1) yields to vN (t, a) ¼ 0, and so that N(t, a) ¼ N (a) for each pair ðt;aÞ2R2 . From
t 0 þ
Assumption 2.1, we have known that K 1 has a positive left eigenvector U(a) associated with R 01 such that

UðaÞK ½4�ðaÞ ¼ R 014ðaÞUðaÞ:
Now, we construct a Lyapunov functional as follows

L½E; I� ¼
Zu
0

UðaÞ½Eðt; aÞþ Iðt; aÞ�da:
Taking the derivative of L along the trajectory of (2.1), one arrives at

vL½E; I�
vt

jð2:1Þ ¼
Zu
0

UðaÞ
�
vEðt; aÞ

vt
þ vIðt; aÞ

vt

�
da

�
Zu
0

UðaÞðK ½ðgðaÞ þ hðaÞ ÞI �ðt; aÞ � ðgðaÞ þ hðaÞ ÞIðt; aÞ Þdaþ εu

¼
Zu
0

UðaÞðR 01 � 1ÞðgðaÞ þ hðaÞ ÞIðt; aÞdaþ εu:

(2.12)

2
From the arbitrary of ε, we have that vLt � 0 and the equality holds if and only if I(t, a) ¼ 0 for ðt;aÞ2Rþ. Therefore, the
largest invariant setM ¼ f42X

��� _L¼ 0g contains a singleton point E01. By LaSalle invariant principle, we have that the disease-
free equilibrium E01 is globally attractive when R 01 <1 and d(a) ¼ 0.

Similarly, we conclude that the disease-free equilibrium E02 is also globally asymptotically sTable if R 02 <1.
3. An optimal control problem

3.1. Model with interventions

As mentioned in Introduction, we introduce such two strategies: reducing physical distance and taking mass vaccination
to find an optimal intervention through minimizing the disease-related deaths and the costs for control implementation.
Then, an age-structured epidemic model with two kinds of intervention strategies is described by the following system:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

vSðt; aÞ
vt

¼ �Sðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞÞ
Iðt; bÞ
Nðt; bÞdb� ð1þ u2ðt; aÞÞjðaÞSðt; aÞ;

vEðt; aÞ
vt

¼ ðSðt; aÞ þ dVðt; aÞÞ
Zu
0

bða; bÞð1� u1ðt; bÞÞ
Iðt; bÞ
Nðt; bÞdb� aðaÞEðt; aÞ;

vIðt; aÞ
vt

¼ aðaÞEðt; aÞ � ðhðaÞ þ gðaÞ þ dðaÞÞIðt; aÞ;
vHðt; aÞ

vt
¼ hðaÞIðt; aÞ � ðgðaÞ þ dðaÞÞHðt; aÞ;

vVðt; aÞ
vt

¼ ð1þ u2ðt; aÞÞjðaÞSðt; aÞ � dVðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞÞ
Iðt; bÞ
Nðt; bÞdb;

vRðt; aÞ
vt

¼ gðaÞHðt; aÞ þ gðaÞIðt; aÞ;

(3.1)

where u1 and u2 denote the two control variables of age a and time t. The parameters and state variables remain the same
meaning as model (2.1).
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Setting x(t, ,) ¼ (S(t,,); E(t,,); I(t,,); H(t,,); V(t,,); R(t,,))T, system (3.1) becomes8<
:

vtxðt; aÞ ¼ f ðt; a; xðt; aÞ;u1ðt; aÞ;u2ðt; aÞÞdf ðt; aÞ;
xðt;0Þ ¼ 0;

xð0; ,Þ ¼ x0ð,ÞdðSð0; ,Þ; Eð0; ,Þ; Ið0; ,Þ;Hð0; ,Þ;Vð0; ,ÞÞ;
(3.2)

where
f ðt; aÞd

0
BBBBBBBBBBBBBBBBBB@

�Sðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞÞ
Iðt; bÞ
Nðt; bÞdb� ð1þ u2ðt; aÞÞjðaÞSðt; aÞ

ðSðt; aÞ þ dVðt; aÞÞ
Zu
0

bða; bÞð1� u1ðt; bÞÞ
Iðt; bÞ
Nðt; bÞdb� aðaÞEðt; aÞ

aðaÞEðt; aÞ � ðhðaÞ þ gðaÞ þ dðaÞÞIðt; aÞ
hðaÞIðt; aÞ � ðgðaÞ þ dðaÞÞHðt; aÞ

ð1þ u2ðt; aÞÞjðaÞSðt; aÞ � dVðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞÞ
Iðt; bÞ
Nðt; bÞdb

gðaÞHðt; aÞ þ gðaÞIðt; aÞ

1
CCCCCCCCCCCCCCCCCCA

:

3.2. An optimal control question

As stated above, our goal is to find an optimal control strategy corresponding to age a and time t that minimizes both the
deaths due to disease and the costs of epidemic controls. We apply L1 optimal control theory to determine the “best”
vaccination regime and physical distancing interventions. To achieve this goal, we define the objective function by such two
interventions as follows:

J½u1ðt; aÞ; u2ðt; aÞ� ¼
ZTf
0

Zu
0

Mðt; a; x; u1;u2Þdadt; (3.3)

with

Mðt; a; x; u1;u2Þ ¼ B½dðaÞIðt; aÞþ dðaÞHðt; aÞ� þ A1

2
u21ðt; aÞ þ

A2

2
u22ðt; aÞ þ A3jðaÞSðt; aÞ;

where B, A1, A2, A3 are balancing coefficients and Tf counts the final time. The first sum in the integral is the cost of disease-
related deaths and the last three terms represent costs of vaccination and physical distancing interventions.

To derive the necessary optimality condition, we introduce a time-varying and age-varying Lagrange multiplier vector zðt;
aÞ ¼ ðlSðt; aÞ; lEðt; aÞ; lIðt; aÞ; lHðt; aÞ; lV ðt; aÞ; lRðt; aÞ ÞT , whose elements are called the adjoint variables of system (3.1). Next,
we define a generalized Hamiltonian function as follows:
Fig. 1. The contact matrix among six different age groups.
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Table 1
Definitions and values of parameters.

Symbols Parameters Values Unites Sources

b infection rate 0.0869 day�1 Rocha Filho et al. (2020)
d disease deduced death rate 0.017 day�1 Epidemiology Team. The ep (2020)
j vaccination rate 0.03 day�1 Rocha Filho et al. (2020)
d rate of loss of immunity 1/180 day�1 Rocha Filho et al. (2020)
1/a latent period 5 day�1 Linton et al. (2020)
1/h diagnostic period 3.3 day�1 Linton et al. (2020)
1/g recovery period 17.5 day�1 Wang et al. (2020)

Table 2
Initial values of state variables.

Parameter Value Parameter Value Parameter Value

S1(0) 2983907 S2(0) 11009702 S3(0) 2965179
E1(0) 1780 E2(0) 1495 E3(0) 1170
I1(0) 356 I2(0) 299 I3(0) 234
H1(0) 0 H2(0) 3 H3(0) 5
V1(0) 89517 V2(0) 330291 V3(0) 88955
R1(0) 0 R2(0) 2 R3(0) 4
S4(0) 2243257 S5(0) 1285473 S6(0) 998712
E4(0) 890 E5(0) 755 E6(0) 750
I4(0) 178 I5(0) 151 I6(0) 150
H4(0) 11 H5(0) 21 H6(0) 39
V4(0) 67297 V5(0) 38564 V6(0) 29961
R4(0) 9 R5(0) 17 R6(0) 32

Fig. 2. Curves of the total number of infections with different weights under strategy A-D with control parameter in three cases: (1) Low cost: A1 ¼ A2 ¼ 1; (2)
Moderate cost: A1 ¼ A2 ¼ 100; (3) High cost: A1 ¼ A2 ¼ 1000. The weight parameters are fixed as A3 ¼ B ¼ 1.

P. Jia, J. Yang and X. Li Infectious Disease Modelling 7 (2022) 149e169
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Table 3
Objective function values with different costs under strategy A-D.

Objective function Low cost Moderate cost High cost

Strategy A 17930120 17 930300 17931 852
Strategy B 10855028 10 856863 10862 809
Strategy C 10853586 10 853714 10862 018
Strategy D 17997930 17 997930 17997 930

Fig. 3. Epidemic curves of infected individuals in different age groups under strategy C. The red solid curves represent the infected number Ij(t), j ¼ 1, 2, …, 6
without control, the blue lines denote the infectives Ij(t), j ¼ 1, 2, …, 6, with strategy C. The parameters are fixed at A1 ¼ A2 ¼ A3 ¼ B ¼ 1.

P. Jia, J. Yang and X. Li Infectious Disease Modelling 7 (2022) 149e169
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H ðt; aÞ ¼ Mðt; a; x; u1;u2Þ þ zðt; aÞ,f ðt; aÞ

¼ BðdðaÞIðt; aÞ þ dðaÞHðt; aÞ Þ þ A1

2
u21ðt; aÞ þ

A2

2
u22ðt; aÞ þ A3jðaÞSðt; aÞ

þlSðt; aÞ
�
� Sðt; aÞ

Zu
0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
Nðt; bÞdb� ð1þ u2ðt; aÞ ÞjðaÞSðt; aÞ

�

þlEðt; aÞ
�
ðSðt; aÞ þ dVðt; aÞ Þ

Zu
0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
Nðt; bÞdb� aðaÞEðt; aÞ

�

þlIðt; aÞðaðaÞEðt; aÞ � ðhðaÞ þ gðaÞ þ dðaÞ ÞIðt; aÞ Þ
þlHðt; aÞðhðaÞIðt; aÞ � ðgðaÞ þ dðaÞ ÞHðt; aÞ Þ

þlV ðt; aÞ
�
ð1þ u2ðt; aÞ ÞjðaÞSðt; aÞ � dVðt; aÞ

Zu
0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
Nðt; bÞdb

�

þlRðt; aÞðgðaÞHðt; aÞ þ gðaÞIðt; aÞ Þ ;

(3.4)
where , represents an inner product. Let△x denotes the differentiationwith respect to variable x. The adjoint system is given
by (�vtzðt; aÞ ¼ △xMðt; aÞ þ zðt; aÞ,△xf ðt; aÞ;

z
�
Tf ; a

�
¼ 0; zðt;uÞ ¼ 0; (3.5)
that is
Table 4
Biomass under strategy C.

Age group The total number of infection The number of people who avoid becoming infected IAR

0e9 5644 40 201 0.860
10e39 4739 93 559 0.949
40e49 3715 24 793 0.850
50e59 2830 15 388 0.816
60e69 2404 75 664 0.968
� 70 2389 52 010 0.954

Table 5
Correlation values under different strategies.

Strategy The total number of infection The number of people who avoid becoming infected Objective function

Strategy A 21 858 379 679 17 930 120
Strategy B 87 149 314 388 10 855 028
Strategy C 21 844 379 693 10 853 586
Strategy D 401 537 e 17 997 930
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�vlSðt; aÞ
vt

¼
�Zu

0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
Nðt; bÞdb� Sðt; aÞ

Zu
0

bða; bÞð1� u1ðt; bÞ Þ

� Iðt; bÞ
N2ðt; bÞdb

!
ðlEðt; aÞ � lSðt; aÞ Þ þ jðaÞð1þ u2ðt; aÞ ÞðlV ðt; aÞ � lSðt; aÞ Þ þ A3jðaÞ

þdVðt; aÞ
Zu
0

bðt; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
N2ðt; bÞdbðlV ðt; aÞ � lEðt; aÞ Þ;

�vlEðt; aÞ
vt

¼ Sðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
N2ðt; bÞ dbðlSðt; aÞ � lEðt; aÞ Þ þ aðaÞðlIðt; aÞ � lEðt; aÞ Þ

þdVðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
N2ðt; bÞdbðlV ðt; aÞ � lEðt; aÞ Þ;

�vlIðt; aÞ
vt

¼ BdðaÞ þ Sðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞ Þ
 

1
Nðt; bÞ dbðlEðt; aÞ � lSðt; aÞ Þ �

Iðt; bÞ
N2ðt; bÞ

!
db

þdVðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞ Þ
 

1
Nðt; bÞ db� Iðt; bÞ

N2ðt; bÞ

!
dbðlEðt; aÞ � lV ðt; aÞ Þ

�ðhðaÞ þ gðaÞ þ dðaÞ ÞlIðt; aÞ þ gðaÞlRðt; aÞ þ hðaÞlHðt; aÞ;

�vlHðt; aÞ
vt

¼ BdðaÞ þ Sðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
N2ðt; bÞdbðlSðt; aÞ � lEðt; aÞ Þ

þdVðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
N2ðt; bÞdbðlV ðt; aÞ � lEðt; aÞ Þ

�ðgðaÞ þ dðaÞ ÞlHðt; aÞ þ gðaÞlRðt; aÞ;

�vlV ðt; aÞ
vt

¼ Sðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
N2ðt; bÞdbðlSðt; aÞ � lEðt; aÞ Þ

þd

�Zu
0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
Nðt; bÞdb

� Vðt; aÞ
Zu
0

bða; bÞð1� u1ðt; bÞ Þ
Iðt; bÞ
N2ðt; bÞdb

!
ðlEðt; aÞ � lV ðt; aÞ Þ;

�vlRðt; aÞ
vt

¼ Sðt; aÞ
Zu
0

bða; bÞð1� u1ðt; aÞ Þ
Iðt; bÞ
N2ðt; bÞdbðlSðt; aÞ � lEðt; aÞ Þ

þdVðt; aÞ
Zu
0

bða; bÞð1� u1ðt; aÞ Þ
Iðt; bÞ
N2ðt; bÞ dbðlV ðt; aÞ � lEðt; aÞ Þ
with the following transversality conditions and boundary conditions:(
lS

�
Tf ; a

�
¼ lE

�
Tf ; a

�
¼ lI

�
Tf ; a

�
¼ lH

�
Tf ; a

�
¼ lV

�
Tf ; a

�
¼ 0;

lSðt;uÞ ¼ lEðt;uÞ ¼ lIðt;uÞ ¼ lHðt;uÞ ¼ lV ðt;uÞ ¼ 0:
(3.6)
Then, the optimal control pairs satisfy vH
vu1

¼ 0 and vH
vu2

¼ 0, which read in forms of
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Fig. 4. The 3-d prism of the number of infected individuals in different age groups under strategy A-D. The parameters are fixed at A1 ¼ A3 ¼ B ¼ 1, A2 ¼ 1000.
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û1ðt; aÞ ¼
ððlEðt; aÞ � lSðt; aÞÞSðt; aÞ þ ðlEðt; aÞ � lV ðt; aÞÞdVðt; aÞÞ

Z u

0
bðt; bÞ Iðt; bÞ

Nðt; bÞ db
A1

; (3.7)

jðaÞSðt; aÞðlSðt; aÞ � lV ðt; aÞÞ
û2ðt; aÞ ¼ A2
: (3.8)
From the set of the admissible control, the optimal control pair is characterized by the following formula:

u*1 ¼ minfmaxf0; û1g;1g;

u*2 ¼ minfmaxf0; û2g;1g:
3.3. The sufficient conditions for the optimal control

In this subsection, we search for control pairs ðu*1;u*2Þ definitely satisfying

J
	
u*1; u

*
2

 ¼ min

U
Jðu1;u2Þ; (3.9)

on the control set
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Table 6
The durations of strong controls in different age groups.

Control 0 � 9 years old 10 � 39 years old 40 � 49 years old

physical distance 24.24 27.24 22.14
vaccination 51.66 57.18 51.66

Control 50 � 59 years old 60 � 69 years old over 70 years old

physical distance 20.64 18.48 17.16
vaccination 49.62 45.12 42.78

Fig. 5. The curves of control variables of different age groups under optimal control strategy C.
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U ¼ fðu1;u2 2 L∞ðQÞÞ : 0�u1ð,; aÞ�u1maxðaÞ�1;0�u2ð,; aÞ�u2maxðaÞ�1g;

where Q ¼ [0, Tf] � [0, u], ujmax(,), j ¼ 1, 2 are given measurable positive functions.
Setting a control vector by udðu1;u2Þ2U , and corresponding state variables and adjoint variables are denoted by xu and lu

respectively, we define

L : L1ðQÞ
�L1ðQÞ⟶
by L ðU1;U2Þ ¼ ðL 1U1;L 2U2Þ with

L iUi ¼
8<
:

0; if Ui <0;
Ui; if 0 � Ui � uimax; i ¼ 1;2
uimax; if Ui � uimax;

and Q ¼ [0, Tf] � [0, u].
We define the norm k ,kL1ðX Þ for X dQ5 as follow:

k xkL1ðX Þ ¼
Z
Q

X5
i¼1

jxiðt; aÞjdadt;

k xkL∞ðX Þ ¼
P5

i¼1 sup
ðt;aÞ2Q

jxiðt; aÞj;

for each xdðx1;…;x5Þ2X . Accordingly, we can define the norms k ,kL1ðU Þ, k ,kL∞ðU Þ similarly.
Then, we embed the optimal problem in space L1(Q) by
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J ðUÞ ¼
�
JðuÞ; if u2U ;
þ∞; if u;U :
Before proving the existence of the optimal control, we introduce the following lemma.

Lemma 1. Setting Tf be sufficiently small, the following statements are true.

(1) The map u2U /xu2L1ðX Þ satisfies Lipschitz properties:

k xu � xnkL1ðX Þ � C1
x k u� nkL1ðU Þ;

k xu � xnkL∞ðX Þ � C∞
x k u� nkL∞ðU Þ;

for all u; n2U .

(2) For u2U , adjoint system has a weak solution lu in L∞ðX Þ, such that

k lu � lnkL∞ðX Þ � C∞
l k u� nkL∞ðU Þ;

for all u; n2U .

(3) The functional J ðuÞ is lower semi-continuous with respect to L1ðL Þ convergence.

Proof. Letting xj ¼ ðSj;Ej; Ij;Hj;VjÞ2L1ðX Þ, and

Gjða; tÞ ¼
Zu
0

bða; bÞð1� jðt; bÞÞ Ijðt; bÞ
Njðt; bÞdb � b

̄
udMj

G; j ¼ u; v: (3.10)
We have that

kGuða; tÞ � Gvða; tÞ kL∞ðX Þ ¼ sup
t2½0;Tf �;a2½0;u�

Zu
0

bða; bÞ
�
ð1� u1ðt; bÞ Þ

Iuðt; bÞ
Nuðt; bÞ � ð1� v1ðt; bÞ Þ

Ivðt; bÞ
Nvðt; bÞ

�
db

� sup
t2½0;Tf �;a2½0;u�

Zu
0

bða; bÞ
�
2
Iuðt; bÞ
Nuðt; bÞ �

Ivðt; bÞ
Nvðt; bÞ þ

����u1ðt; aÞ � v1ðt; aÞ
����
�
db

� sup
t2½0;Tf �;a2½0;u�

2
Zu
0

bða; bÞ
�
Iuðt; bÞ � Ivðt; bÞ

Nuðt; bÞ þ Ivðt; bÞNuðt; bÞ � Nvðt; bÞ
Nvðt; bÞNuðt; bÞ

�
db

þku1ðt; aÞ � v1ðt; aÞkL∞ðU Þ

� bjUj
�
4N
Nuðt; bÞ � Nvðt; bÞ L∞ðQÞ þ

u1ðt; aÞ � v1ðt; aÞkL∞ðU Þ
�

� C∞
G

�xuðt; aÞ � xvðt; aÞkL∞ðX Þ þ
u1ðt; aÞ � v1ðt; aÞkL∞ðU Þ

�
:

Do the similar process, we have known that

kGuða; tÞ�Gvða; tÞkL1ðX Þ �C1
G

�xuðt; aÞ� xvðt; aÞkL1ðX Þ þ
u1ðt; aÞ� v1ðt; aÞkL1ðU Þ

�
:

From the first equation of (3.1), we integrate from 0 to t and obtain
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Sjðt; aÞ ¼ S0ðaÞ �
Zt
0

Sjðx; aÞGjða; xÞdx� jðaÞ
Zt
0

ð1þ jðx; aÞÞSjðx; aÞdx; j ¼ u; v:
Hence, we have that
kSuðt; aÞ � Svðt; aÞkL∞ðQÞ

¼ sup
t2½0;Tf �;a2½0;u�

jSuðx; aÞGuða; xÞ � Svðx; aÞGvða; xÞjdxþ sup
t2½0;Tf �;a2½0;u�

jðaÞ
Zt
0

jð1þ u2ðx; aÞÞSuðx; aÞ � ð1þ v2ðx; aÞÞSvðx; aÞjdx

� sup
t2½0;Tf �;a2½0;u�

	
Mu

G þ j
̄ 

Tf jSuðt; aÞ � Svðt; aÞj þ sup

t2½0;Tf �;a2½0;u�
N
̄
Tf jGuða; tÞ � Gvða; tÞj þ sup

t2½0;Tf �;a2½0;u�
N
̄
Tf ju2ðt; aÞ � v2ðt; aÞj

� C∞
S

�xuðt; aÞ � xvðt; aÞkL∞ðX Þ þ
u2ðt; aÞ � v2ðt; aÞkL∞ðU Þ

�
:

Proceeding the analogous process, we have that

kLu � LvkL∞ðQÞ �C∞
L

�xuðt; aÞ� xvðt; aÞkL∞ðX Þ þ
uðt; aÞ� vðt; aÞkL∞ðU Þ

�
; L¼ E; I;H;V :
Collecting all the mentioned above, one arrives at

kxuðt; aÞ� xvðt; aÞkL∞ðX Þ �C∞
x kuðt; aÞ� vðt; aÞkL∞ðU Þ:
Replacing L∞ norm by L1 norm, we repeat the above programs to get

kxuðt; aÞ� xvðt; aÞkL1ðX Þ �C1
xkuðt; aÞ� vðt; aÞkL1ðU Þ:
For Case (2), we observe that

vNðt; aÞ
vt

¼ �dðaÞðIðt; aÞþHðt; aÞÞ � �dðaÞNðt; aÞ;

which suggests that N0(a)e�d(a)t � N(t, a) � N0(a) for all ðt;aÞ2R2
þ.
vLðt; aÞvt

 � CL; L ¼ S; E; I;H;V ; (3.11)

vlLðt; aÞ S E I H V
 vt
 � CZ ; Z ¼ l ; l ; l ; l ; l ; (3.12)
Observing that for any 0 < uj < ujmax, j ¼ 1, 2, one can easily derive the following equation

vlL
vt

¼ vlL
vuj

vuj
vt

:

For the convenience, let us denote

vlL
vuj

¼ fLuj
; L ¼ S; E; I;H;V ; j ¼ 1;2:
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From formulas (3.7) and (3.8), it follows that kfLuj
kL∞ðQÞ � ĈLuj

;L ¼ S;E;I;H;V ;j ¼ 1;2. If uj � 0 or uj � ujmax, j ¼ 1, 2, we have
from continuous dependence of solutions lL(L¼ S, E, I, H, V) on parameters uj(j¼ 1, 2) that kfLuj

kL∞ðQÞ � ~CLuj
;L ¼ S;E;I;H;V ;j ¼ 1;

2.
From what has been discussed, one concludes that for every u,

kfLuj
kL∞ðQÞ �CLuj

;

where CLuj
¼ maxfC

̄

Luj
; ~CLuj

g, L ¼ S, E, I, H, V, j ¼ 1, 2. Therefore, for any ðt;aÞ2R2
þ,

kluðt; aÞ� lvðt; aÞkL∞ðX Þ �C∞
l kuðt; aÞ� vðt; aÞkL∞ðU Þ;

where C∞
l d max

L¼S;E;I;H;V ;j¼1;2
fCLuj

g is proportional to Tf.

Now, we are concerned with Case (3). Assume that either und(u1n, u2n) / u ¼ (u1, u2) in ðL1ðQÞÞ2 or there exists a
subsequence, u2n/u2 a.e. on Q. Using Lebesgue's dominated convergence theorem, it comes lim n/∞ k u2nkL1ðQÞ ¼ ku2kL1ðQÞ.
The similar arguments is true for k n2kL1ðQÞ.

Then, we address the convergence of one term in the functional,

k B1dðaÞ
	
Iun � Iu


þ B2jðaÞ
	
Sun � Su


kL1ðQÞ � maxfB1d;B2jg k xun � xukL1ðX Þ � C1
f k un � ukL1ðQÞ: (3.13)
Hence,

k J ðunÞ � J ðuÞ k� C1
J k un � ukL1ðQÞ:
Moreover, we have that J ðuÞ � lim inf n/∞J ðunÞ.
We notice that J ðuÞ is lower semi-continuous with respect to strong L1 convergence. However, it is not associated with

weak L1 convergence. Therefore, it generally does not attain its infimum on L . To overcome this default, Ekerland variational
principle will be employed to handles this situation (Ekeland, 1974). For e > 0, there exists ue in L1ðU Þ such that8<

:
J ðueÞ � inf

u2U
J ðuÞ þ e;

J ðueÞ ¼ min
u2U

J ðuÞ þ ffiffi
e

p k ue � ukL1ðU Þ:
(3.14)
Note that, by the second expression of (3.14), the perturbed functional

J eðuÞ ¼ J ðuÞ þ ffiffi
e

p k ue � ukL1ðU Þ

attains its infimum at ue. By the same argument as in subsection 3.2 and using the projectionmapL onU , we detect a pair of

optimal control ðû1; û2Þ such that uε minimizes L .

Lemma 2. If ue is an optimal control minimizing the functional J eðuÞ,then

ue ¼ L

�
û1ðxue ; lue Þ þ

ffiffi
e

p
pe
1

A1
; û2ðxue ; lue Þ þ

ffiffi
e

p
pe
2

A2

�
;

where pe
1;p

e
22L∞ðQÞ, and rpe

i ð,; ,Þr � 1ði ¼ 1;2Þ, and
û1ðxue ; lue Þ ¼
		
lue

E ðt; aÞ � lue

S ðt; aÞ
Sue þ 	lue

E ðt; aÞ � lue

V ðt; aÞ
dVue ðt; aÞ
 Z u

0
bða; bÞ Iue

Nue
db

A1
;

û2ðxue ; lue Þ ¼ jðaÞ	lue

S ðt; aÞ � lue

V ðt; aÞ
Sue

A2
:

Theorem 3.1. There exists control u*1;u
*
2,such that

J
	
u*1; u

*
2

 ¼ min

U
Jðu1;u2Þ:
Combining results of Lemma 2 and Theorem 3.1, the following Theorem gives a sufficient condition of the existence of a
unique optimal control.
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Theorem 3.2. If CG

�
1
A1

þ 1
A2

�
is sufficiently small, there exists a unique optimal control u* in U minimizing J ðuÞ.

Proof. Define G : U /U by

G ðuÞ ¼ L ðû1ðxue ; lue Þ; û2ðxue ; lue ÞÞ;
where xu and lu are state and adjoint solutions associated with control u. By using Lipschitz properties of xu and lu, for every

u; n2U , one reaches

k L 1ðu1Þ � L 1ðn1ÞkL∞ðX Þ

¼


	
luE � luS



Suðt; aÞ

Z u

0
bða; bÞ Iuðt; bÞ

Nuðt; bÞdb
A1

�
	
lnE � lnS



Snðt; aÞ

Z u

0
bða; bÞ Inðt; bÞ

Nnðt; bÞdb
A1

L
∞ðX Þ

� CL 1

A1
k u� nkL∞ðU Þ
In the same way, we also have

k L 1ðu2Þ�L 1ðn2ÞkL∞ðX Þ �
CL 2

A2
k u� nkL∞ðU Þ:
Consequently,

k G ðuÞ � G ðnÞkL∞ðX Þ � CG

�
1
A1

þ 1
A2

�
k u� nkL∞ðU Þ; (3.15)

where the constant CL depends on the L∞ bounds on the state and adjoint solutions, and Lipschitz constants. The functional

G has a unique fixed point u* when CL

�
1
A1

þ 1
A2

�
:<1.

Then, the key is to prove that the fixed point is an optimal control. By using the approximate minimizers ue by Ekerland
variational principle, and combining Lemma 2 with the scaling of G , we find that

k G ðueÞ � uekL∞ðX Þ ¼ k L ðu1ðxue ; lue Þ;u2ðxue ; lue Þ Þ � L

�
u1ðxue ; lue Þ þ

ffiffi
e

p
pe
1

A1
;u2ðxue ; lue Þ þ

ffiffi
e

p
pe
2

A2

�
kL∞ðX Þ

� k
ffiffi
e

p
pe
1

A1
kL∞ðQÞþ k

ffiffi
e

p
pe
2

A2
kL∞ðQÞ

� ffiffi
e

p �
1
A1

þ 1
A2

�
:

(3.16)

With the help of inequalities (3.15) and (3.16), we have
k u* � uekL∞ðU Þ ¼ k G ðu*Þ � uekL∞ðX Þ

� k G ðu*Þ � G ðueÞkL∞ðX Þþ k G ðueÞ � uekL∞ðX Þ

� CG

�
1
A1

þ 1
A2

�
k u* � uekL∞ðU Þ þ

ffiffi
e

p �
1
A1

þ 1
A2

�
:

Tf
�

1 1
�

Since CG is proportional to Tf, 2 A1
þA2

is sufficiently small. Hence, it comes that

k u* � uekL∞ðU Þ �
ffiffi
e

p �
1
A1

þ 1
A2

�

1� CG

�
1
A1

þ 1
A2

�:

Thus, an approximate minimiter u converges to the fixed point u*, namely u / u* in L∞ðU Þ, and by using Ekelands's
e e

principle (as e / 0)

J ðu*Þ � inf u2U J ðuÞ:
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4. Numerical simulations

To visibly observe the control effects, we are conducted to numerical experiments to capture them. To achieve this goal, we
employ the forward-backward sweep approach (Lenhart & Workman, 2007). Actually, a forward fourth-order Runge-Kutta
method is done for the state variables and a backward fourth-order Runge-Kutta method is designed for the adjoint variables
(Martcheva, 2015b).

For suppressing an emerging infectious disease, we introduce two elementary controls: physical distancing u1 and
vaccination u2. To take account effects for every feasible control, we classify the following four strategies:

� Strategy A measures to reduce physical distancing;
� Strategy B measures to increase vaccination rate;
� Strategy C measures to take coupled controls;
� Strategy D measures no control strategy(blank group).
4.1. Parameter selection

In order to ensure the authenticity and validity of the investigation, we select data from the initial COVID-19 outbreak in
Sao Paulo, Brazil for numerical simulation. According to the transmission characteristics of COVID-19 infection in Brazil, the
total population is divided into six age groups: 0e9 years old,10e39 years old, 40e49 years old, 50e59 years old, 60e69 years
old and over 70 years old. The transmission rate b(a, b) is taken in form of

bða; bÞ ¼ b� cða; bÞ; (4.1)

where b denotes the effective transmission probability and c(a, b) represents the number of physical contacts per day be-
tween susceptibles with age a and infectives with age b. For the convenience, we define the contacts during each group are
constants and so it generates a contact matrix (see Fig. 1).

Other parameters used in the simulation are taken in Table 1, as well as the initial values of state variables for each age
group are selected from Table 2 (Rocha Filho et al., 2020).

C Step one

To evaluate the control effects, judiciously controlling cost of the strategy is an important index, which needs to mitigate
financial burden without jeopardizing the most vulnerable members of the population (Zhao & Feng, 2020). Since the major
purpose of optimal control questions is to balance revenue and costs of the controls, we take three typical cases to reflect their
effects: (1) low cost, that is, A1¼ A2¼1; (2)moderate cost, that is, A1¼ A2¼100; (3) high cost, that is, A1¼ A2¼1000. Nowwe
are going to investigate the total number of infected persons in six age groups.

Fig. 2 shows the total number of infected cases under strategy A�D. It is clear that each control strategy reduces the size of
the prevalence, shortens the epidemic duration, advances the peak arrived time and deduces the peak values. Conversely, the
decreasing trends rank: low-cost control, median-cost control, high-cost control. Therefore, the control cost is the key to
disease prevention and control.

Next, we will analyze the question in a quantitative perspective, that is focusing on the values of the objective function at
different costs under different strategies (see Table 3). A clear observation is that under the same strategy, themore the cost is,
the bigger the corresponding to objective function value will be, which means that the higher the control cost is, the worse
the control effect will be. Under the same cost, the objective function value correspondingly strategy C is smaller than that of
other strategies, that is, strategy C is optimal with the least cost. We further analyze the specific effects of strategy C for
different age groups. As observed in Fig. 3, compared with no control, infection peaks in all age groups decrease and the peak
arrived times reach earlier after the implementation of strategy C. The prevalence decreases the fastest for the group aged
10e39 and reduces the lowest for the group over 70 years old.

In the comparative analysis, we find that the difference between strategy A and strategy C is subtle. To further distinguish
the effects of the implementation of two strategies, we are conducted to quantitative evaluation, which could be globally
analyzed from three aspects: the total number of infected cases in 0 � T period, the number of persons who avoids becoming
infected as a result of the implementation of the control in the 0� T period and objective function value. According to Table 5,
compared with other strategies, strategy C (i.e. the combination strategy) had the lowest number of infections within 0 � T,
and more people avoided becoming infected. At the same time, the objective function value of strategy C is the smallest,
which indicates that strategy C can save manpower and material resources and prevent more susceptible individuals from
becoming infected persons. Therefore, the mixed measure simultaneously increasing social distancing and vaccination is a
dominant strategy.

In order to quantify the effects of strategy C on each age group, we define an Infection Averted Rate(IAR) (Okosun et al.,
2013) by
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IAR ¼ Number of people who avoid infection
Infectious individuals without control

;

where the number of persons who avoided infection is the number of infected persons caused without control minus the
number of infected persons with control. Table 4 shows that the rank of the IAR values are people aged 60e69, aged over 70,
aged 10e39, aged 0e9, aged 40e49 and aged 50e59. Clearly, strategy C takes better significant effects on people aged 10e39
and over 60 (see Table 4).

C Step two

From (Arnold et al., 2021), we have known that vaccination is a highly cost-effective action than that taking social
distancing measures for control COVID-19. Then, we set weight coefficients A1 ¼1, A2 ¼ 1000, A3 ¼ 1, B¼ 1, evaluate effects of
feasible control measures and then look for an optimal control measure associated with each age group.

Fig. 4 displays that the implementation of strategy A, B and C deduces peaks values and advance the peak arrived time.
Further analysis shows that comparedwith other strategies, enlarging physical distancing enables the prevalence peak arrives
faster, and the slope of decline after the peak is sharper, which suggests that physical distancing measure, such as limiting
gathering, closing building, working at home, etc., plays a significant role in preventing the infections. For each strategy, the
prevalence are lowest for people aged over 60, which indicates that the control effects are beneficial for people aged over 60.

Table 6 and Fig. 5 give the durations of strong control measures and the optimal controls associated each age group. Under
the optimal control strategy C, the durations of strongly increasing social distancing and strengthening vaccination for aged
10e39 need 27.24 and 57.18 days, respectively. Conversely, such durations are obviously longer than the durations of other age
groups. On the other hand, the duration of intensive vaccination control is almost double than that duration of increasing
social distancing in the same age group. This finding has an important implication for the actual allocation of medical re-
sources for the disease prevention and control. In this case, the policymakers and the public health governments should pay
more attention on controlling payoffs in the group aged 10e39. Especially, they should markedly note that the effective
control impacts of taking vaccination should be a longer patience.

5. Discussion

Age heterogeneity is a noteworthy features of many emerging infectious diseases, which has well-known impact on the
magnitudes and intensity of such diseases. In this paper, we introduced a continuous age-structured model to study the
transmission dynamics of emerging infectious diseases in a short period or in the initial outbreak. Since some emerging
infectious diseases are highly sensitive due to a higher social activity in certain age groups. We tried to identify the age groups
to target for effectively slowing down the disease infection.

In this paper, we calculated the basic reproduction number R 0, which is a spectral radius of the next generation operator
K . The value of R 0 determines the stability of the disease-free equilibrium E0. If it is less than 1, then E0 is globally
asymptotically stable by constructing a suitable Lyapunov function. In such construction, we employed the left eigenvector of
K as a kernel function to completely address the global stability of E0, which provides a new approach for dealing with the
global stability of continuous age-structured models.

Facing a novel emerging diseases, maintaining social distance and projecting vaccination are two main control measures
for curtaining the diseases infection. However, because of the economic and social burdens and limitations of medical re-
sources, identifying optimal control measures has become an urgent issue. In this paper, we tried to evaluate the two control
strategies and found the optimal control strategies by cost-effective analysis. Moreover, we derived the adjoint system and
optimal control pairs by constructing a generalized Hamilton functional. As the continuous age-structured model is char-
acterized by a series of first order partial differential equations, the optimal problems are quietly different from the problems
describing by a second order PDE system, due to the lack of the regularity of the state solutions. To overcome this default, we
employed Ekeland Principle's to analyze the existence of the optimal control, such methods have been extensively used by
many scholars (Barbu, 1994; Barbu & Iannelli, 1999; Numfor et al., 2014; Yang et al., 2019). We pointed out that if the weight
parameters are sufficiently large or the control target time T is small enough, such optimal control exists from mathematical
view of points.

In order to illustrate our theoretical results, we picked up an initial outbreak of COVID-19 in Sao Paulo, Brazil. We proposed
three different control measures such as single reducing physical distance, single vaccination and mixed the twomeasures to
take account for the impact on the control COVID-19. We found that reducing physical distance is necessary for the initial
outbreak of COVID-19 and vaccination is most effective for a long-term outbreak. Conversely, the effect of the mixed strategy
is more significant under the low cost and this control strategy is most effective for old peoples and the young age group.
Overall, the combination of enlarging social distance and the mass vaccination is the most cost-effective. Meanwhile, the
primary target of the two control variables is the group aged 10e39, which means that the Brazil government should take
more investments on people aged 10e39 for the prevention and control COVID-19 infection.

For the age-structured models, model parameters are generally assumed to change with the activity of people in different
ages such as death rate due to diseases, latent period, recovered period etc. As it reported, environment-to-human has
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become a non-negligible transmission route of COVID-19. Furthermore, pathogenic mutation, human behaviors and other
factors have great effects on the transmission of emerging infectious diseases, we will leave these work for the future.
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