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Abstract

Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is one of the most devastat-

ing pathogens affecting soybean production in the U.S. and worldwide. The use of SCN-

resistant soybean cultivars is one of the most affordable strategies to cope with SCN infesta-

tion. Because of the limited sources of SCN resistance and changes in SCN virulence pheno-

types, host resistance in current cultivars has increasingly been overcome by the pathogen.

Host tolerance has been recognized as an additional tool to manage the SCN. The objectives

of this study were to conduct a genome-wide association study (GWAS), to identify single

nucleotide polymorphism (SNP) markers, and to perform a genomic selection (GS) study for

SCN tolerance in soybean based on reduction in biomass. A total of 234 soybean genotypes

(lines) were evaluated for their tolerance to SCN in greenhouse using four replicates. The tol-

erance index (TI = 100 × Biomass of a line in SCN infested / Biomass of the line without SCN)

was used as phenotypic data of SCN tolerance. GWAS was conducted using a total of 3,782

high quality SNPs. GS was performed based upon the whole set of SNPs and the GWAS-

derived SNPs, respectively. Results showed that (1) a large variation in soybean TI to SCN

infection among the soybean genotypes was identified; (2) a total of 35, 21, and 6 SNPs were

found to be associated with SCN tolerance using the models SMR, GLM (PCA), and MLM

(PCA+K) with 6 SNPs overlapping between models; (3) GS accuracy was SNP set-, model-,

and training population size-dependent; and (4) genes around Glyma.06G134900, Gly-

ma.15G097500.1, Glyma.15G100900.3, Glyma.15G105400, Glyma.15G107200, and Gly-

ma.19G121200.1 (Table 4). Glyma.06G134900, Glyma.15G097500.1, Glyma.15G100900.3,

Glyma.15G105400, and Glyma.19G121200.1 are best candidates. To the best of our knowl-

edge, this is the first report highlighting SNP markers associated with tolerance index based

on biomass reduction under SCN infestation in soybean. This research opens a new

approach to use SCN tolerance in soybean breeding and the SNP markers will provide a tool

for breeders to select for SCN tolerance.
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Introduction

Soybean [Glycine max (L.) Merr.] is a widely grown legume with high oil and protein contents.

The wild type Glycine soja Sieb. & Zucc. was used for soybean domestication [1]. Soybean is

one of the most economically important cultivated legumes worldwide. The value of biofuel

made from soybean was reported to exceed $35 billion in the United States (www.soystats.

com). Increase in need for soybean production has been significant [2]. This requires the use

of high-yielding soybean cultivars and the expansion of croplands for soybean cultivation.

However, soybean production has been constrained by various factors. Soybean cyst nema-

tode, Heterodera glycines Ichinohe, has been one of the most devastating biotic stresses affect-

ing soybean production worldwide. Costs associated with soybean production loss due to SCN

have exceeded $1.5 billion in the U.S. alone [3].

The soybean cyst nematode (SCN) is an obligate parasite and has been found in the most

soybean-producing areas in the U.S. [4]. SCN feeds on soybean roots and uses soybean plants

as a carbon source. This will cause a decrease in soybean biomass and suppress soybean yield

[5]. SCN is difficult to control upon establishment in fields. One of the most effective ways to

manage SCN is the use of SCN-resistant soybean cultivars and a non-host plant during crop

rotation [6]. Therefore, developing new SCN-resistant soybean cultivars through breeding is

of great importance.

Breeding for new SCN-resistant soybean cultivars requires a better understanding of the

genetic mechanism conferring SCN resistance. A total of 216 QTLs in soybean have been identi-

fied to confer resistance to SCN (www.soybase.org). Of which, two loci were extensively investi-

gated. These two loci consisted of rhg1 and Rhg4, which were mapped on chromosomes 18 and

8, respectively [7]. The soybean cultivar ‘Forest’ harbored both SCN-resistant QTLs, and Rhg4 is

dominant [8]. This resistance comes from the Peking accession. The second type of resistance

only requires rhg1 and this type of resistance comes from PI 88788 [9]. The Rhg4 locus con-

tained a gene encoding for a serine hydroxymethyltransferase [10], whereas the genes within

the rhg1 locus encoded for an amino acid transporter, an α-soluble N-ethylmaleimide-sensitive

factor attachment protein (α-SNAP), and a wound-inducible domain protein (WI12) [11].

The development of cultivars enhanced with disease resistance has been time-efficiently

achieved thanks to the use of molecular markers via marker-assisted selection (MAS) [12]. With

the recent development of high-throughput sequencing technology, tools such as genome-wide

association study (GWAS) and genomic selection (GS) have been proven to be powerful for

investigating the genetic architecture of complex traits [13]. Previous studies demonstrated that

GWAS can be used to efficiently identify single nucleotide polymorphism (SNP) markers asso-

ciated with SCN resistance in soybean. A total of 7 SNP markers were reported to be associated

with resistance to SCN HG type 0 using GWAS [14]. In addition, two new candidate genes,

FGAM1 and Glyma18g46201, were identified to be associated with SCN resistance [14]. In

another GWAS, a total of 440 soybean accessions were phenotyped for resistance to SCN HG

type 0 and HG type 1.2.3.5.7, and 19 SNP markers were shown to be associated with SCN resis-

tance [15]. In addition, a GWAS conducted on a panel consisting of 553 soybean accessions

identified a total of 8 new loci contributing to resistance to SCN [16]. Predictive breeding using

genomic selection has brought considerable attention over the past few years. Genomic selec-

tion (GS) was reported to be more efficient over marker-assisted selection (MAS) for SCN resis-

tance in soybean [14]. The earliest GS study for SCN resistance suggested an accuracy in the

range of 0.59 to 0.67 for predicting SCN resistance in soybean [14].

The current commercial U.S. soybean cultivars have a narrow genetic background [1]. Due

to this narrow genetic background, the current soybean germplasm would be vulnerable to

nematode infestation [7, 17]. This could be addressed by diversifying the source of resistance
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to nematodes and by investigating potential new loci conferring SCN resistance. Evaluating

tolerance index based on biomass reduction under SCN infestation and characterizing loci

affecting such trait could lead to a new approach for breeding SCN tolerance in soybean.

Therefore, the objectives of this study were (i) to conduct GWAS for tolerance of soybean bio-

mass to SCN infection, (ii) to identify SNP markers associated with SCN tolerance based on

decrease in plant biomass, and (iii) to perform GS for soybean tolerance to SCN. The trait of

SCN tolerance is different from the trait of SCN resistance in that a tolerant soybean can sup-

port good SCN reproduction but suffer little damage from the SCN infection, while SCN-resis-

tant soybean does not support SCN reproduction.

Materials and methods

Plant materials and phenotyping

The association panel investigated in this study consisted of 234 soybean accessions (S1 Table)

from the panel of 288 lines used for a previous GWAS of SCN resistance [14]. A large number

of these accessions were selection from the University of Minnesota soybean breeding pro-

gram and 9 were Plant Introductions (PIs). Ten lines of the panel were resistant and 6 lines

were moderately resistant to SCN HG Type 0 (race 3) with the resistance from PI 88788

(rhg1). ‘MN0095’ was used as a susceptible check and a few lines derived from PI 88788 har-

boring SCN-resistant genes were used as resistant checks [14, 18].

SCN phenotyping was carried out in the greenhouse of the University of Minnesota St. Paul

campus. Soil without SCN infestation collected from a soybean field was mixed with sand at a

2:1 ratio, and 1.5 kg of the soil-sand mixture was placed in 1-galon plastic bags. The natural

field soil rather than the sterilized soil was used because the data from the natural field soil

would be better for extrapolating the results to the field setting. Particularly, we considered the

importance of rhizobium for the soybean growth, and the natural field soil can support suffi-

cient rhizobium development. The soil from each bag was used in one 16-cm-diam clay pot.

Soybean cyst nematode HG Type 1.2.3.5.6.7 (race 4), which can reproduce well on the lines

containing resistance genes from PI 88788, was used. The SCN eggs at a density of 10,000

eggs/100 cm3 of soil and diluted into 10 ml water were added into the soil in each SCN pot.

Ten soybean seeds were placed on the surface each pot and the seeds were covered with the

remaining soil. Four replicated pots were included for each soybean accession in both SCN

and no-SCN treatments. The two pots (SCN and no-SCN) of the same soybean line were

placed together to minimize the environmental difference between the SCN and no-SCN treat-

ments within a genotype. Due to the large number of lines and limitation of the space of the

greenhouse, this experiment was conducted at four different times with approximately 60 lines

per time in the same greenhouse. Although lines of each replicate were arranged in a random-

ized block (S1 and S2 Figs), the experiment was considered complete randomized design

because the lines were evaluated in four groups at four different times. The distances between

each two pots were about 10 cm (S2 Fig).

After 5 days, the plants were thinned to provide five plants per pot. At 65 days after plant-

ing, the average total dry shoot biomass of the five plants in each pot under non-SCN infesta-

tion or with SCN infestation was measured. Tolerance index for biomass was computed using

the following formula [19].

Tolerance Index (TI) = 100 × (Biomass under SCN infestation/Biomass without SCN

infestation)

TI values were adjusted to that of ‘MN0095’, used as susceptible controls, in order to mini-

mize environmental effects within and between runs. In each run, there were two sets of

‘MN0095’ pots with total of 8 pairs of pots inoculated with SCN or not inoculated.
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TI_adjusted = TI × (Average TI for ‘MN0095’ between runs/Average TI for ‘MN0095’

within each run) with average TI for ‘MN0095’ between runs/average TI for ‘MN0095’ within

each run being the adjustment coefficient. There were a total of 936 TI data points (234 soy-

bean lines x 4 replicates). ANOVA on TI_adjusted values was performed using PROC MIXED

of SAS v. 9.4 (SAS Institute Inc., Cary, NC, USA). Mean separation was conducted using a pro-

tected LSD procedure at a significance level α = 0.05. The statistical model for ANOVA analy-

sis was described as following.

Yij ¼ Ri þ Gj þ εij with i ¼ 1; 2; 3 and j ¼ 1; . . . :; 234

where Yij denoted the observation on the jth genotype from the ith run, Ri represented the effect

of the ith replication (random effect), Gj was the effect of the jth soybean accession (fixed effect),

and εij was the random error associated with the ijth observation. Broad sense heritability was

calculated using H 2 = 100 × (σ2
g/σ2

p) = 100 × σ2
g/[σ2

g + (σ2
e/r)] [20] where σ2

g was the geno-

typic variance (σ2
g = MSGenotype-MSError), σ2

p denoted the total phenotypic variance, σ2
e

was the variance associated with the random error, and r represented the number of replica-

tions. Graph showing the data distribution was drawn using JMP1 oGenomics 9 (SAS Insti-

tute, Cary, NC).

Genotyping and quality control

The soybean panel was genotyped using the Soy6K SNP Infinium Chips (https://www.soybase.

org/snps/download.php). DNA was extracted from young leaves of each accession using DNeasy

96 Plant Kit (QIAGEN, Valencia, CA). A total of 4,251 SNPs were obtained. Of the 4,251 SNPs, a

total of 3,782 SNPs were maintained after SNP filtering (missing data<15%, heterozygosity<20%,

minor allele frequency>5%). Those high-quality SNPs were used for further analysis.

Genome-wide association study (GWAS) and candidate gene discovery

Genome-wide association study was conducted using TASSEL 5 [21]. A total of 3 GWAS sta-

tistical models were used. These models consisted of single marker regression (SMR), general-

ized linear model using principal component (PCA) as additional covariate (GLM_(PCA)),

and mixed linear model using principal component (PCA) and Kinship (K) as covariates

(MLM_(PCA+K)). The LOD threshold for declaring a significant SNP was 3 [22]. The 50-kb

genomic region containing the significant SNP was used for the candidate gene(s) search.

Functional annotation related to the candidate gene(s) was investigated using Soybase (www.

soybase.org). Candidate genes related to plant defense mechanism were more considered.

SNP selection accuracy and efficiency

SNP selection accuracy and efficiency were computed using the formulas established by Shi

et al. [23] as shown below.

• Selection accuracy = 100×[(Number of genotypes having high tolerance index with the favor-

able SNP allele)/ (Number of genotypes having high tolerance index with the favorable SNP

allele + Number of genotypes having low tolerance index with the favorable SNP allele)].

• Selection efficiency = 100×[(Number of genotypes having high tolerance index with the

favorable SNP allele)/(Total number of genotypes having the favorable SNP allele)].

The top 78 SCN-resistant soybean genotypes (one-third of the whole panel) were the geno-

types having high tolerance index, whereas the 78 least performing genotypes (one-third of the

whole panel) had low tolerance index.
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Genomic estimated breeding values (GEBVs) and genomic selection

accuracy assessment

Genomic estimated breeding values were computed under 5 different genomic selection mod-

els: ridge regression best linear unbiased predictor (rrBLUP) [24], genomic best linear unbi-

ased predictor (gBLUP) [25], Bayesian least absolute shrinkage and selection operator

(Bayesian LASSO) [26], random forest [27], and support vector machines (SVMs) [28]. The

packages ‘rrBLUP’ [29], GAPIT [30], ‘BGLR’ [31], ‘randomForest’ [32], and ‘kernlab’ [33]

were used and run in R to perform the genomic selection models rrBLUP, gBLUP, Bayesian

LASSO, random forest, and SVMs, respectively. The posterior distribution of the parameter in

the Bayesian LASSO model was Double Exponential and the prior distributions were Uniform

and Inverse Chi-Square for the hypoparameters λ and σ2
e. Markov Chain Monte Carlo

(MCMC) iteration and the burin were set to 5,000 and 1,000, respectively, when running the

Bayesian LASSO model [34]. Random forest was achieved using a total of 500 trees and 4

branches for each tree as previously described [14]. The SVMs model was done using a Gauss-

ian kernel function [33].

In order to assess the effect of population training size on genomic selection accuracy of tol-

erance index based on biomass reduction under SCN infestation, cross-validation was con-

ducted at different levels. In this study, we have performed a 2-fold, 3-fold, 4-fold, 5-fold,

6-fold, and 7-fold cross-validation corresponding to a training population size of 117, 156,

176, 187, 195, and 201 individuals, respectively. A total of 100 replications were conducted at

each level of cross-validation. Genomic selection was conducted using all filtered SNPs and the

selected SNPs from GWAS under the single marker model (SMR_SNPs), the generalized lin-

ear model (GLM_PCA_SNPs), and the mixed linear model (MLM_PCA_K_SNPs), respec-

tively. In order to better fit the genomic selection model when the GWAS-derived SNPs were

used, the number of covariates (SNPs) was increased by choosing the SNPs with LOD greater

than 2 instead of 3. Fewer SNPs incorporated into the models would result in poorly fitted

genomic selection models. Genomic selection accuracy was estimated by evaluating the Pear-

son’s correlation coefficient between the GEBVs and the observed phenotypes in the testing

set [35].

Results

Phenotyping

Adjusted tolerance index for biomass reduction for the 234 soybean accessions was approxi-

mately normally distributed (Fig 1). The tolerance index was used to measure the level of toler-

ance of soybean to the SCN infection. The higher the index was, the more tolerant to SCN

infection the genotype was.

Adjusted tolerance index varied from 22.87 to 118.16, with an average of 63.80 and a stan-

dard deviation of 17.03 (S1 Table). The analysis of variance (ANOVA) indicated that adjusted

tolerance index was statistically significantly different among the soybean accessions (F

value = 3.35, p-value<0.0001) (Table 1). Broad sense heritability was estimated using the vari-

ance components from ANOVA (Table 1). Estimate of broad sense heritability for adjusted

tolerance index was high (89.3).

The lowest adjusted tolerance index was recorded for MN0082SP (22.87), PI445799 (27.49),

PI437267 (30.10), PRIDEB216 (30.50), M95228092 (31.88), M95274129 (32.16), L237 (32.43),

M95274114 (33.63), M95227016 (34.50), and M94278001 (35.11) (S1 Table), indicating that

SCN infestation resulted in a significant reduction in biomass for those genotypes, thus intol-

erant to SCN. The genotypes with the highest adjusted tolerance index were GRANDE (98.68),
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M97251029 (99.70), ALTONA (101.29), MN1804CN (102.37), M97305077 (104.35),

M97304052 (106.70), M97205096 (110.55), M98332108 (117.86), MN1806SP (117.88), and

ALPHA (118.16) (S1 Table), indicating that SCN infestation did not significantly reduce bio-

mass for those accessions, hence they were SCN-tolerant.

SNP profiling

After SNP filtering, a total of 3,782 high quality SNPs were used for GWAS. Average number

of SNPs per chromosome was 189, with chromosome 18 having the highest number of SNPs

(256) and chromosome 11 harboring the lowest number of SNPs (127) (Table 2). Average dis-

tance between SNP was 255 kb. SNP density was the highest on chromosome 13 with an inter-

SNP distance of 181 kb (Table 2). SNPs were most scattered on chromosome 1 with an average

distance of 374 kb between SNPs (Table 2). Kinship analysis revealed that the population was

structured into 3 subgroups (S3 Fig), of which, two subgroups had similar size.

Genome-wide association study (GWAS)

Single marker regression (SMR). The single marker regression model indicated a total of

35 significant SNPs (LOD>3) associated with tolerance index based on biomass reduction

under SCN infestation (Table 3) (Fig 2A). These significant SNPs were scattered across the

soybean genome. The top 5 SNPs with the highest LOD were Gm15_8263547_G_T (LOD =

4.92, MAF = 13.60%), Gm15_8412363_G_A (LOD = 4.85, MAF = 12.89%), Gm19_37932358_

C_T (LOD = 4.84, MAF = 48.69%), Gm06_11098210_C_T (LOD = 4.66, MAF = 16.67%), and

Gm15_7864348_G_T (LOD = 4.61, MAF = 11.21%), which were found on chromosomes 15,

15, 19, 6, and 15, respectively (Table 3) (Fig 2A). These SNPs had relatively low individual R-

square values ranging from 9.09% to 10.01% (Table 3), suggesting a possibility of QTL(s) with

Table 1. ANOVA table for tolerance index based on biomass reduction under SCN infestation among 234 soybean genotypes.

Source DF Sum of Squares Mean Square Expected Mean Square F Value Pr > F

Accession 233 265549 1139.70 Var(Residual) + Q(Accession) 3.35 < .0001

Rep 3 2224.29 741.43 Var(Residual) + Q(Rep) 2.12 0.096

Residual 669 246400 368.31 Var(Residual) .

https://doi.org/10.1371/journal.pone.0235089.t001

Fig 1. Distribution of adjusted tolerance index among the 234 soybean accessions.

https://doi.org/10.1371/journal.pone.0235089.g001
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small effects affecting tolerance index based on biomass reduction under SCN infestation.

However, if the marker effects of the 5 top SNPs were pooled under an additive model assump-

tion, the effects could account for up to 47% of the variation in tolerance index based on bio-

mass reduction.

Of the 35 significant SNPs found under the SMR model, 8 were located on a 2-Mb region of

chromosome 15, indicating a strong likelihood of QTL(s) affecting tolerance index based on

biomass reduction under SCN infestation in this region (Fig 2A). These 8 SNPs consisted of

Gm15_6415122_A_G (LOD = 3.41, MAF = 31.36%), Gm15_7217705_A_G (LOD = 3.59,

MAF =, 6.22%), Gm15_7574118_T_C (LOD = 4.51, MAF = 19.73%), Gm15_7721702_G_A

(LOD = 4.25, MAF = 9.42%), Gm15_7864348_G_T (LOD = 4.61, MAF = 11.21%),

Gm15_8134735_A_G (LOD = 4.23, MAF = 12.78%), Gm15_8263547_G_T (LOD = 4.92,

MAF = 13.60%), and Gm15_8412363_G_A (LOD = 4.85, MAF = 12.89%) (Table 3) (Fig 2A).

Chromosome 18 harbored a total 4 significant SNP markers mapped on a 7-Mb genomic

region. These SNPs consisted of Gm18_51128392_G_A (LOD = 3.37, MAF = 6.86%),

Gm18_51659540_A_G (LOD = 3.44, MAF = 6.86%), Gm18_51867289_C_T (LOD = 3.27,

MAF = 6.53%), and Gm18_58588820_A_C (LOD = 3.35, MAF = 6.86%) (Table 3) (Fig 2A).

These results indicated that the 7-Mb region of chromosome 18 harboring the aforementioned

SNPs had a strong likelihood of loci affecting tolerance index based on biomass reduction

under SCN infestation in soybean.

Generalized linear model (GLM_PCA). The GLM_PCA model incorporated the princi-

pal component (PCA) covariate in its equation. In this study, this model provided a total of 21

significant SNPs (LOD>3) associated with tolerance index based on biomass reduction

(Table 3) (Fig 2B). The top 5 SNPs suggested by the GLM_PCA model were Gm15_7574118_

T_C (LOD = 5.67, MAF = 19.73%), Gm19_37932358_C_T (LOD = 4.50. MAF = 18.69%),

Gm15_8263547_G_T (LOD = 4.40, MAF = 13.60%), Gm15_4973977_T_C (LOD = 4.35,

Table 2. SNP profiling used for GWAS for tolerance to SCN infection based on biomass reduction.

Chromosome SNP number Average distance (kb) between SNPs

1 150 374

2 239 216

3 180 267

4 178 277

5 188 222

6 191 264

7 198 226

8 201 229

9 177 265

10 185 277

11 127 302

12 148 271

13 245 181

14 185 269

15 225 224

16 160 235

17 171 245

18 256 244

19 184 276

20 194 241

https://doi.org/10.1371/journal.pone.0235089.t002
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Table 3. Significant SNPs (LOD>3.00) associated with tolerance to biomass reduction under SCN infestation using a Single Marker Regression (SMR), Generalized

Linear Model_PCA (GLM_(PCA)), and Mixed Liner Model_PCA_K(MLM_(PCA+K)) models.

Statistical_model SNP_marker Chromosome Position_(bp) LOD (-log10(p-value)) R_square (%) Minor_allele_frequency(%)

SMR Gm01_4726775_C_A 1 4726775 3.09 6.47 23.61

Gm02_8081081_T_C 2 8081081 3.20 6.51 38.29

Gm02_8273157_G_A 2 8273157 3.32 6.77 35.29

Gm02_8341731_C_T 2 8341731 3.20 6.72 36.74

Gm06_11098210_C_T 6 11098210 4.66 9.09 16.67

Gm06_48098064_A_C 6 48098064 3.26 6.56 27.23

Gm07_1246890_T_G 7 1246890 3.50 6.82 6.06

Gm07_37096617_A_G 7 37096617 3.18 6.45 13.45

Gm08_8577294_A_G 8 8577294 3.16 6.74 37.26

Gm08_41844881_T_C 8 41844881 3.16 6.63 22.79

Gm09_39822766_C_T 9 39822766 3.44 6.68 7.76

Gm09_45586982_T_C 9 45586982 3.31 6.52 17.03

Gm10_5026251_T_C 10 5026251 3.03 6.41 37.38

Gm11_3323629_G_A 11 3323629 3.32 6.96 36.74

Gm11_8633864_T_C 11 8633864 3.11 6.15 6.11

Gm12_4025840_T_G 12 4025840 3.02 6.15 14.41

Gm12_34776200_C_T 12 34776200 3.53 6.93 13.10

Gm13_6761450_T_G 13 6761450 3.02 6.10 29.91

Gm13_11463853_T_C 13 11463853 3.26 6.59 29.60

Gm13_27132590_C_T 13 27132590 3.11 6.16 9.65

Gm14_13290049_C_T 14 13290049 3.25 6.73 26.61

Gm15_6415122_A_G 15 6415122 3.41 6.97 31.36

Gm15_7217705_A_G 15 7217705 3.59 7.17 6.22

Gm15_7574118_T_C 15 7574118 4.51 9.01 19.73

Gm15_7721702_G_A 15 7721702 4.25 8.51 9.42

Gm15_7864348_G_T 15 7864348 4.61 9.19 11.21

Gm15_8134735_A_G 15 8134735 4.23 8.33 12.78

Gm15_8263547_G_T 15 8263547 4.92 9.57 13.60

Gm15_8412363_G_A 15 8412363 4.85 9.56 12.89

Gm18_51128392_G_A 18 51128392 3.37 6.86 37.10

Gm18_51659540_A_G 18 51659540 3.44 6.86 35.40

Gm18_51867289_C_T 18 51867289 3.27 6.53 35.84

Gm18_58588820_A_C 18 58588820 3.35 6.86 32.27

Gm19_37932358_C_T 19 37932358 4.84 10.02 18.69

Gm19_38121212_G_A 19 38121212 3.29 6.87 23.61

GLM-(PCA) Gm04_17773168_A_G 4 17773168 3.34 6.65 42.52

Gm06_11098210_C_T 6 11098210 3.93 7.35 16.67

Gm09_39822766_C_T 9 39822766 3.46 6.44 7.76

Gm11_3323629_G_A 11 3323629 3.83 7.67 36.74

Gm12_27424432_A_G 12 27424432 3.11 6.12 7.21

Gm13_5211326_T_C 13 5211326 3.33 6.42 12.89

Gm13_6761450_T_G 13 6761450 3.69 7.11 29.91

Gm13_29418256_C_T 13 29418256 3.04 6.05 29.63

Gm15_4973977_T_C 15 4973977 4.35 8.33 17.86

Gm15_7574118_T_C 15 7574118 5.67 10.85 19.73

Gm15_7721702_G_A 15 7721702 3.84 7.48 9.42

Gm15_7864348_G_T 15 7864348 4.13 8.02 11.21

Gm15_8134735_A_G 15 8134735 3.61 6.90 12.78

Gm15_8263547_G_T 15 8263547 4.40 8.32 13.60

Gm15_8412363_G_A 15 8412363 4.31 8.23 12.89

Gm18_51128392_G_A 18 51128392 3.78 7.37 37.10

Gm18_51659540_A_G 18 51659540 3.60 6.87 35.40

Gm18_51772288_T_C 18 51772288 3.18 6.10 34.53

Gm18_51867289_C_T 18 51867289 3.70 7.04 35.84

Gm19_37932358_C_T 19 37932358 4.50 8.95 18.69

Gm19_38121212_G_A 19 38121212 3.39 6.75 23.61

(Continued)
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MAF = 17.86%), and Gm15_8412363_G_A (LOD = 4.31, MAF = 12.89%) (Table 3). The

R-square values associated with these SNPs ranged from 8.02% to 10.85% with SNP

Gm15_7574118_T_C having the highest R-square value.

Table 3. (Continued)

Statistical_model SNP_marker Chromosome Position_(bp) LOD (-log10(p-value)) R_square (%) Minor_allele_frequency(%)

MLM_(PCA+K) Gm06_11098210_C_T 6 11098210 3.44 7.40 16.67

Gm15_7574118_T_C 15 7574118 3.79 8.08 19.73

Gm15_7864348_G_T 15 7864348 3.09 6.53 11.21

Gm15_8263547_G_T 15 8263547 3.35 6.99 13.60

Gm15_8412363_G_A 15 8412363 3.25 6.83 12.89

Gm19_37932358_C_T 19 37932358 3.93 9.13 18.69

https://doi.org/10.1371/journal.pone.0235089.t003

Fig 2. Manhattan plots and QQ-plots for tolerance indexes based on biomass reduction under SCN infestation. The x-axis of each

Manhattan plot represented the chromosome number, whereas the y-axis denoted the LOD (-log10(p-value)). Color coding on the

Manhattan plot is chromosome-wise. The x-axis of each QQ-plot represented the expected -log10(p-value), whereas the y-axis displayed the

observed -log10(p-value). A: Manhattan plot and QQ-plot resulted from the single marker regression model (SMR). B: Manhattan plot and

QQ-plot obtained using the generalized linear model (GLM(PCA)). C: Manhattan plot and QQ-plot generated by the mixed liner model

(MLM(PCA+K)).

https://doi.org/10.1371/journal.pone.0235089.g002
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A total of 7 significant SNPs were mapped on a 3.5-Mb region of chromosome 15 (Table 3)

(Fig 2B). These SNPs consisted of Gm15_4973977_T_C (LOD = 4.35, MAF = 8.33%),

Gm15_7574118_T_C (LOD = 5.67, MAF = 10.85%), Gm15_7721702_G_A (LOD = 3.84,

MAF = 7.48%), Gm15_7864348_G_T (LOD = 4.13, MAF = 8.02%), Gm15_8134735_A_G

(LOD = 3.61, MAF = 6.90%), Gm15_8263547_G_T (LOD = 4.40, MAF = 8.32%), and

Gm15_8412363_G_A (LOD = 4.31, MAF = 8.23%) (Table 3). A significant portion of the

3.5-Mb region of chromosome 15 containing these significant SNPs overlapped with the 2-Mb

region of chromosome 15 that were indicated by the SMR model, thus increasing the likeli-

hood of significant loci controlling tolerance index based on biomass reduction under SCN

infestation in this genomic region. In addition, chromosome 18 contained a cluster of 4 signifi-

cant SNPs mapped on a 740-Kb genomic region (Table 3) (Fig 2B). These SNPs consisted of

Gm18_51128392_G_A (LOD = 3.78, MAF = 37.10%), Gm18_51659540_A_G (LOD = 3.60,

MAF = 35.40%), Gm18_51772288_T_C (LOD = 3.18, MAF = 34.53%), and Gm18_51867289_

C_T (LOD = 3.70, MAF = 35.84%) (Table 3). This region of chromosome 18 also significantly

overlapped with that of found with the SMR model.

Mixed linear model (PCA + K). A mixed linear model involving the covariates principal

component (PCA) and Kinship (K) was also conducted in order to identify SNP markers asso-

ciated with tolerance index based on reduction in biomass under SCN infestation in soybean.

As expected, fewer SNPs had an LOD greater than 3 compared to the results obtained from

the SMR and GLM_PCA models. These SNPs were Gm06_11098210_C_T (LOD = 3.44,

MAF = 16.67%), Gm15_7574118_T_C (LOD = 3.79, MAF = 19.73%), Gm15_7864348_G_T

(LOD = 3.09, MAF = 11.21%), Gm15_8263547_G_T (LOD = 3.35, MAF = 13.60%), Gm15_

8412363_G_A (LOD = 3.25, MAF = 12.89%), and Gm19_37932358_C_T (LOD = 3.93,

MAF = 18.69%) with R-square values of 7.40%, 8.08%, 6.53%, 6.99%, 6.83%, and 9.13%,

respectively (Table 3) (Fig 2C). Chromosome 15 harbored a total of 4 significant SNPs out of

these 6 SNPs. The 4 SNPs were located on an 840-Kb region of chromosome 15, which over-

lapped with the significant loci indicated by the SMR and GLM_PCA models (Fig 2C). Since

this region on chromosome 15 was suggested by all 3 statistical models, the likelihood of hav-

ing QTL(s) affecting is high. Interestingly, no SNPs having an LOD greater than 3 were found

on chromosome 18, unlike the SMR and the GLM_PCA models. If the threshold was 2.60, one

SNP marker located on chromosome 18 would be significant.

Overlapping significant SNP markers between models and candidate genes

The linear regression models upon which the SMR, GLM_PCA, and GLM_PCA_K models

were built had different covariates. Despite this discrepancy between models, the results indi-

cated three consistent genomic regions significantly associated with tolerance index based on

biomass reduction under SCN infestation in soybean (Fig 2). The SNPs Gm06_11098210_C_T

(LOD_SMR = 4.66, LOD_GLM_PCA = 3.93, LOD_GLM_PCA_K = 3.44), Gm15_7574118_

T_C (LOD_SMR = 4.51, LOD_GLM_PCA = 5.67, LOD_GLM_PCA_K = 3.79), Gm15_

7864348_G_T (LOD_SMR = 4.61, LOD_GLM_PCA = 4.13, LOD_GLM_PCA_K = 3.09),

Gm15_8263547_G_T (LOD_SMR = 4.92, LOD_GLM_PCA = 4.40, LOD_GLM_PCA_K =

3.35), Gm15_8412363_G_A (LOD_SMR = 4.85, LOD_GLM_PCA = 4.31, LOD_GLM_P-

CA_K = 3.25), Gm19_37932358_C_T (LOD_SMR = 4.84, LOD_GLM_PCA = 4.50, LOD_

GLM_PCA_K = 3.93) had an LOD greater than 3 regardless of the model (Table 4). These

results suggested that the regions harboring these SNPs, especially the 840-Kb region of chro-

mosome 15, had a strong probability of containing QLT(s) affecting tolerance index based on

reduction in biomass under SCN infestation in soybean.
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Since the 6 aforementioned SNPs were consistent across all 3 models, candidate genes in

their vicinity were investigated. These candidate genes consisted of Glyma.06G134900, Gly-
ma.15G097500.1, Glyma.15G100900.3, Glyma.15G105400, Glyma.15G107200, and Gly-
ma.19G121200.1 (Table 4). Glyma.06G134900, Glyma.15G097500.1, Glyma.15G100900.3,

Glyma.15G105400, and Glyma.19G121200.1 encoded for small heat-shock protein (HSP20)

family, mago nashi family protein, protein phosphatase 2C family protein, predicted 3-keto-

sphinganine reductase, and protein FAR1-related sequence 3-like isoform X1, respectively,

whereas no functional annotation was found for Glyma.15G107200 (Table 4). Gly-
ma.18g225800, encoding for a homeobox-leucine zipper protein, was found in the vicinity of

the SNP maker located on chromosome 18 under the mixed liner model (PCA + K).

Selection accuracy and efficiency

Selection accuracy and efficiency for the SNPs overlapping between models were calculated. The

average selection accuracy for the selected SNPs was 43.00% and ranged between 40.82% and

48.67% (Table 5). The SNP with the highest selection accuracy was Gm06_11098210_C_T,

whereas the one with the lowest accuracy among the selected SNP was Gm19_37932358_C_T.

Selection efficiency varied from 25.33% to 32.74%, with an average of 28.12% and a standard devi-

ation of 2.58% (Table 5). The SNP with the highest selection efficiency was Gm06_11098210_C_T,

and the one with the lowest selection efficiency was Gm15_7574118_T_C (Table 5).

Genomic selection

Genomic selection for tolerance index based on biomass reduction under SCN infestation was

conducted using statistical models consisting of ridge regression best linear unbiased predictor

Table 4. Overlapping significant SNP markers (LOD>3.00) between the Single Marker Regression (SMR), Generalized Linear Model_PCA (GLM_(PCA)), and

Mixed Liner Model_PCA_K(MLM_(PCA+K)) models.

SNP_marker Chromosome Position_(bp) LOD(-log10(p-value)) Minor_allele_frequency(%)

SMR GLM_(PCA) MLM_(PCA+K)

Gm06_11098210_C_T 6 11098210 4.66 3.93 3.44 16.67

Gm15_7574118_T_C 15 7574118 4.51 5.67 3.79 19.73

Gm15_7864348_G_T 15 7864348 4.61 4.13 3.09 11.21

Gm15_8263547_G_T 15 8263547 4.92 4.40 3.35 13.60

Gm15_8412363_G_A 15 8412363 4.85 4.31 3.25 12.89

Gm19_37932358_C_T 19 37932358 4.84 4.50 3.93 18.69

SNP_marker Chromosome Position_(bp) R_square Minor_allele_frequency(%)

SMR GLM_(PCA) MLM_(PCA+K)

Gm06_11098210_C_T 6 11098210 9.09 7.35 7.40 16.67

Gm15_7574118_T_C 15 7574118 9.01 10.85 8.08 19.73

Gm15_7864348_G_T 15 7864348 9.19 8.02 6.53 11.21

Gm15_8263547_G_T 15 8263547 9.57 8.32 6.99 13.60

Gm15_8412363_G_A 15 8412363 9.56 8.23 6.83 12.89

Gm19_37932358_C_T 19 37932358 10.02 8.95 9.13 18.69

SNP_marker Chromosome Position_(bp) Gene_ID Functional annotation

Gm06_11098210_C_T 6 11098210 Glyma.06G134900 small heat-shock protein (HSP20) family

Gm15_7574118_T_C 15 7574118 Glyma.15G097500.1 mago nashi family protein

Gm15_7864348_G_T 15 7864348 Glyma.15G100900.3 Protein phosphatase 2C family protein

Gm15_8263547_G_T 15 8263547 Glyma.15G105400 Predicted 3-ketosphinganine reductase

Gm15_8412363_G_A 15 8412363 Glyma.15G107200 NA

Gm19_37932358_C_T 19 37932358 Glyma.19G121200.1 protein FAR1-related sequence 3-like isoform X1

https://doi.org/10.1371/journal.pone.0235089.t004
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(rrBLUP), genomic best linear unbiased predictor (gBLUP), Bayesian lasso regression (BLR),

random forest (RF), and support vector machines (SVMs) (Table 6). Marker effects were eval-

uated from all SNPs and the SNPs obtained from GWAS under single marker regression

(SMR), generalized linear model (GLM_(PCA)), and mixed linear model (MLM_(PCA+K))

models, respectively. The effect of training population size on genomic selection accuracy was

also investigated by conducting cross-validation at different levels with 100 replications for

each cross-validation fold. Regardless of the genomic selection model and the size of the train-

ing population, the accuracy of genomic selection was higher when the SNPs obtained from

GWAS were used (Table 6) (Fig 3). Interestingly, the genomic selection accuracy using the sig-

nificant SNPs from SMR was not as high as the one obtained from the other GWAS models

such as GLM (PCA) and MLM (PCA + K) when the gBLUP model was used for conducting

genomic selection (Fig 3). There was not a significant variation in genomic selection accuracy

between the SNP set consisting of SMR_SNPs, GLM_PCA_SNPs, and MLM_PCA_K_SNPs

for the genomic selection models involving BLR, RF, rrBLUP, and SVMs (Fig 3). Overall,

genomic selection accuracy slightly increased when the training population was bigger and

plateaued out at a 6-fold cross-validation (Table 6) (Fig 3), corresponding to a training popula-

tion size of 195 individuals.

For rrBLUP, genomic selection accuracy increased to almost 2-fold at each level of cross-

validation when the GWAS-derived SNPs were incorporated into the genomic selection

model. The highest increase was found at 2-fold cross validation where the genomic selection

accuracy was 0.22 when all SNPs were used and was equal to 0.50, 0.50, and 0.51 when the

SNP set SMR_SNP, GLM_PCA_SNP, and MLM_PCA_K_SNP were used, respectively

Table 5. Genotypic count for the top 78 soybean accessions with the highest tolerance index under SCN infestation, top 78 soybean accessions having the lowest tol-

erance index under SCN infestation, and selection accuracy and efficiency for the SNPs associated with tolerance index based on biomass reduction under SCN

infestation.

High_tolerance_index Low_tolerance_index

SNP AA CC GG TT Ha Missingb Total AA CC GG TT H Missing Total

Gm06_11098210_C_T 0 55 0 7 14 2 78 0 58 0 16 1 3 78

Gm15_7574118_T_C 0 38 0 18 17 5 78 0 55 0 15 5 3 78

Gm15_7864348_G_T 0 0 49 8 14 7 78 0 0 66 8 2 2 78

Gm15_8263547_G_T 0 0 49 9 17 3 78 0 0 64 10 2 2 78

Gm15_8412363_G_A 9 0 49 0 14 6 78 8 0 68 0 1 1 78

Gm19_37932358_C_T 0 40 0 18 12 8 78 0 58 0 8 4 8 78

SNP Count_for_the_whole_panel Selection_

accuracy_(%)c
Selection_

efficiency_(%)d

AA CC GG TT H Missing Total AA CC GG TT AA CC GG TT

Gm06_11098210_C_T 0 168 0 38 22 6 234 48.67 32.74

Gm15_7574118_T_C 0 150 0 44 29 11 234 40.86 25.33

Gm15_7864348_G_T 0 0 176 25 22 11 234 42.61 27.84

Gm15_8263547_G_T 0 0 171 31 26 6 234 43.36 28.65

Gm15_8412363_G_A 29 0 175 0 21 9 234 41.88 28.00

Gm19_37932358_C_T 0 153 0 40 21 20 234 40.82 26.14

a Count corresponding to heterozygous SNPs.
b Count corresponding to missing SNP data.
c Selection accuracy = 100�[(Number of genotypes having high tolerance index with the favorable SNP allele)/ (Number of genotypes having high tolerance with the

favorable SNP allele + Number of genotypes having low tolerance with the favorable SNP allele)].
d Selection efficiency = 100�[(Number of genotypes having high tolerance index with the favorable SNP allele)/(Total number of genotypes having the favorable SNP

allele)].

https://doi.org/10.1371/journal.pone.0235089.t005
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(Table 6). At 3-fold and 4-fold cross-validation, genomic selection accuracy was the highest

when the SNP set GLM_PCA was used (Table 6). Genomic accuracy was equally high for the

SNP set SMR_SNP and MLM_PCA_K_SNP at 5-, 6-, and 7-fold cross validation. For gBLUP,

Table 6. Genomic selection accuracy of tolerance index based on biomass reduction under SCN infestation using 5 statistical models (rrBLUP: ridge regression best

linear unbiased predictor, gBLUP: genomic best linear unbiased predictor, BLR: Bayesian Lasso regression, RF: random forest, and SVMs: support vector

machines), four SNP sets (all SNPs, SMR_SNPs, MLM_PCA_SNPs, and MLM_PCA_K_SNPs), and different levels of cross-validation (2-fold, 3-fold, 4-fold, 5-fold,

6-fold, and 7-fold) with a total of 100 replications each.

Statistical_models SNP_set Summary_statistics Cross_validation

2_fold 3_fold 4_fold 5_fold 6_fold 7_fold

rrBLUP AllSNPs Mean 0.22 0.24 0.23 0.26 0.25 0.25

SD 0.06 0.08 0.09 0.13 0.10 0.14

SMR Mean 0.50 0.51 0.52 0.52 0.52 0.53

SD 0.05 0.07 0.08 0.10 0.12 0.13

GLM_(PCA) Mean 0.50 0.54 0.53 0.51 0.52 0.52

SD 0.05 0.07 0.08 0.12 0.12 0.13

MLM_(PCA+K) Mean 0.51 0.52 0.52 0.52 0.53 0.53

SD 0.05 0.08 0.10 0.11 0.13 0.14

gBLUP AllSNPs Mean 0.14 0.17 0.16 0.16 0.19 0.18

SD 0.07 0.08 0.11 0.13 0.15 0.16

SMR Mean 0.28 0.29 0.28 0.26 0.30 0.27

SD 0.06 0.09 0.12 0.13 0.14 0.15

GLM_(PCA) Mean 0.43 0.44 0.46 0.48 0.45 0.45

SD 0.07 0.08 0.09 0.12 0.13 0.17

MLM_(PCA+K) Mean 0.43 0.43 0.40 0.40 0.43 0.44

SD 0.06 0.11 0.12 0.15 0.16 0.16

BLR AllSNPs Mean 0.21 0.24 0.25 0.23 0.24 0.24

SD 0.06 0.09 0.10 0.11 0.13 0.14

SMR Mean 0.50 0.51 0.51 0.50 0.51 0.52

SD 0.05 0.07 0.09 0.11 0.11 0.15

GLM_(PCA) Mean 0.50 0.53 0.52 0.52 0.53 0.52

SD 0.06 0.06 0.08 0.10 0.11 0.13

MLM_PCA_K Mean 0.51 0.53 0.52 0.52 0.52 0.53

SD 0.06 0.07 0.09 0.10 0.12 0.14

SVMs AllSNPs Mean 0.17 0.18 0.18 0.18 0.18 0.21

SD 0.07 0.08 0.11 0.10 0.14 0.14

SMR Mean 0.46 0.48 0.47 0.49 0.47 0.46

SD 0.05 0.07 0.09 0.10 0.11 0.14

GLM_PCA Mean 0.41 0.43 0.43 0.44 0.40 0.45

SD 0.06 0.08 0.07 0.11 0.13 0.13

MLM_(PCA+K) Mean 0.42 0.44 0.45 0.44 0.46 0.45

SD 0.06 0.07 0.09 0.11 0.12 0.13

RF AllSNPs Mean 0.23 0.25 0.25 0.26 0.26 0.25

SD 0.06 0.08 0.09 0.10 0.12 0.15

SMR Mean 0.45 0.46 0.45 0.44 0.45 0.47

SD 0.06 0.08 0.09 0.11 0.13 0.13

GLM_(PCA) Mean 0.43 0.45 0.44 0.46 0.43 0.46

SD 0.06 0.09 0.09 0.11 0.12 0.14

MLM_(PCA+K) Mean 0.45 0.46 0.47 0.44 0.46 0.44

SD 0.07 0.07 0.09 0.11 0.13 0.16

https://doi.org/10.1371/journal.pone.0235089.t006

PLOS ONE GWAS and GS for SCN tolerance

PLOS ONE | https://doi.org/10.1371/journal.pone.0235089 July 16, 2020 13 / 20

https://doi.org/10.1371/journal.pone.0235089.t006
https://doi.org/10.1371/journal.pone.0235089


using GWAS-derived SNPs increased genomic selection to almost 3-fold expect for the SMR

SNP set (Table 6) (Fig 3). Under the gBLUP model, genomic selection accuracy was the highest

when the GLM_PCA SNP set was used. Genomic selection was 0.43, 0.44, 0.46, 0.48, 0.45, and

0.45 at 2-, 3-, 4-, 5-, 6-, and 7-fold cross-validation, respectively, for the GLM_PCA SNP set

(Table 6), whereas the accuracy was 0.14, 0.17, 0.16, 0.16, 0.19, 0.18 at 2-, 3-, 4-, 5-, 6-, and

7-fold cross-validation, respectively, when all SNPs were used to perform genomic selection

(Table 6). Genomic selection accuracy performed better under the BLR model than the gBLUP

model. Genomic selection accuracy was more than 0.50 when the GWAS-derived SNPs were

used in the BLR model (Table 6). Unlike the results suggested by gBLUP, genomic selection

under the BLR model showed a higher and a more stable result if the SNPs were derived from

a GWAS analysis (Fig 3). The SVMs model resulted in a lower genomic selection accuracy

than BLR and rrBLUP, but was comparable to gBLUP except for the SNPs derived the SMR

model in GWAS (Fig 3). In addition, the genomic selection based on the SVMs model was spe-

cial in a way that the accuracy was the best when the SNPs from the SMR GWAS model were

used, which was not the case for the other genomic selection models (Table 6) (Fig 3). Among

the 5 genomic selection models used for predicting tolerance index based on biomass reduc-

tion under SCN infestation, the RF model displayed the best accuracy when all SNPs were

used (Table 6). However, the selection accuracy under the RF model was lower than rrBLUP

and BLR when the GWAS-derived SNPs were used (Table 6) (Fig 3). These results suggested

that genomic selection for tolerance index based on biomass reduction under SCN infestation

was model-, SNP set-, and training population size-dependent.

Discussion

A large variation in tolerance index based on biomass reduction due to SCN infection was

found among the soybean panel in this study. Biomass of the genotypes M97251029,

Fig 3. Boxplots showing genomic selection accuracy for SCN tolerance index for biomass reduction under SCN infestation using 5 statistical models:

Bayesian Lasso regression (BLR), genomic best linear unbiased predictor (gBLUP), random forest (RF), ridge regression best linear unbiased predictor

(rrBLUP), and support vector machines (SVMs). For each model, cross-validation was conducted using different levels (2-fold, 3-fold, 4-fold, 5-fold, 6-fold,

and 7-fold) in order to assess the effect of population training size on genomic selection accuracy. At each level of cross-validation, SNP set consisting of all

SNPs and SNPs with an LOD greater than 2 based on the GWAS on analysis were used for conducting genomic selection. SMR_SNPs denoted the SNPs from

the single marker regression model, GLM_PCA_SNPs represented the SNPs from the generalized linear model, and MLM_PCA_K_SNPs corresponded to the

SNPs from the mixed linear model in GWAS. Box plot color coding in the above figure is SNP set-wise. Genomic selection was conducted using a total of 100

replications and empty dots were outliers.

https://doi.org/10.1371/journal.pone.0235089.g003
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ALTONA, MN1804CN, M97305077, M97304052, M97205096, M98332108, MN1806SP, and

ALPHA was not affected by SCN infection, indicating that these genotypes were tolerant to

SCN infection. Among the 9 lines, MN1804CN and ALPHA (PI 564524) contained resistance

from PI 88788 and were resistant to HG Type 0 (race 3) [14]; the SCN tolerance in these 2

lines can be due to or partially due to the SCN resistance trait. All other 7 lines were susceptible

to race 3 and the SCN population used in this study; the tolerance in these 7 lines must be due

to some other traits rather than the traits resistant to SCN development and reproduction. The

results suggest that the SCN tolerance traits based on biomass phenotyping is useful in diversi-

fying soybean cultivars with SCN tolerance traits (minimizing SCN damage) in additional to

SCN resistance traits (suppressing SCN reproduction).

Genome wide association study (GWAS) has been a powerful tool to identify SCN-resis-

tance loci in soybean [14–16, 36]. A total of 3,782 high quality SNPs were used to conduct

GWAS for tolerance index based on biomass reduction under SCN infestation in this study. A

total of 35, 21, and 6 SNPs were identified to be associated with tolerance index based on bio-

mass reduction under SCN infestation using the models SMR, GLM (PCA), and MLM (PCA

+K). Of which, 6 SNPs overlapped between the 3 models. The discrepancy in terms of the

number of significant SNPs found from each model was attributed to the different covariates

used upon which each GWAS model was built. PCA accounted for population stratification

within the soybean panel investigated in this study. The SMR model does not account for pop-

ulation structure, GLM (PCA) has the ability to reduce false discovery due to population strati-

fication, and MLM (PCA +K) further decreases false discovery rate by incorporation the

genetic relatedness between soybean lines, which was denoted as Kinship (K). Both SMR and

GLM (PCA) models identified a cluster of significant SNPs found on chromosome 18, which

harbored the resistant locus rhg1 [9]. A few lines involved in the soybean panel used in this

study were derived from PI 88788 [14], which has the rhg1 locus resistant to SCN. The SCN

resistant traits can contribute to soybean tolerance under the SCN infection, but the rgh1
genes have little resistance to the SCN population of HG Type 1.2.3.5.6.7 (race 4) used in this

study. Interestingly, the highest GWAS signals were located on an 840-Kb region of chromo-

some 15. Of the 6 SNPs overlapping between the 3 models, 4 were mapped on chromosome

15. To the best of our knowledge, to date, no SCN-resistant loci have been reported in the

vicinity of these SNPs. There were only 16 lines potentially containing SCN resistance of rhg1
on chromosome 18 from PI 88788. Since the FI of the SCN population on PI 88788 was 28.2

and a soybean derived from PI 88788 generally have higher FI than the source, probably none

of these 16 soybean lines could have FI less than 30 and be classified as a soybean resistant to

the SCN population used in this study. Therefore, this QTL on this chromosome 15 is probably

a sole tolerance trait that promotes soybean growth to minimize biomass reduction by SCN

infection, but is unable to suppress SCN reproduction.

One of the most surprising findings reported in this study was the involvement of small

heat-shock protein (HSP20) for SCN tolerance based on biomass reduction. In addition to

conferring resilience to abiotic stresses such as drought and hot temperatures, small-heat

shock proteins (HSP20) have been also suggested to help with plant defense mechanism to

pathogen infection [37]. These proteins act as molecular chaperones by assisting with protein

folding and other post-translational modifications during pathogen invasion. Park and Seo

[37] showed that HSP20 is highly involved in controlling R proteins during plant pathogen

attack. Therefore, there could be a link between HSP20 and its involvement in limiting damage

of SCN infection in soybean. However, this finding requires additional validation. Our results

also indicated a mago nashi family protein to be a good candidate for SCN tolerance. Mago

nashi protein is a key component of the exon junction complex (EJC) [38]. The involvement

of mago nashi protein in plant defense pathways against pathogens remains poorly
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understood. However, Gong et al. [38] reported that one of the genes found in the EJC com-

plex is involved in plant growth and development. In this study, we reported loci affecting tol-

erance index based on biomass reduction under SCN infestation in soybean. We could suggest

that the EJC complex might promote plant growth under SCN infestation, resulting in a

greater shoot biomass. A phosphatase 2C family protein has been also found to be associated

with SCN tolerance in this study. This protein belongs to the class of enzymes requiring Mg2+

and Mn2+ to be functional. These proteins are highly involved in plant signaling pathways dur-

ing pathogen infection [39]. One of the pathways involving these proteins that are relevant to

biotic stress is the signaling of the hormone abscisic acid (ABA) regulation. Fuchs et al. [39]

described that the regulation of ABA upon plant biotic stress contributes to maintaining vege-

tative growth and modulating plant transpiration. This could explain the fact that some soy-

bean lines used in this study were able to grow and develop under SCN infestation. A

predicted 3-ketosphinganine reductase has also been identified as a potential candidate gene

for tolerance to SCN infection in this study. This protein has been shown to play key roles in

plant response to biotic stress [40]. This protein is an essential element of cell wall and acts as a

hormone signaling molecule [40]. Wang et al. [41] demonstrated that the gene encoding for

3-ketosphinganine reductase is upregulated during powdery mildew infection in Arabidopsis
thaliana. This molecule is significantly involved in the salicylic-acid pathway [41]. Even

though no reports have described the direct involvement of 3-ketosphinganine reductase in

SCN defense mechanism, we could still speculate that its mechanism in soybean might be sim-

ilar to the one described during the powdery mildew infection in Arabidopsis thaliana. An

annotated gene, Glyma.19G121200.1, has also been found in the vicinity of the significant

SNPs associated with tolerance index based on biomass reduction under SCN infestation. This

gene encodes for FAR1-related sequence 3-like isoform X1. However, to date, there is no

report describing the role of this protein in plant defense mechanism against pathogens.

Therefore, further analyses are required to elucidate the unknown functions of the proteins

transcribed by the annotated genes found in the vicinity of the SNP markers. In addition, fur-

ther studies are needed for validating the candidate genes prior to their deployment into a

marker-assisted selection aiming at improving SCN tolerance in soybean.

Genomic selection has become more and more popular in modern plant breeding [42, 43].

Genomic selection has been proven to be successful in improving genetic gain per unit of time

in other studies [35, 44–47]. However, few reports have focused on the potential establishment

of genomic selection to unravel the genetic architecture of SCN tolerance in soybean. In this

investigation, we performed genomic selection based on 5 statistical models (BLR, gBLUP,

rrBLUP, RF, and SVMs) and 4 SNP sets (all SNPs, SMR_SNPs, GLM_PCA_SNPs, and

MLM_PCA_K_SNPs). In addition, we have also investigated the effect of training population

size on genomic selection accuracy by conducting genomic selection at different levels of

cross-validation. Results indicated that genomic selection accuracy was model, SNP set-, and

training population size-dependent. This implies that model selection criteria, type of SNPs,

population training size are critical components of interest when conducting a genomic selec-

tion study. Using GWAS-derived SNPs enhanced the accuracy to almost two-fold. A study

conducted by Bao et al. [14] on both association mapping and genomic selection on a total of

282 soybean genotypes for SCN resistance indicated that the use of significant SNPs for con-

ducting genomic selection significantly improved the accuracy of prediction, which was in

agreement with the data reported in this current investigation.

In this study we conducted a genome-wide association study (GWAS) to identify SNP

markers, and to perform a genomic selection (GS) study for soybean tolerance to SCN infec-

tion based on biomass reduction. GWAS has been shown to be successful in studies investigat-

ing the genetics of SCN in soybean [48]. Li et al. [49] mapped a 6-Mb region of chromosome
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15 to be associated with SCN. In this report, this region has been narrowed to a less than 2-Mb

region. In a previous report, we presented the genomic study of soybean tolerance to the SCN

infection based on chlorophyll content. Soybean tolerance to SCN may be best characterized

by soybean yield response to the SCN infection [48]. However, due to a large number of soy-

bean lines that are needed for the GWAS, it is difficult to conduct a field scale experiment to

phenotype the soybean yield response of all lines to SCN in the same field under similar envi-

ronmental conditions including the SCN infestation level. The greenhouse experiment is the

first feasible step to conduct genomic study of SCN tolerance. Biomass in the greenhouse can

probably be used to predict yield potential in field, but cautiousness must be taken to extrapo-

late the greenhouse results to the field setting. We realize that there were some limitations in

this greenhouse study. For example, we were unable to conduct the experiment to include all

lines at the same time, so it is possible that there were unknown extraneous environmental fac-

tors that interfered with our data interpretation. Furthermore, the plants within and between

pots appeared to be too crowded for the soybean plants to grow for two months in the green-

house (S2 Fig), and the plant growth of a line might have affected the plant growth of lines in

the neighbor pots. We took consideration of the density of plants per pot and variability of bio-

mass measurements among replicates; if number of plants/pot were reduced, it would proba-

bly increase the variability among replicates. It appeared that the plant density of 5 plants/pot

was an appropriate design for this study. However, if there is sufficient greenhouse space, it

would be better to increase the distance between pots and number of replicates. Nevertheless,

to our knowledge, this is the first study of tolerance QTLs to SCN in soybean, perhaps first

study of tolerance QTLs to any plant-parasitic nematode based on biomass reduction under

nematode infestation. Soybean cyst nematode is mainly managed by using SCN-resistant soy-

bean cultivars, which limit SCN reproduction. SCN-tolerant QTLs may include the QTLs

resistant to SCN reproduction, but some QTLs can only affect plant growth, not SCN develop-

ment and reproduction. This study opened a novel approach to diversify genes that promote

plant growth and level off the damage caused by SCN infection. With the advances in genome

sequencing and genetic analyses, genomic selection of SCN-tolerant traits is a promising

approach to breed SCN-tolerant soybean for enhancing SCN management.

Conclusions

This study reported the variation in tolerance index based on biomass reduction of a total of

234 soybean genotypes. To the best of our knowledge, this is one of the a few reports investi-

gating SCN tolerance in soybean. In addition to confirming previously reported loci, we iden-

tified new loci for SCN tolerance using tolerance index based on biomass reduction.

Moreover, we have showed that genomic selection accuracy for SCN tolerance depends on

various factors such as statistical models, SNP sets, and training population size.

Supporting information

S1 Table. List of soybean genotypes evaluated for resistance/tolerance to SCN, average

adjusted tolerance index based on biomass reduction under SCN infestation, and standard

deviation.

(XLSX)

S1 Fig. Experiment design layout for phenotyping SCN tolerance in greenhouse. The geno-

types were replicated four times arranged in four blocks. In each block, the pots were arranged

in a split-plot manner, where the genotypes were main plots, and the SCN and no-SCN
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treatments were sub-plots.

(PPTX)

S2 Fig. Greenhouse experiment to phenotype tolerance of soybean to the infection of the

soybean cyst nematode based on plant biomass. There were 480 16-cm-diam pots for 60 soy-

bean lines each time of the experiment.

(PPTX)

S3 Fig. Kinship plot of 234 soybean genotypes. Values within heat map were obtained from

the Kinship matrix of GAPIT).

(PPTX)
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