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Here we examine the effects of extracts of Poria cocos mycelium fermented with freeze-dried plum powder (PPE) on the 𝛼-
melanocyte stimulating hormone (𝛼-MSH)-stimulated melanogenesis in cultured murine B16 melanoma cells (B16 cells), relative
to the effects of Prunus extract. We found that an extract of Prunus fermentation showed significant inhibition of melanogenesis
and tyrosinase activity with no effect on cell proliferation and was more active compared to Prunus extract alone. Furthermore, we
confirmed that medium containing 3% Prunus was the optimal culture substrate for fermentation with Poria cocos. These results
provide evidence that Prunus fermentation extract affects skin whiting in murine B16 melanoma cells (B16 cells). Prunus contains
rutin, oxalic acid, succinic acid, and fumaric acid, which help in digestion and fatigue recovery.The rutin ofPrunusmume is reported
to have antioxidant and anti-inflammatory effects. Also, Prunus extract has a tyrosinase inhibitory activity for skin whiting through
its antioxidant activity.Therefore, we believe the Prunus extract for Poria cocos fermentation can be provided as a potential mediator
to induce skin whiting.

1. Introduction

Melanin plays a key role in photoprotection and imparts
skin color. It is well documented that overproduction and
excessive accumulation of melanin leads to various human
skin disorders, such as melasma, freckles, age spots, and
malignant melanomas [1]. Melanin synthesis is modulated
by the number of melanocytes present in the epidermis,
and the size and amount of melanosomes generated by
melanogenic enzymes [2–5]. Among the many enzymes
involved, melanogenic enzymes present in melanocytes and

melanoma cells, such as tyrosinase, tyrosinase-related protein
1 (TRP-1), and tyrosinase-related protein 2 (TRP-2), are
the most important regulators of melanin biosynthesis [2–
9]. Tyrosinase is a rate-limiting enzyme of melanogenesis
and exerts its effect by catalyzing the hydroxylation of
tyrosine to 3, 4-dihydroxyphenylalanine (DOPA), and the
oxidation of DOPA to DOPA-quinone. The TRP-1 com-
plexes include TRP-1 (involved in the oxidization of 5,6-
dihydroxyindole-2-carboxylic acid (DHICA) to a carboxy-
lated indole-quinone) and TRP-2 (which functions as a
DOPA-chrome tautomerase and catalyzes the rearrangement
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of DOPA-chrome to DHICA) [2–9]. Therefore, melanogenic
enzymes, such as tyrosinase and the TRP-1 complex, are
important in tyrosinase activation and stability. This has
increased the demand of tyrosinase inhibitors for use in skin
whitening agents – from synthetic [1, 2] or natural resources
[1] – for both beauty and therapeutic purposes, which are
currently under development [2–9]. Tyrosinase inhibitors
have beenwidely studied for their reduction ofmelanogenesis
[1–10]. Prunus mume is known to have various biological
activities and is widely cultivated in China, Japan, and Korea.
P. mume is reported to contain oxalic acid, succinic acid, and
fumaric acid, which help in digestion and fatigue recovery
[11, 12]. The rutin of P. mume is reported to have antioxidant
and anti-inflammatory effects. Also, the extract of Prunus
was found to possess tyrosinase inhibitory activity for skin
whiting by exerting its antioxidant effect [11, 12]. Also, the
material for fermentation Poria cocos (Schw.)Wolf is a cluster
of sclerotial bodies that include fungi and parasitic fungi
(parasitic mushrooms) residual in the roots present under
the ground 4–5 years after pine trees have been harvested
[11, 12]. Depending on their color within and their origin,
they are named as follows: white (Baekbokryeong), pink
(Juckbokyeong), originating from pine roots (penetrated)
[11, 12]. This study was undertaken to examine the tyrosinase
inhibitory activity of the extract of Prunus fermentation.
To address this inhibitory activity, the effects of Prunus
fermentation extract were assessed for 𝛼-MSH-stimulated
melanogenesis in B16 melanoma cells, relative to Prunus
extract alone. This study further confirmed the optimum
content of Prumus extract for Poria cocos (Schw.) Wolf
mycelium fermentation.

2. Material and Methods

2.1. Chemicals. The following chemicals were procured
from Sigma-Aldrich, St. Louis, MO, USA: ascorbic acid,
1,1-diphenyl,2-picryl hydrazyl (DPPH), gallic acid, vanillin,
(+)-catechin, sulfuric acid, sodium dodecyl sulphate (SDS),
sulfuric acid (H2SO4), 2,2󸀠-azino-bis(3-ethylbenzothia-
zoline-6-sulfonic acid) diammonium salt, potassium fer-
ricyanide (K3[Fe(CN)6]), ferrous sulphate (FeSO4), ferric
chloride (FeCl3), sodium carbonate (Na2CO3), sodium
nitrite (NaNO2), sodium hydroxide (NaOH), aluminum
chloride (AlCl3), copper(II) chloride (CuCl2), iron(II)
chloride (FeCl2), ethanolic neocuproine, Folin–Ciocalteu’s
phenol reagent, 2,2󸀠-bipyridyl, ethylenediaminetetraacetic
acid (EDTA), ammonium acetate, dimethyl sulfoxide
(DMSO), and propidium iodide (PI). Potassium persulfate
(Junsei, Japan), HPLC grade methanol, and ethanol (J.T
Baker, U.S.A) were the other chemicals used.

RPMI 1640 medium was purchased from Thermo SCI-
ENTIFIC, DMEM fromGendepot, and the cell counting Kit-
8 (CCK-8) from Dojindo Laboratories.

2.2. Mycelium Culture and Fermentation of Material Extracts.
Freeze-dried plum pulp was purchased from Suncheon N
Plum Ltd. (Suncheon City, Republic of Korea) and extracted.
Control is cultured media, PC1% (freeze-dried plum powder
1%+culturedmedia) andPP (Poria cocosmycelium fermented

of culture media). The Poria cocos mycelia were cocultured
with 0.1%, 0.3%, 1%, 3%, and 10% concentrations of the
lyophilized powder of dried plums, and incubated for 9 days
in a shaking incubator. The resultant mushroom mycelium
culture was homogenized and mixed with 70% fermented
alcohol at a ratio of 1:1 (V/V), followed by extraction for 1
day at 14∘C in a shaking incubator. The extracts were filtered
through Whatman filter and used as materials for all exper-
iments. Samples were diluted to the required concentrations
for further experiments.

2.3. Antioxidant Activity

2.3.1. Chemical Composition: Phenolics, Tannins, and Flavon-
oids. Catechins and proanthocyanidins reactive to vanillin
were analyzed using the vanillin method of Richard and
William (1978) [13], with slight modification. Using a cali-
bration curve, concentrations were calculated as g catechin
equivalents (CE)/kg dry mass; the tannin concentration was
expressed as mg CE/g.

The total flavonoid content was evaluated using the
method ofThomas et al. (2012) [14], with slightmodifications.
Quercetin as a standard was evaluated at varying concentra-
tions from 1-500 𝜇g/mL, to generate a calibration curve. The
total flavonoid concentration was expressed as mg QE/g.

The total phenolic content method of Thomas et al.
(2012) [14] and Zhang et al. (2006) [15] was used with slight
modifications [16]. Gallic acid was used as a standard (1-500
𝜇g/mL) to produce a calibration curve. The total phenolic
concentration was expressed as mg GAE/g.

2.3.2. Radical and Anion Scavenging Activity. Antioxidant
activity was studied using the 1,1-diphenyl-2-picrylhydrazyl
free radical (DPPH) method as described by Blois (1958)
[17] and Thomas et al. (2012) [14], with slight modifications.
The ABTS cation radical scavenging activity of extracts was
performed using the spectroscopic method described by
Roberta et al. (1999) [18]. The superoxide radical scavenging
activity of extracts was assessed by the protocol suggested by
Zhishen et al. (1999) [19], with slightmodifications [16], using
ascorbic acid as the standard. Data are expressed as the mean
values ± standard deviation (SD) of three measurements. All
scavenging activities of each solution are calculated as percent
inhibition, according to the following equation:

Scavenging rate (%) =
[A(blank)-A(sample)]

A(blank)
× 100 (1)

2.3.3. Fenton Reaction and Reducing Power Activity. The
metal chelating ability of extracts were predicted according
to themethod of Dinis et al. (1994) [20], with slight modifica-
tions (Gülçin et al. 2007) [16, 21].The Fe2+ chelating ability of
each solutionwas calculated as a percent inhibition according
to the following equation:

Scavenging rate (%) =
[A(blank)-A(sample)]

A(blank)
× 100 (2)

The reducing power of Cu2+ was studied using the reduc-
ing ability method described by Apak et al. (2006) [22] and
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Table 1: The chemical composition of cultured Poria cocosmycelium fermented culture extracts added freeze drying plum powder (PPE).

Type of Sample Polyphenols (GAE)a Tannins (CE)b Flavonoids (QE)c

Control 2.120 ± 0.002 12.667 ± 0.002 1.286 ± 0.001
1% PP 2.887 ± 0.002 13.222 ± 0.001 2.476 ± 0.001
PC 2.212 ± 0.004 17.667 ± 0.001 2.714 ± 0.002
0.1% PPE 2.964 ± 0.001 14.889 ± 0.001 2.952 ± 0.001
0.3% PPE 3.323 ± 0.005 15.444 ± 0.001 2.714 ± 0.001
1% PPE 3.878 ± 0.003 18.222 ± 0.001 3.429 ± 0.001
3% PPE 4.701 ± 0.006 21.000 ± 0.003 5.333 ± 0.001
10% PPE 4.546 ± 0.006 18.779 ± 0.002 6.048 ± 0.001
Standard deviations (SD) did not exceed 5%, nd: not detected.
aMicrogram Gallic acid equivalents per milligram. bMicrogram Catechin equivalents per milligram. cMicrogram Quercetin equivalents per milligram.

Gülçin (2008) [23], with slight modifications. Absorbance of
samples was recorded at 450 nm after 30 min incubation
(Gülçin. 2008) [23]. Extracts were also subjected to the FRAP
assay following the method of Iris and Strain (1996) [24],
with slight modifications. Absorbance of the mixture was
measured at 593 nm (Göcer and Gülçin. 2011) [25]. The
Fe3+ reducing assay measured the Fe3+ reducing ability of
the extracts, using the Fe3+(CN−)6 to Fe2+(CN−)6 reduc-
tion method described by Gülçin (2007) [26] and Gülçin
(2010) [27], with slight modifications [16]. Absorbance was
measured at 700 nm using a spectrophotometer. It is well
documented that increase in reduction capabilities results in
increased absorbance [28, 29]. The data are the mean values
± standard deviation (SD) of three measurements.

2.4. Antimelanogenic Properties

2.4.1. Cells and Cell Culture. Melanoma B16F0 cells (CRL-
6322) were obtained from ATCC (Manassas, VA, U.S.A.) and
cultured in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS), 100 U/mL
of penicillin G, and 100 𝜇l/mL of streptomycin sulfate. The
purities of all standard compounds tested were confirmed
to be >95% by HPLC. Samples of the test compounds were
dissolved in dimethyl sulfoxide (DMSO) and added to the
media at a final concentration of 0.03%DMSO. Cultures were
maintained at 37∘C under 5% CO2 / 95% air, and the media
were changed every two days.

2.4.2. Cytotoxicity Assay. Cell viability was determined using
the cell counting Kit-8 (CCK-8) assay. Melanoma B16F0
cells were suspended in Dulbecco’s Modified Eagle Medium
(DMEM) at a density of 1×105 cells/mL; 100 𝜇L aliquot
of the cell suspension was added per well of 96-well flat-
bottomed microtiter plates, followed by addition of 100 𝜇L of
the test samples (final concentrations of Prunus fermentation
extracts were 100, 500, and 1000 𝜇g/ml), and incubated at
37∘C. After 24h, 10 𝜇L of CCK-8 solution was added per well
and the plates were further incubated for 3h. Absorbance was
detected at 450nm with a microplate reader. The cell viability
is expressed as a percentage of the control culture.

2.4.3. Melanin Content Measurement. To determine the
amount of melanin produced, 1×106 B16F0 cells were plated

per well and exposed to 1000 𝜇M 𝛼-MSH for 1h, after which
the cells were treated with 1000 𝜇g/ml Prunus fermentation
extract for 48 h. The cells were collected by trypsinization,
washed twice with PBS, air dried, and finally dissolved in
200 𝜇L of 1 M NaOH and maintained at 90∘C for 30 min
to dissolve the cell aggregates. The suspension was then
centrifuged, and the resultant supernatant was assessed for
melanin content. The quantity of melanin was determined
as the absorbance at 450 nm using a spectrophotometer.
Absorbance was compared to a standard curve of known
synthetic melanin concentrations.

2.4.4. Tyrosinase Activity. Tyrosinase activity was estimated
by measuring the rate of oxidation of 3, 4-dihydroxy-L-
phenyl-alanine (L-DOPA). About 1×106 cells/well of the B160
cells were exposed to 1000𝜇M𝛼-MSH for 1h, followingwhich
the cells were treated with 1000 𝜇g/ml Prunus fermentation
extract for 48 h. The cells were washed and then lysed in 300
𝜇l sodium phosphate buffer (0.1 M, pH 6.8) containing 0.1%
(w/v) TritonX-100.The extractwas clarified by centrifugation
at 15000 g for 10 min at 4∘C to obtain a crude enzyme
tyrosinase solution in the supernatant; wells were seeded at
100 𝜇l/well concentration and treated with 100 𝜇l/well L-
DOPA solution. After incubation at 37∘C for 2 h, absorbance
was measured at 490 nm using a spectrophotometer.

2.5. Statistical Analysis. Differences in the data between
groups are presented as the mean ± S.D. of three replicates.
Statistical differences were analyzed using the Student’s t-
test. Probability values less than 0.05 are considered to be
significant (P values ∗ < 0.05, ∗∗ < 0.01, ∗ ∗ ∗ < 0.001).

3. Results and Discussion

3.1. Chemical Composition: Phenolics, Tannins, and Flavon-
oids. The total phenolic compounds, flavonoid content, and
condensed tannin content of extracts of the cultured Poria
cocos mycelium fermented with freeze-dried plum powder
(PPE) were determined using gallic acid, quercetin, and
catechin calibration curves, respectively. Table 1 shows the
concentrations of flavonoids, phenolic, and tannic com-
pounds of the fermented extracts.
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Figure 1: (a)The DPPH radical scavenging activity of extracts of Poria cocosmycelium fermented with freeze-dried plum powder (PPE). (b)
The ABTS cation radical scavenging activity of extracts of Poria cocos mycelium fermented with freeze-dried plum powder (PPE). (c) The
superoxide radical scavenging activity of extracts of Poria cocosmycelium fermented with freeze-dried plum powder (PPE). [Vit.C: ascorbic
acid] Results are mean ± S.D. of triplicate data.

The total phenolic content in 3% PPE was 4.701 ± 0.006
𝜇g GAE/mg, flavonoids totaled 5.333 ± 0.001 𝜇g QE/mg, and
condensed tannin totaled 21.000 ± 0.003 𝜇g CE/mg.

Higher levels of phenolics and flavonoids were confirmed
in 3% PPE extracts as compared to other concentrations
of PPE. Additionally, the active ingredients that aid antiox-
idation through fermentation were also confirmed to be
higher in 3% PPE. Condensed tannin was detected only
after fermentation and, thus, was thought to be formed
through the metabolism or the fermenting microbes. These
results indicate that flavonoids of natural products increase
the antioxidant activities, such as the ability to donate
electrons, in proportion to the content of phenolic materials
(Table 1).

3.2. Determination of Antioxidant Activities

3.2.1. Radical and Anion Scavenging Activity. Figure 1 shows
the concentrations of the DPPH radical, ABTS cation radical,
and superoxide anion radical scavenging activity, respec-
tively, found in the extracts of Poria cocos mycelium fer-
mented with freeze-dried plum powder (PPE).

By the electron-donating ability assay, we found that 3%
PPE has a 33.38% activity at 1000 𝜇g/mL. These results are
consistent with studies that show increased DPPH radical
scavenging activities when total polyphenol content is higher,
relative to the total phenolic content and antioxidant activities
in 3% PPE that have high total polyphenol and flavonoid
contents. Also, the ABTS cation radical scavenging activities
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Figure 2: (a)The Cu2+ reducing ability of extracts of Poria cocosmycelium fermented with freeze-dried plum powder (PPE) and of reference
antioxidants. [Vit.C: ascorbic acid] (b) The Fe3+− TPTZ − Fe2+− TPTZ reducing ability of extracts of Poria cocos mycelium fermented with
freeze-dried plum powder (PPE) and of reference antioxidants. (c)The Fe3+ 󳨀→ Fe2+ reductive potential of different of extracts of Poria cocos
mycelium fermented with freeze-dried plum powder (PPE) and of reference antioxidants. (d) The Fe2+ chelating of different of extracts of
Poria cocos mycelium fermented with freeze-dried plum powder (PPE) and of reference antioxidants. Results are mean ± S.D. of triplicate
data.

were found to be 47.14% at the 3% PPE concentration. This
pattern is similar to that of the electron-donating abilities at a
concentration of 1000 𝜇g/mL. The effects of the ABTS cation
radical scavenging abilities and electron-donating abilities are
presented in Figure 1. Conversely, at the same concentration,
the NBT assay revealed superoxide anion radical scavenging
activities to be 48.78% in 10% PPE. This result differs from
the patterns of DPPH radical scavenging activities and ABTS
cation radical scavenging activities; however, the values are
not significantly different relative to those obtained for 3%
PPE.

3.2.2. Fenton Reaction and Reducing Power Activity. Figure 2
shows the concentrations of the Fenton reaction and reducing
power activities found in the extracts of Poria cocosmycelium
fermented with freeze-dried plum powder (PPE).

In the Fenton oxidation reaction, H2O2 and Fe2+ form
an OH radical intermediate that bonds with organic com-
pounds. To measure the reducing power in this oxidation
reaction, we measured the reducing powers of Fe (Fe2+) and
Cu (Cu2+), as well as the antioxidant activities of chelating
reactions, which inhibit the formation of the Fe2+- ferrozine
complex.

The FRAP assay is based on the principle that, at low pH,
the ferric tripyridyl triazine (Fe3+- TPTZ) complex is reduced
to ferrous tripyridyl triazine (Fe2+- TPTZ) by a reducing
agent. In the 3% PPE extract, the FRAP value was determined
to be 0.338 ± 0.010 (OD) at 1000 𝜇g/mL and was found to be
lower in the control samples [0.133 ± 0.047 (OD)].

When measuring the reducing power of ferrous-
ferricyanide (Fe3+) stabilizing free radicals by donating
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Figure 3: (a) Cytotoxicity of extract on mouse B16 melanoma cells. B16F0 cell line was treated with extracts for 24 hours and cell cytotoxicity
was determined by CCK-8 assay. Culture supernatants were removed, and cell counting Kit-8 (CCK-8) was added. (b) Inhibitory effects
of extract on the activity of tyrosinase. The lysates of B16F0 melanoma cells containing tyrosinase were incubated with DOPA for 1 h.
Tyrosinase activity was measured as described in the Material and Methods. (c) Inhibitory effects of extract on the melanin synthesis in
B16F0 melanoma cells. The cells were cultured in the presence of the extracts at concentration of 1000 𝜇g/mL for 48 h. The determination of
melanin content wasmeasured as described in theMaterials andMethods.The results were expressed as the average of triplicate experiments.
Data is expressed as a ratio of the control as mean±S.D of 3 separate experiments. +p<0.05, ++p<0.01 or +++p<0.001 Medium group vs. a-MSH
group. ∗p<0.05, ∗∗p<0.01 or ∗∗p<0.001 a-MSH group vs. Sample group. #p<0.05, ##p<0.01 or ###p<0.001 1%PP group vs. PC, and PPE
group.

hydrogen to the ferric-ferricyanide, the 3% PPE extract and
control were 0.482 ± 0.061 (OD) and 0.119 ± 0.011 (OD),
respectively. Additionally, the reducing power of Cu2+ was
greater in 10% PPE (0.349 ± 0.012) than in the control (0.216
± 0.002), a pattern similar to that observed for phenolic
contents and radical scavenging abilities.

The chelating activities of 0.1% PPE and control at 1000
𝜇g/mL were 89.81 ± 0.56% and 75.36 ± 1.70%, respectively,
confirming that the reducing powers and chelating effects are
obtained through various Fenton reactions. Also, the FRAP
value and reducing power were similar to the DPPH radical
scavenging activities and ABTS cation radical scavenging
activity patterns, respectively, whereas the reducing power of
Cu2+ was similar to the superoxide anion radical scavenging
activity. However, chelating showed higher activity at lower
concentrations of plum.

3.3. Antimelanogenic Properties

3.3.1. Prunus Fermentation Extract Is Not Cytotoxic to B16F0
Cells. We investigated whether different concentrations of
the extract induce apoptosis in B16F0 cells. As shown in
Figure 3(a), none of the extracts induce B16F0 cell cytotox-
icity at any of the examined concentrations.

3.3.2. Effects of Prunus Fermentation Extract on B16F0 Cells
Melanin Synthesis Inhibitory Activity. Next, we evaluated the
effects of the extracts on melanin synthesis in B16F0 cells,
with an aim to evaluate potent antiwhitening properties.This
was compared to the Prunus extract, which is known to exert
an antiwhitening effect. Arbutin, a well-known inhibitor of
melanin synthesis in B16F0 cells, was used as the positive
control. As presented in Figure 3(b), the extracts significantly
decrease melanin production in a dose-dependent manner
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corresponding to the content of Prunus in the medium.
However, decreased melanin inhibition was observed in
the medium containing 10% Prunus, thereby confirming
that medium containing 3% Prunus is the optimal culture
condition. The inhibitory action of medium containing 3%
Prunus on melanogenesis was at a level equivalent to that of
the standard arbutin.

3.3.3. Effects of Prunus Fermentation Extract on the Tyrosi-
nase Activity of B16F0 Cells. Tyrosinase is a well-known
major regulator enzyme involved in melanin synthesis.
Numerous inhibitors of melanin synthesis reduce melano-
genesis by directly inhibiting the tyrosinase activity. The
effect of the obtained extract on tyrosinase activity was
assessed to tentatively evaluate their antimelanogenic prop-
erties since we identified that obtained extracts inhibited
melanin synthesis. Likewise, arbutin, a well-known tyrosi-
nase inhibitor, was used as a positive control. We further
compared this with the Prunus extract, which is known to
have an antiwhitening effect. We observed that exposure
to the fermented extracts resulted in increased tyrosinase
inhibition activities in the B16 melanoma cells (31%, 33%,
59%, 45%, and 37%) with increasing content of Prunus in
the medium, as compared to cells treated with only Prunus
(Figure 3(c)). Likewise, we confirmed that the optimal culture
conditions were exhibited in the medium containing 3%
Prunus.

4. Conclusions

In conclusion, we summarize the effects of extracts of
the cultured Poria cocos mycelium fermented with freeze-
dried plum powder (PPE) on 𝛼-melanocyte stimulating hor-
mone (𝛼-MSH)-stimulated melanogenesis in murine B16F0
melanoma cells (B16 cells), as compared with Prunus extract.
Prunus fermentation extract showed significant inhibition
of melanogenesis and tyrosinase, with no effect on cell
proliferation. Furthermore, we confirmed that 3% PPE is the
best culture condition for fermentation of Poria cocos. We
also confirmed the antioxidant activity of 3% PPE. Similar
patterns were seen in most experiments. Taken together, our
results suggest that the extract is a functional antioxidantwith
potential for commercial application. These results provide
evidence that 3% PPE affects skin whiting in murine B16F0
melanoma cells and can be provided as a potential mediator
to induce skin whiting, as well as help in promoting the
efficacy of antioxidants.
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