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Abstract

With recent advances in technology, deep sequencing data will be widely used to further the understanding of
genetic influence on traits of interest. Therefore not only common variants but also rare variants need to be better
used to exploit the new information provided by deep sequencing data. Recently, statistical approaches for
analyzing rare variants in genetic association studies have been proposed, but many of them were designed only
for dichotomous outcomes. We compare the type I error and power of several statistical approaches applicable to
quantitative traits for collapsing and analyzing rare variant data within a defined gene region. In addition to
comparing methods that consider only rare variants, such as indicator, count, and data-adaptive collapsing
methods, we also compare methods that incorporate the analysis of common variants along with rare variants,
such as CMC and LASSO regression. We find that the three methods used to collapse rare variants perform
similarly in this simulation setting where all risk variants were simulated to have effects in the same direction.
Further, we find that incorporating common variants is beneficial and using a LASSO regression to choose which
common variants to include is most useful when there is are few common risk variants compared to the total
number of risk variants.

Background
Genome-wide association studies have successfully identi-
fied many novel common risk alleles associated with com-
plex traits. Yet these common genetic variants typically
have small effect sizes and explain only a small portion of
genetic variation for a certain trait. With the advances in
whole-genome sequencing technology, data on rare var-
iants have become increasingly available, and many inves-
tigators hope that rare variants will enhance our
understanding of the biological mechanisms of human dis-
eases and traits. Recently, novel statistical approaches have
been proposed to assess the association between traits and
rare variants, sometimes including and sometimes exclud-
ing nearby common variants. However, many of these
methods were developed in a case-control framework and
are not applicable to quantitative traits. In this paper, we
implement several recently published approaches that can

be applied to quantitative traits and compare their type I
error and power using the Genetic Analysis Workshop 17
(GAW17) data set.
Traditionally, investigators have evaluated genetic trait

association by examining a trait’s pattern among the
genotypes of single-nucleotide polymorphisms (SNPs),
with each SNP being analyzed independently of the
other SNPs. Often a regression model is used to account
for potential confounding covariates. However, this
approach is not adequate for rare variants because the
power is directly related to the minor allele frequency
(MAF) and is especially decreased when the MAF is
low. An alternative to testing each rare variant sepa-
rately is to combine information across variants in a
defined gene region. Intuitively, we can collapse infor-
mation across different loci for rare variants by dichoto-
mizing the existence of at least one rare variant
(indicator method) or by counting the number of minor
alleles of the rare variants (count method). These sum-
mary measures can then be assessed for association with
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the trait of interest using a regression or other statistical
framework.
To analyze rare and common variants simultaneously,

Li and Leal [1] proposed a new approach, the combined
multivariate and collapsing (CMC) method, to detect
association between a predefined functional unit or
region and a trait. In 2010, Han and Pan [2] proposed a
data-adaptive sum test to incorporate each rare variant’s
direction of association (data-adaptive method). More
recently, Morris and Zeggini [3] described how to use a
rare allele proportion in a linear regression framework.
Their proportion method is equivalent to using the
count method when there are no missing genetic data.
One drawback to the CMC method is that the

approach incorporates all common variants in the test
statistic. Although this certainly retains any markers that
are truly associated, including all common variants likely
also retains many falsely associated markers. To balance
the inclusion of noise and true signals, we modify the
CMC analysis by first using least absolute shrinkage and
selection operator (LASSO) regression [4] to select com-
mon variants to include in the multivariate statistic.
In this study, we compare the power and type I error

of three methods (indicator, count, and data-adaptive)
for collapsing rare variants in a gene region across three
strategies (no common variants, CMC, and LASSO) to
account for the common variants in the gene region.

Methods
We use the simulated GAW17 data to calculate type I
error and power. Genetic data from the 1000 Genomes
Project was used to represent exome sequencing in the
GAW17 data set. The sample consists of 697 unrelated
subjects from seven populations and includes the origi-
nal sex and age of each subject. Smoking status and
traits are simulated across various association scenarios
for 200 replicates. We calculate type I error for each
method using quantitative trait Q4, a trait with no asso-
ciation to any of the genotypes. We estimate the null
distribution for each method by pooling the results for
trait Q4 from all gene regions and across all 200 repli-
cates and derive an empirical significance threshold for
each method from the empirical null distribution. We
then calculate power for the nine genes associated with
quantitative trait Q1 using the corresponding empirical
significance threshold for each method. We define rare
variants as SNPs with a MAF less than 0.005, 0.01, or
0.05. SNPs are assigned to a gene region using the gene
assignment in the GAW17 SNP information file.
To evaluate the association between Q1 and each gene

region, we calculate an F statistic by comparing the
regression model containing genetic variables to the
model without genetic variables. In each case, we adjust
for sex, age, smoking status, and population group.

Collapsing rare variants
For the indicator method, we assign a dichotomous code
to genes with rare variants by creating an indicator vari-
able for each of those genes. The rare variant score is
set to 1 if a subject has one or more rare variants within
the gene region and 0 if a subject has no rare variants
within the gene region.
For the count method, we use a count code for each

gene with rare variants. Thus for each gene with rare
variants and for each subject, we count the total number
of minor alleles for each gene region’s rare variants and
use the count as the rare variant score.
Finally, for the data-adaptive sum test, we implement

the method first introduced by Han and Pan [2]. For
each phenotype simulation replicate, we code each rare
variant additively using the number of minor alleles and
then fit a linear regression model using Q1 or Q4 as the
outcome and the covariates and the additively coded
rare variant as the predictors. If the coefficient of the
rare variant is less than 0 and the p-value is less than or
equal to 0.1, we flip the variant coding; in other words,
we count the number of major alleles. For each gene
with rare variants, we sum all coded variants within the
gene region to get the rare variant score. Our imple-
mentation of the data-adaptive method is nearly identi-
cal to Han and Pan’s method. However, Han and Pan
used permutation to approximate the null distribution
of their statistic and hence to control for the inflated
type I error that occurs when the same data are used to
flip the allele coding and then to test for association
with the rare variant score. Performing permutation for
all 200 simulation replicates was computationally infea-
sible because of time constraints. Therefore we estimate
the null distribution using Q4.

Inclusion of common variants
We use three methods for collapsing rare variants to
test the association between the rare variant scores and
quantitative traits without using common variants. We
also perform analyses including both rare and common
variants. For the two methods that include common var-
iants, we apply the three methods for collapsing rare
variants and thus arrive at six approaches to jointly test
common and rare variants.
For the CMC method, and for genes with rare variants

only, we run a linear regression model using Q1 or Q4
as the outcome and the rare variant score and the pre-
viously listed covariates as the predictors. For genes
with both rare variants and common variants we include
each of the common variants in the model using an
additive genetic model. Finally, we calculate the F statis-
tic as previously described to evaluate the genetic effect.
For the LASSO method, we run a LASSO regression

using the glmnet package in R [5,6] for each gene
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region, forcing in all the covariates as well as the rare
variant score. Thus we use the LASSO only to select
which common variants to retain in the model. We use
10-fold cross validation (CV) to find the shrinkage para-
meter (l) with the minimum CV error. To promote
smaller models, we choose the largest l within 1 unit of
standard error from the minimum l for our final
LASSO model. The covariates, rare variant score, and
common variants remaining in the model after LASSO
selection are then taken to a linear regression model,
and genetic association is tested using the F statistic, as
previously described.

Results
As shown in Table 1, for the methods that incorporated
common variants, the data-adaptive approach had
slightly elevated type I error rates compared to the indi-
cator and count methods, and the LASSO method had
inflated type I error rates, whereas the CMC method
retained type I error rates close to the chosen significance
level. For the LASSO method, the type I error decreased
as the MAF cutoffs increased, whereas the type I error
was consistent across MAF cutoffs for the CMC method
and also when common variants were not included.
For the gene regions with causal common variants

(Figure 1), including common variants in the model
using the CMC or the LASSO method produced higher
power compared with not including the common var-
iants in the model. For most of these gene regions,
there was no large difference in the power of the CMC
and LASSO methods. Including common variants in the
model also produced a slight increase in power across
most gene regions not containing causal common var-
iants (Figure 2). The three methods for collapsing rare
variants (indicator, count, and data-adaptive) had similar
power for each gene region and the methods that
included common variants. For a few genes, the data-
adaptive method had slightly lower power compared to
the indicator and count methods. Finally, the power
across MAF cutoffs differed within some gene regions
and was consistent across others (data not shown).

Discussion
Unless otherwise indicated, we focus our discussion on the
results using the MAF cutoff of 0.01 to define rare variants.

We expected that each method would perform well
under different circumstances. For the collapsing of rare
variants, we expected the indicator and count methods to
perform similarly in many situations because most indivi-
duals have only one or a few rare causal variants in each
gene region. The count method outperforms the indica-
tor method only when there is non-negligible probability
of subjects having multiple rare variants, each of which
has a marginal association with the trait in the same
direction. The increase in power for the count method
compared to the indicator method can be seen in FLT1,
which was simulated to have 8 out of 25 causal rare var-
iants, but the increase in power is not seen in KDR,
which was simulated to have 8 out of 14 causal rare var-
iants, because all methods have 100% power for KDR
(Table 2 & Figure 1). We expected the data-adaptive
method to outperform the count and indicator methods
only when fairly equal numbers of rare variants in a gene
region have opposite effects. Because all the causal var-
iants were simulated to have effects in the same direction,
we did not observe the data-adaptive method outper-
forming the count or indicator method. However, it is
worth noting that the power of the data-adaptive method
is not highly diminished. Thus the data-adaptive method
may be the better choice for real data when we expect
some genes to contain rare variants with both detrimen-
tal and beneficial effects. More research is needed using
simulations with effects in both directions.
In regards to incorporating common variants, we

expected that the methods that incorporated common
variants (CMC and LASSO) would perform well when
common variants in a gene region explained a relatively
moderate to high proportion of the gene region associa-
tion with the trait compared to rare variants. This is seen
most readily with the genes ARNT and HIF1A. Although
difficult to detect because of the high power across all
methods, a slight increase is also seen for FLT1.
Interestingly, incorporating common variants also

increased the power for genes that did not contain any
causal common variants, albeit to a lesser extent than
seen in the genes that did have causal common variants.
This slight increase in power seen for ELAVL4, FLT4,
and HIF3A is likely due to moderate linkage disequili-
brium between common variants and causal rare
variants.

Table 1 Type I error (5% significance level)

MAF cutoff Collapsing method
(no common variants)

CMC method LASSO method

Indicator Count Data-adaptive Indicator Count Data-adaptive Indicator Count Data-adaptive

0.005 5.1 5.1 7.8 5.2 5.2 6.2 7.9 7.9 10.5

0.01 5.1 5.2 7.5 5.1 5.2 6.3 6.9 6.9 9.2

0.05 5.0 5.1 7.0 5.0 5.1 6.3 5.7 5.7 7.5
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We expected the LASSO method to outperform the
CMC method when the ratio of common variants asso-
ciated with the trait to the total number of common
variants was low. Many common variants not associated
with the outcome cause noise in the CMC method,
whereas LASSO regression is able to filter out some of
the noise, leading to a more powerful result. Out of the
four risk genes that contain common risk variants, only
ARNT and FLT1 have a ratio less than 1 (1/3 and 3/10,
respectively). For FLT1, the simulated effect is too
strong to differentiate between methods (maximum p-
value for either method is less than 1 × 10−14). However,

in ARNT we do see a slight increase in power for the
LASSO regression, as expected. The increase in power
for the LASSO method to detect ARNT is small, prob-
ably because the ratio of causal common SNPs to total
common SNPs is moderate, indicating that not much
noise (only two SNPs) can be removed from the regres-
sion by using selection on the common SNPs. As the
ratio decreases, we would expect to see a sizable
increase in power for the LASSO method. Research
using different simulation designs is needed to verify
this expectation. When the ratio of common variants
associated with the outcome to the total number of

Figure 1 Power to detect genes with common variants. A MAF threshold of 0.01 is used to define rare variants.

Figure 2 Power to detect genes without common variants. A MAF threshold of 0.01 is used to define rare variants.
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common variants is large, we expect the CMC and
LASSO methods to perform similarly, as seen with the
genes HIF1A and KDR, each of which has a ratio of 1.
We also looked at the effect of varying the MAF

threshold used to define rare variants (0.005, 0.01, 0.05)
on the type I error and power. We found that the type I
error stayed consistent for the methods not including
common variants and for the CMC method. For LASSO
regression, the inflation seen in the type I error appears
to decrease as the MAF cutoff increases. This is likely
because fewer SNPs are defined as common variants as
the MAF cutoff increases, and thus fewer common
SNPs are undergoing selection by means of LASSO
regression, decreasing the type I error. The changes in
power because of the different MAF cutoffs are depen-
dent on the particular characteristics of each gene. The
power varies between MAF cutoffs only if the MAF of
one or more risk SNPs within the gene is close to the
threshold. Because the most appropriate MAF cutoff
varies for each gene, a method that uses variable MAF
thresholding may be more powerful (see description of
Price et al.’s method later in this section).
A common underlying assumption for the indicator

and count methods is that the rare variants within a
trait-associated gene have effects in the same direction.
An even stronger assumption—that all rare variants
within a gene that are associated with a trait have the
same effect size—is also required for the count method.
Although these assumptions are usually not satisfied,
the GAW17 data were simulated to fulfill the first
assumption in that all minor alleles are associated with
an increase in Q1. The second assumption of equal
effect size was not met by most of the simulated risk
gene regions. The data-adaptive method also assumes
that all causal rare variants within a gene have the same
effect size, but unlike the simple count method, the
data-adaptive sum test allows the direction of the effect

to be different. In real data, the data-adaptive approach
requires permutation to retain the appropriate type I
error. Using permutation increases the computation
expense but is necessary because the method biases the
data in favor of association before the analysis. Thus, for
the data-adaptive method, there is a trade-off between
flexibility and computational expense. As discussed in
the Methods section, we use an empirically derived sig-
nificance threshold calculated from the null phenotype,
Q4, to find the power for each method. Given the simu-
lated null distribution, using the empirical significance
threshold is computationally fast and efficient compared
to permutation. In real data, where a null distribution is
not available, permutation is likely the better alternative.
In this study, we compared several published

approaches and some modifications to analyze rare var-
iants; however, there are other approaches available that
we did not use in our comparisons. Capanu et al. [7]
applied pseudo-likelihood and Bayesian approaches to
conduct hierarchical modeling to leverage the collective
evidence from rare variants. Madsen and Browning [8]
used a weighted-sum statistic to jointly analyze a group
of rare variants. These methods were developed for case-
control data and need modifications before they can be
applied to quantitative traits. More recently, Price et al.
[9] developed a pooled association test, which uses a vari-
able threshold to determine the MAF cutoff to define
rare variants and also incorporates biological informa-
tion. King et al. [10] developed an evolutionary mixed
model for pooled association testing; this approach uses
population genetic theory to provide prior information
on effect sizes and a rare variant pooling strategy. Hoff-
mann et al. [11] proposed a step-up collapsing approach
that determines an optimal grouping of rare variants ana-
lytically without relying on prior information.
Here, we have compared approaches that collapse the

genotypes for all rare variants within a predefined gene
region. An obvious expansion of these methods would
be to use existing biological information, such as the
functionality of each marker, to choose a subset of rare
variants or to weight the rare variants. In addition, other
information, such as rare variant transmission through a
pedigree or linkage analysis, might also help to guide
the weighting and grouping of rare variants within a
gene region.

Conclusions
The three methods compared here for collapsing rare
variants—indicator, count, and data-adaptive methods—
performed similarly in this simulation design in which
all rare risk alleles were simulated to be in the same
direction. Incorporating common variants in order to
detect a gene region was useful when there were com-
mon causal variants within the gene. And finally, using

Table 2 Proportion of rare and common causal SNPs per
risk gene

Gene MAF cutoff (number of causal SNPs/number of total SNPs)

0.005 0.01 0.05

Rare Common Rare Common Rare Common

ARNT 4/14 1/4 4/15 1/3 5/17 0/1

ELAVL4 2/7 0/3 2/7 0/3 2/8 0/2

FLT1 8/24 3/11 8/25 3/10 10/32 1/3

FLT4 2/8 0/2 2/8 0/2 2/10 0/0

HIF1A 3/6 1/2 3/7 1/1 4/8 0/0

HIF3A 3/13 0/8 3/15 0/6 3/17 0/4

KDR 8/14 2/2 8/14 2/2 9/15 1/1

VEGFA 1/5 0/1 1/5 0/1 1/6 0/0

VEGFC 1/1 0/0 1/1 0/0 1/1 0/0
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a selection method, such as LASSO regression, to deter-
mine which common variants to include in the analysis
was useful when there was more noise than signal as a
result of common SNPs in the gene.
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