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SHP-2-upregulated ZEB1 is important for PDGFRα-driven
glioma epithelial–mesenchymal transition and invasion in mice
and humans
L Zhang1,5, W Zhang1,5, Y Li2,5, A Alvarez3, Z Li1, Y Wang1, L Song1, D Lv1, I Nakano4, B Hu3, S-Y Cheng1,3 and H Feng1

Gliomas are highly malignant brain tumors that are highly invasive and resistant to conventional therapy. Receptor tyrosine kinases
(RTKs) such as PDGFRα (platelet-derived growth factor receptor-α), which show frequent aberrant activation in gliomas, are
associated with a process of epithelial–mesenchymal transition (EMT), a cellular alteration that confers a more invasive and drug-
resistant phenotype. Although this phenomenon is well documented in human cancers, the processes by which RTKs including
PDGFRα mediate EMT are largely unknown. Here, we report that SHP-2 (encoded by PTPN11) upregulates an EMT inducer, ZEB1, to
mediate PDGFRα-driven glioma EMT, invasion and growth in glioma cell lines and patient-derived glioma stem cells (GSCs) using
cell culture and orthotopic xenograft models. ZEB1 and activated PDGFRα were coexpressed in invasive regions of mouse glioma
xenografts and clinical glioma specimens. Glioma patients with high levels of both phospho-PDGFRα (p-PDGFRα) and ZEB1 had
significantly shorter overall survival compared with those with low expression of p-PDGFRα and ZEB1. Knockdown of ZEB1 inhibited
PDGFA/PDGFRα-stimulated glioma EMT, tumor growth and invasion in glioma cell lines and patient-derived GSCs. PDGFRα mutant
deficient of SHP2 binding (PDGFRα-F720) or phosphoinositide 3-kinase (PI3K) binding (PDGFRα-F731/42), knockdown of SHP2 or
treatments of pharmacological inhibitor for PDGFRα-signaling effectors attenuated PDGFA/PDGFRα-stimulated ZEB1 expression,
cell migration and GSC proliferation. Importantly, SHP-2 acts together with PI3K/AKT to regulate a ZEB1-miR-200 feedback loop in
PDGFRα-driven gliomas. Taken together, our findings uncover a new pathway in which ZEB1 functions as a key regulator for
PDGFRα-driven glioma EMT, invasiveness and growth, suggesting that ZEB1 is a promising therapeutic target for treating gliomas
with high PDGFRα activation.
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INTRODUCTION
Aberrant activation of oncogenic signaling pathways facilitates
brain tumor malignancy and treatment resistance.1,2 PDGFRα
(platelet-derived growth factor receptor-α), a receptor tyrosine
kinase (RTK), is commonly overexpressed and amplified in
glioblastoma (GBM).3 Expression of PDGFRα and its ligand, PDGFA,
enhances GBM tumor growth and invasion in the brain.4,5

Although it was reported that PDGFA/PDGFRα activates phos-
phoinositide 3-kinase (PI3K), SHP-2 and Src signaling to promote
tumor proliferation and motility,4,5 other downstream effectors
that mediate tumor growth, invasiveness and treatment resistance
are also likely involved.
Epithelial–mesenchymal transition (EMT), a cellular process

typified by loss of polarized epithelial features toward a more
motile mesenchymal (MES) phenotype, is frequently observed in
malignant and invasive human cancers.6 ZEB1, a zinc-finger
protein, is an inducer of EMT,7,8 through downregulation of
E-cadherin and upregulation of MES molecular markers such as
vimentin.7,8 Cancer cells undergoing EMT are thought to acquire

stem cell traits and become more resistant to therapies.7,9 ZEB1
was found preferentially expressed in epithelial cancers, and its
expression is correlated to a shorter survival and poor therapy
response.7,9,10 ZEB1 is an transcriptional repressor of cell-adhesion
genes and several microRNAs, particularly members of miR-200
family (including miR-200a, miR200b, miR-200c, miR-141 and
miR-429), which function not only as strong inducers of
mesenchymal–epithelial transition (MET) but also inhibit undiffer-
entiated stem cell properties.11,12 Reciprocally, members of
miR-200 family downregulate ZEB1 by targeting its 3′-untranslated
region, thus establishing a double-negative feedback loop
between ZEB1 and members of miR-200 family.13

Cell transformation promoted by PDGFRα and PDGFRβ signal-
ing has been observed in multiple types of cancers.14–16 PDGFRα is
preferentially amplified in the clinically relevant proneural (PN)
GBM subtype.3 We previously reported that tumors derived from
Ink4a/Arf− /− PDGFRα or PDGFA/PDGFRα mouse astrocytes are
highly invasive and express higher levels of the neural progenitor
marker nestin, suggesting that PDGFRα signaling contributes to a
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stem cell phenotype.4 However, the mechanism by which PDGFRα
signaling causes GBM tumor transformation and invasion is still
unclear. As ZEB1 is involved in glioma initiation and invasion,9 we
hypothesize that EMT inducer ZEB1 has important roles in PDGFA/
PDGFRα signaling-mediated glioma EMT and invasion. In this
study, we determined the expression of ZEB1 and phospho-
PDGFRα (p-PDGFRα) in mouse glioma brain xenografts and clinical
GBM specimens. We then examined the roles of ZEB1 along with
its downstream targets in PDGFA/PDGFRα-activated glioma EMT,
invasion and glioma stem cell (GSC) growth. Finally, we used
genetic and pharmacological approaches targeting individual
downstream signaling effectors and determined which specific
pathways emanating from PDGFRα are critical in ZEB1-induced
glioma EMT.

RESULTS
ZEB1 and PDGFRα are coexpressed in invasive areas of
glioblastoma in mice and humans
We first examined ZEB1 mRNA expression in clinical GBM using The
Cancer Genome Atlas dataset.17 We found that the levels of ZEB1
expression are significantly higher in classical and PN subtypes of
GBM compared with MES and neural subtypes (Figure 1A). More-
over, compared with the MES GSCs and glioma cells, the levels of
ZEB1 mRNA expression were the highest in PN GSCs (Figure 1B).18

This result suggests that ZEB1 may be involved in PDGFRα signaling
that is aberrantly activated in the PN GBM subtype.17

Next, we determined the roles of ZEB1 in glioma tumorigenesis
using LN444 cells with a stably expressed PDGFA (LN444/PDGFA) or
a control (LN444/GFP). We observed that PDGFA overexpression
promoted tumor growth and invasion (Figures 1Ca and d and
Supplementary Figures S1Ab and d) with a shorter survival
(Supplementary Figure S1B) compared with the control xenograft
models (Supplementary Figures S1Aa and c) as reported
previously.4,5,19 ZEB1 was detected at the invasive areas in xenograft
glioma tumors, associating its role in regulating glioma cell
invasion.9 We determined whether ZEB1 is coexpressed with
PDGFRα in the invasive front of LN444/PDGFA glioma brain
xenografts. As shown in Figure 1C, ZEB1 (panels b and e) and
p-PDGFRα (panels c and f) were found coexpressed at high levels in
the invasive areas of PDGFA/PDGFRα-driven LN444 orthotopic
xenograft tumors. These data suggest that ZEB1 may be dependent
on PDGFA/PDGFRα signaling to promote glioma tumor invasion.
We then sought clinical evidence for a link between ZEB1 and

PDGFA/PDGFRα signaling. We analyzed a total of 86 clinical GBM
tumor samples using anti-p-PDGFRα and anti-ZEB1 antibodies. High
levels of p-PDGFRα expression were detected in 21 of 86 GBM
specimens (24.4%), corresponding to the frequencies of PDGFRα
activation in clinical gliomas,17 and high levels of ZEB1 expression
were detected in 33 GBMs (38.4%) (Figure 1D and Supplementary
Table S1). Nineteen GBM samples (22.1%) were found to coexpress
high levels of ZEB1 and p-PDGFRα, but only two patient samples
with high p-PDGFRα contained low ZEB1 expression
(Supplementary Table S1). We used a two-tailed Fisher’s exact test
to show the frequency distribution pattern of p-PDGFRα and ZEB1
expression in patient samples is unlikely the results of chance
(Supplementary Table S2). Fourteen GBM samples with high ZEB1
levels showed weak or no detectable p-PDGFRα signal
(Supplementary Figure S2 and Supplementary Table S1). p-PDGFRα
was detected in invasive and center regions in the GBM tumors
(Figures 1Da and b and Supplementary Figures S3a and b). ZEB1
was expressed in the majority of p-PDGFRα-positive tumor cells in
invasive areas of clinical GBM specimens (Figures 1Dc and d), but
the tumor core tended to contain little to no detectable ZEB1
expression (Supplementary Figures S3c and d).
We examined the relationship between p-PDGFRα and ZEB1

expression on survival using Kaplan–Meier survival probability

estimates. When combining the expression status of p-PDGFRα
and ZEB1 in the analyses, a statistically significant worse prognosis
was apparent in GBM with high expression of both proteins
compared with those with low p-PDGFRα and low ZEB1
expression (Figure 1E), with median patient survival times of
10.43 and 16.87 months, respectively (P= 0.0197 with a hazard
ratio of 2.193, 95% confidence interval 1.133–4.242;
Supplementary Table S2). Survival analysis based on the expres-
sion of ZEB1 alone showed a nonsignificant trend toward a
modest decrease in median survival for patients with high ZEB1-
expressing tumors compared with ZEB1 low tumors (15.53 and
17.97 months, respectively, P= 0.0608; Supplementary Figure S4A).
Evaluating patient survival based on p-PDGFRα staining alone
(Supplementary Figure S4B) reveals a statistically significant
increase in survival for patients with low p-PDGFRα tumors, with
a median survival of 19.97 months, compared with 12.97 months
for patients with high p-PDGFRα tumors (P= 0.0492). However,
when median survival is calculated for patients with tumors
expressing high ZEB1 and low p-PDGFRα, the median survival
increases to 26.8 months (Supplementary Table S2), justifying the
use of these markers together and supporting our results showing
a novel mechanism by which PDGFRα regulates tumor growth and
invasiveness through ZEB1.
Taken together, these data demonstrate that ZEB1 is coex-

pressed with activated PDGFRα in invasive regions of mouse
glioma xenograft tumors and clinical GBM specimens. These
results also suggest that PDGFRα-driven glioma tumorigenesis and
invasion involves ZEB1 and that the utilization of p-PDGFRα and
ZEB1 serves as a prognostic marker for glioma patients.

PDGFA-promoted ZEB1 regulates glioma EMT, migration and
colony formation
To determine the relationship between ZEB1 and PDGFRα
signaling, we examined the expression of ZEB1 after PDGFA
treatment of glioma cells. PDGFA stimulation significantly
enhanced the expression of ZEB1 and vimentin (a mesenchymal
protein; Figure 2a) and a fibroblast-like morphology (Figure 2d
and data not shown). Moreover, decreased levels of E-cadherin (an
epithelial marker) were found in glioma LN18 and LN444 cells with
high endogenous levels of PDGFRα and p-PDGFRα, but not in
glioma T98G and LN235 cells that lacked detection of endogenous
PDGFRα (Figure 2a). PDGFA stimulation also markedly upregulated
ZEB1 mRNA in glioma LN18 and LN444 cells but not in T98G and
LN235 cells (Figure 2b). Additionally, expression of ZEB2, Snai1,
Snail2 and Twist1 were not affected in these treated glioma cells
(Supplementary Figure S5). These data suggest that PDGFA/
PDGFRα signaling specifically regulates ZEB1 transcription in
glioma cells.
To further validate that ZEB1 is necessary for PDGFA/PDGFRα

signaling-driven glioma EMT, we used short hairpin RNAs (shRNAs)
to deplete ZEB1 and assessed the effect of ZEB1 inhibition on
PDGFRα-stimulated glioma EMT. Knockdown of endogenous ZEB1
in LN18 and LN444 cells markedly impaired basal and PDGFA-
stimulated vimentin expression and rescued E-cadherin expres-
sion (Figure 2c) and PDGFA/PDGFRα-driven EMT (Figure 2d). We
previously reported that in LN444/PDGFA and LN18/PDGFA cells,
autocrine PDGFA activates endogenous PDGFRα signaling and
enhanced glioma cell tumorigenesis in mouse orthotopic
xenografts.4,5 ZEB1 knockdown inhibited basal and PDGFA-
induced expression of both ZEB1 and vimentin, while increasing
expression of E-cadherin (Figure 2e). Moreover, ZEB1 depletion
attenuated PDGFA-promoted cell proliferation (Figure 2f), migra-
tion (Figure 2g) and colony formation (Figure 2h) of LN18 and
LN444 cells in vitro. These data suggest that ZEB1 is involved in
PDGFRα-driven glioma EMT, cell proliferation, migration and
colony formation.
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ZEB1 is important for PDGFRα-driven glioma tumor growth,
invasion and GSC renewal
To determine the roles of ZEB1 in PDGFRα-driven glioma
tumorigenesis and invasion in vivo, we separately implanted

LN444/PDGFA/shC, LN444/PDGFA/shZEB1-1 and LN444/PDGFA/
shZEB1-2 cells into the brains of mice. Compared with control
LN444/PDGFA/shC, knockdown of ZEB1 markedly suppressed
PDGFRα-stimulated glioma tumor growth (Figures 3A and B) and
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Figure 1. ZEB1 and PDGFRα are coexpressed in invasive areas of glioblastomas in mice and humans. (A) Expression levels of ZEB1 mRNA are
significantly higher in classical (CL) and PN GBM subtypes compared with MES and neural (NL) GBM. Expression data of ZEB1mRNA in the four
GBM subtypes were downloaded from The Cancer Genome Atlas (TCGA) dataset17 and analyzed. (B) Analysis of ZEB1 mRNA expression in PN
GSCs, MES GSCs and glioma cells. ZEB1 mRNA expression level in various cells was determined with gene expression profiling as described
previously.18 (C) ZEB1 and PDGFRα are coexpressed in invasive areas of PDGFRα-driven glioma brain tumor xenografts in mice. (a and d)
Representative hematoxylin and eosin (H&E) staining images of LN444/PDGFA brain tumor sections. Brains were harvested at 6–7 weeks post-
transplantation. (b and e) Representative images of GBM sections that were stained for ZEB1protein. (c and f ) Representative images of sister
sections of panels a and e that were stained for p-PDGFRα protein. (d–f ) Enlarged areas of square marks in (a–c). Insets show isotype-matched
immunoglobulin G (IgG) controls of the identical areas (original magnification, x400). Arrows show positive staining. Scale bars: 100 μm. Data
were from two independent experiments with at least six mice per group with similar results. (D) Representative IHC images of ZEB1 and
p-PDGFRα within invasive areas of sister sections of two representative clinical GBM tumor specimens, RJ18 and RJ13. Scale bars: 50 μm. Insets
show isotype-matched IgG controls of the identical areas (original magnification, x400). Arrows show positive staining. Data of IHC staining of
individual GBM tumor specimens are shown in Supplementary Table S1. (E) Kaplan–Meier analysis of patients with high p-PDGFRα and high
ZEB1-expressing glioma tumors versus low p-PDGFRα and low ZEB1-expressing tumors in IHC staining (D) assays. Median survival (in months):
low, 16.87; high, 10.43. P-values were calculated by log-rank test. Black bars, censored data. Data in (C and D) represent two independent
experiments with similar results.
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invasion (Figures 3A and C) in mouse brains tumors and resulted
in an increase in survival (Figure 3D).
Recently, we and other investigators have identified and

characterized at least two distinct subtypes of patient-derived
GSCs: PN and MES GSCs.18,20 Molecular expression profiling of
these GSCs correlated with the corresponding PN and MES
subtypes of clinical high-grade gliomas.17,21 PN GSCs are
associated with unique genetic alterations such as PDGFRA
amplification.18,20 To determine the role of ZEB1 in glioma EMT,

we tested the expression of ZEB1, vimentin, E-cadherin, PDGFRα
and p-PDGFRα in PN GSCs, AC17 and 157.18 As shown in Figure 3E,
we found that endogenous PDGFRα is highly expressed and
activated in patient-derived AC17 and 157 GSC lines. Moreover,
ZEB1 and vimentin expression were high and positively correlated
with activated PDGFRα, whereas E-cadherin displayed an inverse
correlation (Figure 3E). Depletion of ZEB1 (shZEB1) in two GSC
lines resulted in marked reductions in vimentin expression
(Figure 3E), neurosphere size (Figures 3F and G), GSC proliferation
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(Figure 3H) and neurosphere formation (Figure 3I). These results
support that ZEB1 is critical for PDGFA/PDGFRα-stimulated glioma
tumor growth, invasion in the brain and GSC renewal in vitro.

SHP-2 and PI3K signaling are required for PDGFRα-promoted ZEB1
expression
Using genetic and biochemical methods, we and other investiga-
tors have described the roles of signaling molecules in PDGFRα-
mediated cellular functions by specific tyrosine-to-phenylalanine
(Y-to-F) mutations (Figure 4a).4,22–24 To determine the impact of
downstream effectors of PDGFRα signaling on ZEB1 expression,
we separately expressed PDGFRα wild-type (WT) or mutants in
Ink4a/Arf− /− mouse astrocytes as described previously.4 The R627
mutant (PDGFRα-R627) with a lysine-to-arginine (K-to-R) mutation
was used as a ‘receptor kinase-dead’ control. The F7 mutant
(PDGFRα-F7) harbors seven Y-to-F mutations including Y572/74F,
Y720F, Y731/42F, Y988F and Y1018F.22 As shown in Figures 4b and
c, stimulation of WT PDGFRα by PDGFA resulted in high
phosphorylation of the receptor and promoted cell migration
compared with the control. In contrast, PDGFA stimulation of cells
expressing PDGFRα-R627 or PDGFRα-F7 mutant did not yield
appreciable effects of protein phosphorylation of PDGFRα and cell
migration. Consistent with this, PDGFA stimulation induced ZEB1
expression in cells with WT PDGFRα, but not cells expressing R627
or F7 PDGFRα mutations. These data further support that
stimulation of PDGFRα signaling upregulates ZEB1 expression.
Next, we determined which downstream effector of PDGFRα

signaling promotes ZEB1 expression in Ink4a/Arf − /− mouse
astrocytes with stable expression of WT or various PDGFRα
mutants. As shown in Figures 4d and e, compared with WT
PDGFRα, PDGFRα Y-to-F mutations at Y720 (PDGFRα-F720, for
SHP-2 binding) and Y731/42 (PDGFRα-F731/42, for PI3K binding)
inhibited ZEB1 expression, whereas PDGFRα Y-to-F mutations at
Y572/74 (PDGFRα-F572/74, for Src binding), Y988 (PDGFRα-F988)
and Y1018 (PDGFRα-F1018, for PLCγ binding) did not affect ZEB1
expression (Figure 4d). Corresponding to the regulation of ZEB1
expression, cell migration was impaired by F720 and F731/42
PDGFRα mutants compared with WT PDGFRα, whereas other
PDGFRα mutants did not exert any effect (Figure 4e). These results
show that PDGFRα signaling downstream effectors, PI3K and
SHP-2 induce ZEB1 expression and cell migration in glioma cells.
To further demonstrate that PDGFRα-PI3K/SHP2 signaling

regulates ZEB1 expression and glioma cell migration, we used
PI3K inhibitor LY294002 and SHP-2 inhibitor PHPS-1 to treat
LN444/PDGFA glioma cells as reported previously.4 As shown in
Figures 4f and g, compared with the control, treatment with 10 μM
LY294002 or 100 μM PHPS-1 blocked PDGFA-enhanced expression
of ZEB1, vimentin, p-Akt and cell migration, while increasing
E-cadherin expression (Figures 4f and g). PHPS-1 inhibited
p-Erk1/2, whereas LY294002 had no effect (Figure 4f). Taken

together, these data demonstrate that PDGFA/PDGFRα-regulated
ZEB1 expression requires SHP-2 and PI3K signaling in mouse
astrocytes and human glioma cells.

SHP-2 signaling is required for ZEB1-miR-200 feedback loop-
mediated glioma cell migration and GSC proliferation
Emerging evidence suggests that ZEB1 and miR-200 family
members form a feedback loop to regulate cancer cell EMT, cell
migration and tumorigenesis.11,13,25 Moreover, PI3K-Akt signaling
directly or indirectly regulates this ZEB1-miR-200 feedback loop in
gastric cancer, bladder cancer and ovarian cancer.26–28 We
hypothesize that SHP-2 also regulates ZEB1-miR-200 feedback
loop and mediates PDGFRα-driven glioma EMT and cell migration.
As shown in Figure 5a, knockdown of SHP-2 using small
interfering RNAs (siRNAs) in LN18 and LN444 glioma cells
prevented PDGFA-stimulated phosphorylation of Akt and Erk1/2.
SHP-2 knockdown also ablated PDGFA-stimulated ZEB1 and
vimentin expression, and rescued PDGFA-inhibited E-cadherin
expression. Next, we determined the effect of SHP-2 depletion on
expression of miR-200a, a member of miR-200 family that is
known to be regulated by ZEB1.29 We found that miR-200a
expression was inhibited by PDGFA stimulation in both glioma cell
lines compared with the control (Figure 5b). Interestingly, knock-
down of SHP-2 markedly increased miR-200a expression with or
without PDGFA stimulation compared with the control (Figure 5b).
Consistent with our previous work,19 knockdown of SHP-2
inhibited basal and PDGFA-stimulated cell migration (Figure 5c).
Similarly, in patient-derived GSCs, depletion of SHP-2 attenuated
Akt and Erk1/2 activity, as well as the expression of ZEB1 and
vimentin, but promoted E-cadherin expression (Figure 5d).
Reciprocally, knockdown of SHP-2 in GSCs increased miR-200a
expression, but significantly diminished GSC proliferation
(Figures 5e and f). We also found that treatment with MEK
inhibitor PD98059 significantly blocked PDGFA-stimulated ZEB1
upregulation (Figure 5g) and cell migration (Figure 5i) without
affecting Akt activity (Figure 5g) in LN444 and LN18 cells.
Additionally, treatment with PD98059 attenuated PDGFA/PDGFRα
inhibition of miR-200a expression (Figure 5h). Moreover, over-
expression of miR-200a decreased the expression of ZEB1 and
vimentin (Figure 5j) and cell migration (Figure 5k), but increased
E-cadherin expression (Figure 5j) in LN18/PDGFA and LN444/
PDGFA cells. Overexpression of miR-200a also inhibited PDGFA/
PDGFRα-driven EMT in LN18 cells (Figure 5l). Taken together, these
findings suggest that glioma cell migration and GSC renewal
require SHP-2 activation of the ZEB1-miR-200 feedback loop.

SHP-2 acts together with PI3K-Akt to regulate ZEB1-miR-200
feedback loop
SHP-2 has been identified as a critical modulator that connects
several signaling pathways including PI3K-Akt in glioma

Figure 2. PDGFA promotes ZEB1 expression and glioma EMT, proliferation, migration and colony formation. (a) Western blotting analyses.
Compared with the control (vehicle, phosphate-buffered saline (PBS)), PDGFA stimulation upregulated ZEB1, vimentin and inhibited
E-cadherin in LN18 and LN444 cell lines that have high levels of endogenous PDGFRα. In contrast, PDGFA had no effects on T98G and LN235
cells that had non-detectable PDGFRα protein. After starvation, indicated glioma cells were cultured in Dulbecco's modified Eagle's medium
(DMEM) plus 0.5% fetal bovine serum (FBS) with or without 50 ng/ml PDGFA for 2 days. β-Actin was used as a control. (b) Quantitative reverse
transcription–PCR (QRT–PCR) assays of PDGFA-stimulated ZEB1 mRNA expression in indicated cell lines from (a). ACTB (encoding β-actin) was
used as a control. (c) Effect of ZEB1 knockdown with two different shRNAs (shZEB1-1 and shZEB1-2) or control shRNA (shC) on expression of
vimentin and E-cadherin in indicated glioma cell lines. (d) Representative images of cell phenotypes of PDGFA stimulation and/or ZEB1
knockdown. After starvation, LN18 cells were cultured in DMEM plus 0.5% FBS with or without 50 ng/ml PDGFA for 7 days. Medium was
changed every 2 days. Scale bars: 200 μm. (e) Effect of overexpression of PDGFA on expression of ZEB1, vimentin and E-cadherin in glioma
cells. LN18 and LN444 glioma cells stably expressed exogenous PDGFA (LN18/PDGFA and LN444/PDGFA) or GFP (LN18/P and LN444/P).
Western blot (WB) or enzyme-linked immunosorbent assay (ELISA) did not detect endogenous PDGFA in GFP controls of both cell lines. β-actin
was used as a control. (f) Cell proliferation assays. Various cells were cultured in DMEM medium with 10% FBS for 3 days, and then cell
numbers were analyzed. (g) In vitro cell migration assays. Various cells were serum starved for 16 h, and then placed on upper wells of a
Boyden chamber. After 12–16 h, migrated cells were counted. (h) Soft agar colony assays. Scale bars: 100 μm. Data in (a–h) represent two or
three independent experiments with similar results. Error bars, s.d. *Po0.05.
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tumorigenesis.4,30 Previous studies reported that PI3K/AKT activa-
tion has important roles in contributing to cancer cell EMT and
cancer stem cell properties.31,32 We then determined the relation-
ship of SHP-2 and PI3K-Akt in ZEB1-miR-200-mediated glioma cell
migration by overexpressing a constitutively activated (CA) Akt
(Myr-Akt) mutant in Ink4a/Arf − /− mouse astrocytes with stable
expression of WT PDGFRα or F720 PDGFRα mutant. As shown in
Figure 6a, compared with the control, overexpression of the CA
Akt mutant in WT PDGFRα cells promoted ZEB1 expression
(Figure 6a) and cell migration (Figure 6c). Interestingly,

overexpression of the CA Akt mutant partially rescued PDGFRα
F720 inhibition of ZEB1 expression (Figure 6a) and cell migration
(Figure 6b) compared with WT PDGFRα. In addition, overexpres-
sion of the CA Akt mutant-inhibited miR-200a expression in both
WT PDGFRα and F720 PDGFRα mutant cells (Figure 6c). These
results suggest that SHP-2 synergizes with PI3K-Akt to mediate
ZEB1-miR-200 feedback loop in PDGFRα-stimulated glioma cell
migration.
To further support these observations, we knocked down Akt1

and Akt2 using siRNAs for Akt1 and Akt233 in Ink4a/Arf− /− mouse
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*Po0.05. Data in (D–I) represent two to three independent experiments with similar results.
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astrocytes with stable expression of F7 PDGFRα or Y720 PDGFRα
mutant (Figure 4a). As shown in Figure 6d, re-expression of Y720
(SHP-2 binding site) in F7 PDGFRα mutant-expressing cells restored
Akt activity and promoted ZEB1 expression in comparison with the
F7 PDGFRαmutant. Depletion of Akt1 and Akt2 with siRNA (siAkt1/2)
attenuated Y720 PDGFRα-restored ZEB1 expression (Figure 6d) and
cell migration (Figure 6e). Consistent with this, re-expression of the
Y720 PDGFRα mutant-inhibited miR-200a expression compared
with F7 PDGFRα mutant, whereas knockdown of Akt1 and Akt2
marginally rescued SHP-2 inhibition of miR-200a in the Y720 cells
(Figure 6f). Lastly, depletion of Akt1 and Akt2 with siRNA (siAkt1/2) in
LN444/PDGFA cells inhibited ZEB1 expression, while promoting the
expression of miR-200a and cell migration (Figure 6g-i). Moreover,
knockdown of ZEB1 promoted miR-200a expression, reduced cell
migration and marginally affected Akt activity. Taken together, these
results demonstrate that SHP-2/PI3K-Akt and SHP-2-Erk1/2 collec-
tively regulates ZEB1-miR-200 feedback loop in PDGFRα-stimulated
glioma EMT, cell migration, tumor growth and GSC self-renewal.

DISCUSSION
In this study, our findings suggest that SHP-2 regulation of ZEB1-
miR-200 feedback loop is critical for PDGFA/PDGFRα signaling-
driven glioma EMT, cell migration, tumor invasion and GSC growth
in mice and humans (Figure 7). PDGFA/PDGFRα regulates the
ZEB1-miR-200 feedback loop through SHP-2/PI3K-Akt and SHP-2-
Erk1/2 in glioma cells, leading to enhanced glioma tumorigenesis,
and invasion and GSC self-renewal.

One of the important aspects of this work is that PDGFA/
PDGFRα signaling upregulates ZEB1 and induces glioma EMT,
migration and GSC self-renewal. The EMT process is vital for
morphogenesis during embryonic development and tissue
remodeling as well as tumor growth, invasion and
metastasis.34,35 The processes of EMT could be triggered by a
number of cell signaling pathways, such as EGF (epidermal growth
factor), TGF-β (tumor frowth factor-β), HGF (hepatocyte growth
factor) and PDGF ligands.16,34,36,37 These growth factors act
through their RTKs to activate a series of downstream targets.
ZEB1 is a known driver of EMT, and targeting ZEB1 represents a
potential therapeutic strategy for metastasis and invasion
suppression in various cancers.9,38,39 In the present study, we
described a new mechanism by which ZEB1 mediates PDGFA/
PDGFRα-stimulated glioma tumorigenesis. In glioma cells, we
examined PDGFA stimulation, or activation of PDGFRα by
exogenously expressed PDGFA, led to specific upregulation of
ZEB1 and acquisition of EMT-like phenotype. This process was
consistent with increased cell growth, cell migration and GSC self-
renewal in vitro, and glioma tumor growth and invasion in vivo.
Moreover, knockdown of ZEB1 inhibited GSC growth. Taken
together, this study identifies a previously unrecognized mechan-
ism, in which PDGFA/PDGFRα signaling induces EMT through
stimulation of ZEB1, thereby promoting glioma tumor growth and
invasion and GSC stemness.
The second important finding in this study is that our data

reveal that SHP-2 mediates ZEB1-miR-200 feedback loop in glioma
EMT. SHP-2 is a critical mediator of oncogenic Ras/MAPK signaling
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and is activated through multiple mechanisms in various types of
cancers.40,41 We previously reported that SHP-2 is a downstream
effector for PDGFA/PDGFRα-driven glioma tumorigenesis and
dynamin 2-mediated cell migration.4,19 In this study, we showed
that inhibition of SHP-2 function by mutation of its binding site in
PDGFRα (F720 mutant), gene knockdown or pharmacological
inhibitors markedly impaired PDGFRα stimulation of ZEB1 expression
and glioma cell migration and GSC renewal in mice and humans.
Collectively, these findings suggest that PDGFA/PDGFRα-SHP-2
activation of the ZEB1-miR-200 feedback loop is another essential
signaling for PDGFRα-driven glioma tumorigenesis and invasion.
The last important finding in this study is that our data

demonstrate that SHP-2 acts together with PI3K/Akt to regulate
the ZEB1-miR-200 loop in glioma cells. Accumulated evidence
show that activation of the PI3K/AKT pathway has important roles
in contributing to cancer cell EMT and cancer stem cell features,

a common mechanism in multiple cancers.32,42–44 Integrative
genomic analysis of The Cancer Genome Atlas data has found that
PTPN11 is one of six ‘linker’ genes that connect major ‘nodes’
of commonly altered cancer GBM genes, suggesting that
SHP-2 is critical for glioma tumorigenesis.30 Recently, using gene
knockdown and pharmacological inhibitor treatments, we demon-
strated that both SHP-2 and PI3K/Akt are important for PDGFRα-
driven glioma tumor growth and invasion in mice and humans, in
which SHP-2 recruits PI3K to activate Akt/mTOR pathway.4 Here,
our data not only validates the critical roles of SHP-2 and PI3K/AKT
in glioma proliferation and survival but also establishes them as
collective modulators that regulate glioma EMT and cancer stem
cell malignancy. We showed that overexpression of the CA Akt
mutant in F720 (SHP-2 binding site mutation) PDGFRα mutant-
expressing cells, or knockdown of Akt1/2 in Y720 (SHP-2 binding
site mutation) PDGFRα mutant cells, altered the SHP-2-mediated
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ZEB1-miR-200 feedback loop, suggesting that SHP-2 and PI3K/Akt
collectively modulate ZEB1-miR-200 in PDGFRα-driven glioma
tumorigenesis.
In summary, our findings identify ZEB1 as a potential target for

treatment of highly invasive clinical GBMs. This study demon-
strates a previously unknown signal relay by which ZEB1 mediates
EMT stimulated by PDGFA/PDGFRα-SHP-2/PI3K-Akt signaling,
thereby enhancing glioma tumor growth and invasion. The newly
elucidated roles of ZEB1 in PDGFRα-driven glioma EMT and
invasion also provide a strong rationale for targeting this EMT-
related molecule in clinical treatment of human gliomas with high
levels of PDGFRα activity.

MATERIALS AND METHODS
Cell lines
Human HEK293T, glioma LN18 and T98G cells were from ATCC (Manassas,
VA, USA). The LN444 cell line was a gift from Dr E Van Meir at Emory
University (Atlanta, GA, USA), and was also recently authenticated using
short tandem repeat DNA fingerprinting by RADIL (Columbia, MO, USA).
LN235 cell line was cultured as reported previously.5 Patient-derived GSC
lines, GSC157 and GSC AC17, were recently characterized.18 All cells and
GSC cells were maintained and cultured as described previously.4,5,18 Cell
transfections were performed as described previously.5 Mouse astrocytes
with various WT or mutant PDGFRα, human LN444/PDGFA and LN18/
PDGFA cell lines with overexpression of exogenous PDGFA were
established and characterized as described previously.4,5

Antibodies and reagents
The following antibodies were used in this study: anti-ZEB1 (E-20), anti-
vmentin (V9), anti-E-cadherin (H-108), anti-PDGFRα (C-20), anti-p-PDGFRα
(Y754) and anti-β-actin (I-19) antibodies (Santa Cruz Biotechnology, Dallas,
TX, USA); an anti-SHP-2 antibody (no. 610621; BD Biosciences, San Jose, CA,

USA); anti-ZEB1 (D80D3), anti-p-p44/42 MAP kinase (Thr202/Tyr204, no.
9101), rabbit anti-p44/42 MAP kinase (no. 9102), anti-p-Akt (S473, no. 4060)
and anti-Akt (no. 9272) antibodies (Cell Signaling Technology, Danvers, MA,
USA). The secondary antibodies were from Jackson ImmunoResearch
Laboratories (West Grove, PA, USA). Peroxidase blocking reagent was from
DAKO (Carpinteria, CA, USA); AquaBlock was from East Coast Biologics Inc.
(North Berwick, ME, USA). Inhibitors, PD98059, PHPS-1 and LY294002 were
from Sigma (St. Louis, MO, USA). Cell culture media and other reagents
were from Invitrogen (Carlsbad, CA, USA), Sigma-Aldrich or Peprotech
(Rocky Hill, NJ, USA).

Plasmids
ZEB1 shRNAs and control shRNAs were purchased from Shanghai
GeneChem Co. Ltd (Shanghai, China). ATK1/2 siRNAs and control siRNAs
were purchased from Thermo Fisher Scientific (Waltham, MA, USA). pLenti
4.1 Ex miR200b-200a-429 (plasmid 35533)29 and pLNCX-Myr-Akt (plasmid
17245)45 were purchased from Addgene Inc. (Cambridge, MA, USA).
pcDNA3-miR-200a was derived from pLenti 4.1 Ex miR200b-200a-429.

Western blotting assay
Western blotting assay was performed as described previously.46 Briefly,
cells were lysed in a buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM

EDTA, 2 mM Na3VO4, 5 mM NaF, 1% Triton X-100 and protease inhibitor
cocktail) at 4 °C for 30 min, and then the lysates were centrifuged for
20 min at 12 000 g to remove debris. Protein concentrations were
determined with a BCA Protein Assay Kit (Thermo Fisher Scientific). Equal
amounts of cell lysates were resolved in a 2 × sodium dodecyl sulfate lysis
buffer and analyzed.

Cell proliferation and cell migration assays
Cell proliferation assay was performed using a WST-1 Assay Kit (BioVision,
Inc., Milpitas, CA, USA), and cell migration was performed using a Boyden
chamber assay as described previously.5

Real-time PCR analysis
Total RNA was extracted using Trizol (Invitrogen), according to the
manufacturer's instructions. Real-time PCR was performed in triplicate
using the QuantiTect SYBR Green PCR Kit (Qiagen, Valencia, CA, USA) on a
Rotorgene 6000 series PCR machine (Corbett Research, Valencia, CA, USA).
All mRNA quantification data were normalized to ACTB, which was used as
an internal control. The following ZEB1 primer sets were used: 5′-
TTCAAACCCATAGTGGTTGCT-3′ and 5′-TGGGAGATACCAAACCAACTG-3′.

MicroRNA real-time PCR analysis
The abundance of miR-200a was determined by microRNA real-time PCR
assay using the mirVana qRT–PCR miRNA Detection Kit (Thermo Fisher
Scientific) and QRT–PCR Primer Sets, according to the manufacturer's
instructions (Ambion Inc., Austin, TX, USA). The expression of U6-snRNA
was used as an internal control.

Tumorigenesis studies
Athymic (Ncr nu/nu) female mice at an age of 6–8 weeks (SLAC, Shanghai,
China) were used for all animal experiments. All experiments using animals
were performed in accordance to a protocol approved by Shanghai Jiao
Tong University Institutional Animal Care and Use Committee (IACUC).
Mice were randomly divided into 5–6 per group. Various human glioma
cells (1 × 106 in 5 μl phosphate-buffered saline) were stereotactically
implanted into the brain of individual mice. Animals were killed when
neuropathological symptoms developed. The brains were removed,
processed and analyzed as described previously.46 Tumor volumes were
measured and estimated as (a2 × b)/2, aob.4 The number of invasive
tumors was quantitated, and these tumors did not have a clear border with
more than two invasive fingers.
Mice group allocation, surgery and assessing the outcome of mice were

performed independently by different investigators.

Colony formation and western blot assays
Soft agar colony formation assay and western blot assay were performed
as described previously.47

SHP-2

Glioma EMT and Invasion
GSC renewal

PDGFRα
PDGFA

ZEB1miR - 200

Erk1/2Akt

PI3K

Figure 7. A working model of PDGFA/PDGFRα-ZEB1 signaling
mediated by SHP-2/PI3K-Akt and SHP-2-Erk1/2 in glioma EMT,
invasion and GSC renewal.
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Limiting dilution neurosphere-forming assay
Limiting dilution neurosphere-forming assay was performed as reported
previously.18 Briefly, GSC spheres from individual samples were dissociated
and seeded into 96-well plates from 50, 100, 500 or 1000 cells per well.
Spheres (450 μm in diameter) were counted at day 4.

IHC of human and mouse glioma specimens
Immunohistochemical (IHC) staining was performed as described
previously.5 All experiments using clinical patient samples were performed
in accordance with a protocol approved by Shanghai Jiao Tong University
Institutional Clinical Care and Use Committee. Informed consent was
obtained from all subjects. OCT-embedded mouse brain sister sections
containing glioma xenograft tumors or paraffin-embedded human GBM
tumor sister sections were separately stained with antibodies against ZEB1
(1:50) or p-PDGFRα-Y754 (1:30). Nonspecific immunoglobulin Gs were used
as negative controls. A total of 86 primary human GBM specimens and five
normal brain tissues without notable pathological lesions or history were
collected from 2002 to 2012 at Ren Ji Hospital, School of Medicine,
Shanghai Jiao Tong University. These clinical cancer specimens were
examined and diagnosed by pathologists at Ren Ji Hospital. IHC staining
was quantified by two persons independently as described previously:5 3+,
positively signals in ~ 50% tumor cells; 2+, signals in ~ 25% tumor cells; 1+,
signals in ~ 5–25% tumor cells; ± , low or no signals in o1% tumor cells; –,
no detectable signals in all tumor cells (0%). Tumors with – or ± staining
were considered as low expressing, and tumors with 1+ to 3+ scores were
considered high expressing. Kaplan–Meier survival assay was performed as
described previously.5

Statistical analysis
Statistical analyses were performed in a GraphPad Prism version 5.0 for
Windows (GraphPad Software Inc., San Diego, CA, USA). Survival analysis
was carried out using log-rank tests, and a Mantel–Haneszel approach was
used to determine hazard ratio. A two-tailed Fisher’s exact test was
performed to determine if the frequency distribution of the variables were
statistically significant. Comparison of treatments was analyzed using one-
way analysis of variance with Newman–Keuls post-test or a paired two-way
Student’s t-test as described previously.19,48 P-values o0.05 were
considered significant.
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