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Abstract: The unique biology of the intestinal epithelial barrier is linked to a low baseline oxygen
pressure (pO2), characterised by a high rate of metabolites circulating through the intestinal blood
and the presence of a steep oxygen gradient across the epithelial surface. These characteristics
require tight regulation of oxygen homeostasis, achieved in part by hypoxia-inducible factor (HIF)-
dependent signalling. Furthermore, intestinal epithelial cells (IEC) possess metabolic identities that
are reflected in changes in mitochondrial function. In recent years, it has become widely accepted
that oxygen metabolism is key to homeostasis at the mucosae. In addition, the gut has a vast and
diverse microbial population, the microbiota. Microbiome–gut communication represents a dynamic
exchange of mediators produced by bacterial and intestinal metabolism. The microbiome contributes
to the maintenance of the hypoxic environment, which is critical for nutrient absorption, intestinal
barrier function, and innate and/or adaptive immune responses in the gastrointestinal tract. In
this review, we focus on oxygen homeostasis at the epithelial barrier site, how it is regulated by
hypoxia and the microbiome, and how oxygen homeostasis at the epithelium is regulated in health
and disease.
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1. Introduction

The primary roles of the intestinal epithelial barrier are absorption of nutrients, fluid
homeostasis, removal of waste products, and maintenance of tolerance to antigens [1].
Intestinal epithelial cells (IEC) are located at the interface of the nutrient and microbial
ecosystem. The monolayer of IECs is a key player in maintaining metabolic and immune
homeostasis [2]. The epithelial layer can be completely renewed in 3–5 days and serves as
a protective mechanism against injury and infection [3]. Renewal of the epithelial layer of
the IEC requires a specific population of IEC called intestinal stem cells (ISCs) [4].

The epithelium, covered with mucous, is supplied by an abundant vascular system.
Even a minor disturbance in blood flow can cause a substantial decrease in O2 supply
(hypoxia) to the epithelia. The small and large intestine can quickly adapt to the widely
fluctuating O2 levels in blood perfusion [5].

At the baseline of epithelial cells lining the mucosa, relatively low pO2 exists, which
is referred as “physiological hypoxia” [6]. Cells can adapt to oxygen supply and demand
under hypoxia, demonstrating that cells must have oxygen sensing mechanisms regardless
of their temporary biological status. Mitochondrial signals represented by reactive oxygen
species (ROS) and metabolites can mimic acute and chronic hypoxia responses [7]. Rapid
acute responses occur as a result of ROS-induced or metabolite-induced Ca2+ accumulation
in specialized oxygen-sensitive cells. Long-term hypoxia sensing is possible through ROS
and metabolites due to hypoxia-inducing factor (HIF) activation [7].
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The epithelial cells are overlaid by a mucus surface, which is an important barrier to
the flow of antigens from the lumen. The mucosal surface harbours trillions of microbes,
including bacteria, fungi, and viruses. Collectively, they produce an array of fuel sources
and signalling molecules such as short-chain fatty acids (SCFAs), including butyrate,
propionate, and acetate. Microbially derived SCFAs, particularly butyrate, stimulate
epithelial metabolism, alter gene expression [8], and increase epithelial O2 consumption
to a level that cells perceive as metabolic hypoxia, which leads to the stabilization of the
transcription factor HIF [9].

In turn, intestinal oxygenation directly shapes the composition of gut microbial com-
munities and oxidative changes in intestinal inflammation and may underlie the character-
istic dysbiosis related to the microbiota in patients with IBD [10]. Here, we will discuss
how the intestinal epithelium functionally adapts to a low O2 pressure (pO2) environment,
how crosstalk between the microbiota and hypoxia functions, and how oxygen metabolism
at the epithelial barrier is affected in health and disease.

2. Oxygen Scenery at the Intestinal Epithelial Barrier

At the intestinal barrier, the unique oxygen profile is governed by two main factors—
by oxygen metabolism of epithelial and sub-epithelial cells during food digestion and
nutrient absorption, and by intestinal microbiota within the lumen. For example, the
energy expended during digestion and absorption can account to up to 10% of total energy
expenditure, measured as dietary induced thermogenesis [11]. During the metabolic
processes of digestion and absorption, gastrointestinal oxygen consumption is increased
disproportionately compared to the gastrointestinal blood flow, resulting in hypoxia [12].
Adding to the complexity, the gut microbiome is composed mainly of anaerobic bacteria
which must, however, be able to quench the reactive oxygen species produced during
aerobic host metabolism [13]. At the same time, the gut microbiome is critically involved
in the maintenance of hypoxic conditions within the lumen, which is required for normal
intestinal functions including nutrient absorption [14].

The characteristic features of the digestive tract are the longitudinal and the radial
steep spatial oxygen gradient (Figure 1). Longitudinally—from the small intestine to
the colon—the oxygen level drops (Figure 2) [15,16], and a negative gradient is also ob-
served from lamina propria towards the lumen. To illustrate this, in mice, pO2 drops from
58 mmHg in the stomach to 32 mmHg in the duodenum, through 11 mmHg in the ascend-
ing column and to 3 mmHg in the sigmoid column (all values measured using electron
paramagnetic resonance, EPR) [16]. In contrast, the pO2 at the sea level is 140–150 mmHg
(corresponding to ~21% O2), and at the lung alveoli, it is still high at ~105 mmHg [17].
Considering the short distance, the radial gradient is even steeper—using the phosphores-
cence quenching method, it was shown that in mice, the pO2 drops from 40 mmHg in the
subepithelial tissue to below 1 mmHg in the lumen over a distance similar to the thickness
of the intestinal wall (~300 µm) [10]. While the values obtained using different methods
are not directly comparable, they nevertheless depict the striking differences in oxygen
levels at various points of the gastrointestinal tract.

As noted, several methods are available for measurement of pO2 in tissues of living
organisms (Table 1), and due to different experimental approaches, the pO2 values obtained
using these methods may not be directly comparable. The first instrument that made in vivo
measurements possible was the Clark electrode, which, at its core, is a platinum electrode
at the surface of which oxygen is electrochemically reduced and the generated current is
measured. Despite several drawbacks, it still remains widely in use, particularly due to its
simplicity. While newer methods based on nuclear or electron magnetic resonance provide
unprecedented possibility to obtain 3D oxygen profiles in tissues or even the whole body,
their use is limited due to the expensive and complex equipment required. The advantages
and disadvantages of the main methods in use today are collected in Table 1.
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Figure 1. O2 and its regulation at the intestinal epithelial barrier site. (A) Counter current blood flow reduces local pO2 

along the crypt–villus axis and results in low pO2 at the villus tip. (B) Histological section of small intestine; villus–crypt 

axis, BALB/cOlaHsd mouse. (C) Hypoxic/normoxic environment along crypt–villus axis. (C.1) Hypoxic condition or in-

termittent hypoxia at the upper part of the villa; inactive HIF hydroxylases. HIF-1 is composed of two subunits—oxygen-

sensitive HIF-1α and HIF-1β. Due to low O2, PHD activity is decreased. HIF-1α is stabilised and binds to ARNT in the 

presence of co-activator p300; altogether, it activates transcription factor of HIF target genes. (C.2) Normoxic conditions at 

the bottom of the crypt. In the presence of O2, PHD enzyme hydroxylates the two proline residues on HIF, enabling the 

binding of VHL to the HIF subunit, which degrades HIF-1α subunits under normoxic conditions. Fatty acid oxidation 

(FAO) is predominately present in normoxic cells. 

  

Figure 1. O2 and its regulation at the intestinal epithelial barrier site. (A) Counter current blood flow reduces local pO2

along the crypt–villus axis and results in low pO2 at the villus tip. (B) Histological section of small intestine; villus–crypt
axis, BALB/cOlaHsd mouse. (C) Hypoxic/normoxic environment along crypt–villus axis. (C.1) Hypoxic condition or
intermittent hypoxia at the upper part of the villa; inactive HIF hydroxylases. HIF-1 is composed of two subunits—oxygen-
sensitive HIF-1α and HIF-1β. Due to low O2, PHD activity is decreased. HIF-1α is stabilised and binds to ARNT in the
presence of co-activator p300; altogether, it activates transcription factor of HIF target genes. (C.2) Normoxic conditions at
the bottom of the crypt. In the presence of O2, PHD enzyme hydroxylates the two proline residues on HIF, enabling the
binding of VHL to the HIF subunit, which degrades HIF-1α subunits under normoxic conditions. Fatty acid oxidation
(FAO) is predominately present in normoxic cells.
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Figure 2. Longitudinal gradient of O2, bacterial load and pH along the intestine. Spatial heterogeneity of the gut microbiota 

in the gastrointestinal tract. The bacterial families of the small intestine and colon reflect physiological differences along 

the length of the gut. A gradient of oxygen and pH limits the bacterial density in the small intestine, whereas the colon 

carries high bacterial loads (darker brown = more bacteria). 

As noted, several methods are available for measurement of pO2 in tissues of living 

organisms (Table 1), and due to different experimental approaches, the pO2 values ob-

tained using these methods may not be directly comparable. The first instrument that 

made in vivo measurements possible was the Clark electrode, which, at its core, is a plat-

inum electrode at the surface of which oxygen is electrochemically reduced and the gen-

erated current is measured. Despite several drawbacks, it still remains widely in use, par-

ticularly due to its simplicity. While newer methods based on nuclear or electron magnetic 

resonance provide unprecedented possibility to obtain 3D oxygen profiles in tissues or 

even the whole body, their use is limited due to the expensive and complex equipment 

required. The advantages and disadvantages of the main methods in use today are col-

lected in Table 1. 

Table 1. The most important methods for quantitative measurement of the partial pressure of O2 in vivo. 

Method Approach Advantages Disadvantages Reference 

Clark electrode 

current generated due to 

oxygen reduction at elec-

trode (Pt) 1 

simple; well established 

and documented; robust 

not appropriate for low pO2 (con-

sumes O2); not appropriate for 

large area; invasive, possible tis-

sue damage; no spatial infor-

mation 

[18] 

phosphorescence 

quenching 

altered phosphorescence 

lifetime of porphyrin sen-

sor as a function of oxy-

gen concentration, detec-

tion using fibreoptic nee-

dle 

not dependent on excita-

tion light intensity; re-

duced background com-

pared to luminescence 

methods; high spatial 

precision and accuracy; 

does not consume O2 

invasive, possible tissue damage 

(but less than with electrodes); 

dye photobleaching 

[19] 

Figure 2. Longitudinal gradient of O2, bacterial load and pH along the intestine. Spatial heterogeneity of the gut microbiota
in the gastrointestinal tract. The bacterial families of the small intestine and colon reflect physiological differences along the
length of the gut. A gradient of oxygen and pH limits the bacterial density in the small intestine, whereas the colon carries
high bacterial loads (darker brown = more bacteria).
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Table 1. The most important methods for quantitative measurement of the partial pressure of O2 in vivo.

Method Approach Advantages Disadvantages Reference

Clark electrode
current generated due
to oxygen reduction at

electrode (Pt) 1

simple; well established and
documented; robust

not appropriate for low
pO2 (consumes O2); not

appropriate for large
area; invasive, possible

tissue damage; no
spatial information

[18]

phosphorescence
quenching

altered
phosphorescence

lifetime of porphyrin
sensor as a function of
oxygen concentration,

detection using
fibreoptic needle

not dependent on excitation
light intensity; reduced

background compared to
luminescence methods; high

spatial precision and accuracy;
does not consume O2

invasive, possible
tissue damage (but less
than with electrodes);
dye photobleaching

[19]

electron paramagnetic
resonance (EPR)

altered relaxation rate
of a spin probe due to

presence of O2

very precise; non-invasive;
3D O2 profile

addition of exogenous
paramagnetic

substances (e.g.,
insoluble paramagnetic
materials); probe may

be endocytosed

[20,21]

magnetic resonance
imaging (MRI)

19F or 1H relaxation
rate in probe

compound as a
function of pO2

non-invasive; 3D O2 profile

expensive; probe
compounds need to be
administered at least
several hours before

measurement

[21–23]

positron emission
tomography (PET),

single-photon emission
computed tomography

(SPECT)

γ-rays (PET) or single
γ-ray photons (SPECT)

emitted by
short-lived 15O

non-invasive; large
measurement area or even full
body; 3D O2 profile; possible to

measure low pO2 values

expensive and
experimentally

demanding; safety
concerns (γ-radiation)

[21,24]

1 Eppendorf polarographic microelectrode shares a similar principle.

Complementary to these methods to determine pO2 values over a wide range, there
are several methods that generally do not give exact pO2 values, but they do provide
a means to visualize oxygen gradients and detect low oxygen conditions. For exam-
ple, exogenous hypoxia markers added before tissue biopsy are in use both in animal
and experimental medicine for ex vivo hypoxia imaging [25]. Common markers are ni-
troimidazole dyes—e.g., pimonidazole and pentafluoropropyl—which are in hypoxic cells
(pO2 < 10 mmHg) reduced and retained due to the formation of a dye–protein adduct. One
of the standard methods for immunohistochemical hypoxia detection is also pimonidazole
immunofluorescence, utilizing anti-pimonidazole antibody conjugated to a fluorescent
marker compound. A recent study using brain tumour models showed good correlation
between pimonidazole-detected hypoxia and positron emission tomography (PET) mea-
surements, thus bringing the latter non-invasive method closer to clinical application [26].
When comparing different oxygen level measurement methods, it is also important to
consider whether the measurement is limited to the lumen. For example, the classical
method using the Clarke electrode allows for luminal hypoxia measurement, while the
pimonidazole method also images intracellular hypoxia. Another consideration is that
some probes could be endocytosed such as in the case of the lithium naphtalocyanine EPR
probe, making luminal-only measurements problematic [27]

Alongside direct measurements using electrodes and indirect measurements of hy-
poxia using exogenous markers, there are also endogenous hypoxia (bio)markers that can
be detected using immunohistochemistry. Of these, the most important is HIF-1α, which
is described in detail in the following sections. Other endogenous markers are carbonic
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anhydrase IX (CA IX) and glucose transporter 1 (GLUT-1), plus some less-specific markers
such as osteopontin (OPN) and vascular endothelial growth factor (VEGF) [28].

3. Oxygen Sensing through Hypoxia and ROS at the Mitochondria Site

The intestinal epithelium is constantly exposed to low-oxygen conditions. The hy-
poxic environment can result in altered membrane protein distribution and membrane
lipid composition with an increase in saturated fatty acids content, while the amounts of
phospholipids and cholesterols remain similar [29]. Hypoxia is thought to have a protective
role in broader aspects such as infection and inflammation [30,31]. Therefore, intestinal
epithelium is a prototypical environment in which adaptations to hypoxia are key [32]. One
of the most important regulatory mechanisms of oxygen involve HIFs [33] and reactive
oxygen species (ROS) produced in mitochondria.

HIF is a global regulator of oxygen homeostasis and enables adaptation to oxygen lev-
els in numerous cell types, including intestinal epithelial cells [34]. It is a heterodimer of a
constitutively expressed beta subunit HIF-1β, also known as aryl hydrocarbon receptor nu-
clear translocator (ARNT), and an alpha subunit HIF-1α, which is constitutively translated
but rapidly degraded under physiological oxygen conditions (normoxia). In the absence of
oxygen, HIF-1α binds the constitutively expressed partner HIF-1β and thereby stabilizes
the heterodimer, which is consequently recruited to HIF response elements (HREs) present
in the promoter region of HIF target genes where its transcription factor activity is mediated
by its basic helix-loop-helix-PAS motif within HIF-1α (Figure 1) [35].

The critical component of the HIF-mediated oxygen-sensing mechanism is the post-
translational modification of HIF-1α. During normoxia in the richly vascularised subep-
ithelial mucosa in the crypts of the intestine, the HIF-1α subunits are hydroxylated by
a group of 2-oxoglutarate-dependent dioxygenase enzymes named prolyl hydroxylases
1, 2 and 3 (PHD 1, 2, 3) [7]. The hydroxylation occurs in the HIF-1α oxygen-dependent
degradation domain and targets HIF-1α for ubiquitination by tumour suppressor protein
Von Hippel–Lindau (VHL) and, in turn, for proteasomal degradation (Figure 1). PHD 1–3
also can hydroxylate HIF subunits to prevent transcriptional activation. On the contrary,
under hypoxic conditions in anaerobic lumen of the intestine, the dioxygenase activity of
PHD is inhibited, non-hydroxylated HIF-1α protein accumulates and is recruited to the
nucleus with other HIF transcription factors. Collectively, they trigger a programme of
gene expression that controls cell fate and activates alternative mechanisms of energy pro-
duction. This also leads to the expression of genes crucial for the mucosal barrier function,
such as junction proteins, antimicrobial peptides, and mucus [36,37]. Hypoxia increases
the expression of hundreds of mRNAs and decreases the expression of a similar number of
genes in a HIF-dependent manner [38]. It is estimated that after hypoxic activation, HIFs
can bind approximately 500 different sites in genes as a transcription factor depending on
cell type [39–41]. Furthermore, HIF-1α and/or HIF-2α are involved in the induction of
genes encoding enzymes involved in glycolytic, carbohydrate, fatty acid, mitochondrial
and peroxisome metabolism, which has been discussed elsewhere [42].

The other major regulatory mechanism involves mitochondria, which are responsible
for most of the oxygen consumption in cells. Recently, it has been shown that mitochondria
can serve as signalling organelles required for numerus cytosolic signalling pathways [43].
This signalling in mitochondria can be through ROS or through the release of tricarboxylic
acid cycle (TCA) metabolites [7,44]. For example, the TCA-metabolite citrate can be trans-
ferred to the nucleus to create cytosolic acetyl CoA that is required for protein acetylation,
which can alter signalling pathways via post-translational modifications and gene expres-
sion via an altered epigenetic status [45].

The utilisation of oxygen in mitochondria occurs mainly at the electron transfer chain
(ETC) complex IV (cytochrome C oxidase). From oxygen, the universal unit of cellular
energy called ATP is generated in a controlled cascade. At the ETC, O2 serves as the
terminal electron acceptor of the electron transport chain to form H2O in the process of
oxidative phosphorylation. Along the ETC, there are many possibilities where electron



Int. J. Mol. Sci. 2021, 22, 9170 6 of 15

leakage can occur and consequently, this has implications for mitochondrial signalling [46].
When an electron is lost, a single electron is picked up by O2; combined, they can form
a superoxide radical, incompletely reduced O2 radical, hydrogen peroxide, or hydroxyl
radical, all commonly referred to as ROS. The mitochondrial electron transport chain
(mETC) is a major source of mitochondrial ROS, where the predominant reactive species is
superoxide. mETC complex I and II are the major producers of superoxide and they release
it into the mitochondrial matrix and intermembrane space [4].

Tissue cells and organs are exposed to a wide range of O2 levels. Insufficient or
excessive levels of O2 result in inappropriate levels of ROS, leading to altered oxidation
of lipids, proteins, and nucleic acids, which can lead to cell death or dysfunction [47].
Excessive mtROS that are not eliminated by mitophagy can lead to multiple cellular
dysfunctions [48]. For example intestinal stem cells (ISCs) in intestinal organoids that
were not capable of eliminating excessive mtROS with mitophagy/autophagy have lower
self-renewal potential, leading to their reduced number [49].

The small intestine and colon mainly consume ATP released from oxidative phospho-
rylation. Epithelial oxygen consumption and regulation is an important determinant of
oxygen balance at the interface between host and environment. Therefore, both the delivery
and consumption of O2 are tightly regulated, with many different molecular mechanisms
controlling O2 levels within cells and tissues to maintain oxygen homeostasis. Mitochon-
dria ETC in the body range functionally from ambient O2 conditions (21% O2), through
hyperoxia and hypoxia, to near anoxia (approximately 0.5% O2). Any deviation from these
conditions (either up or down in pO2) can result in pathology. Mitochondrial ROS signals
are required for various cellular functions and their amount is connected to the activities of
the mETC, metabolic enzymes and activation of AMPK, thiol phosphatase, caspase, kinase,
proteasome as well as transcriptional activity [4,50]. ROS may have additional effects on
stem cell differentiation, proliferation, and adaptation to stressors including hypoxia [4,32].
Various genetic and antioxidant methods have been used to demonstrate the necessity of
increasing ROS for oxygen sensing [29].

Mitochondrial ROS are crucial for the activation of HIF [51]; the exact mechanism
of ROS-mediated HIF-1α stabilisation is still unknown. There are debates in the lit-
erature on whether mitochondria ROS increase or decrease during hypoxia discussed
elsewhere [52,53]. However, various genetic and antioxidant methods have been used to
demonstrate the necessity for detecting ROS for oxygen sensing [54]. Hypoxia has been
shown to increase mitochondrial ROS generation at the complex III and increase HIF-1α
protein accumulation [55]. In addition, mitochondrial intermediates used in the TCA for
energy production, such as succinate and fumarate, have been shown to increase ROS
production and indirectly activate HIF-1α protein [14,51].

Diminished oxygen levels at the intestinal barrier site cause stress and destabilize
cells at the intestinal barrier site. This environment adapts systemically, which can include
changes in ventilation, cardiac output, blood vessel growth and circulating blood cells.
Regulation of low oxygen could go through the hypoxia mechanism directed by HIF
enzymes. HIF regulation stabilizes low oxygen availability and controls the expression of
a multitude of genes, including those involved in cell survival, angiogenesis, glycolysis
and invasion/metastasis. Hypoxic reprogramming of metabolism can also be associated
with adaptation to changes in ROS production, which goes along with other mitochondrial
changes during hypoxia [14,52]. All these changes can lead to adaptations of cells to protein
synthesis, energy metabolism, mitochondrial respiration, lipid and carbon metabolism as
well as nutrient acquisition.

4. Microbiota and Oxygen Consumption

The intestines of newborns are better oxygenated compared to those of adults. The
higher oxygen content in the intestinal tract of newborns favours the occurrence of fac-
ultative anaerobes such as enterobacteria, enterococci, and streptococci. These facultative
anaerobes consume the available oxygen, create an anaerobic microenvironment in the
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intestine and facilitate the establishment of obligate anaerobes such as Bifidobacterium,
Clostridium and Bacteroides. This shows that oxygen levels can influence the composition of
the gut microbiota [56]. The number and heterogeneity of commensals increases along the
longitudinal axis of the intestine from the small intestine to the colon and also between
tip and base of villus of the intestinal epithelium [14] (Figures 1 and 2). In addition, this
leads to increased amounts of oxygen used by aerobic bacteria near the epithelium, thereby
enabling an increase in aerotolerant microbes at the interface between the epithelium and
the lumen, leaving the central part of the lumen deoxygenated [14].

The importance of the microbiota in regulating intestinal pO2 was shown using
antibiotic administration, which affect both the intestinal oxygen gradient and microbial
composition [56]. Similar observations have been made in germ-free mice, which also show
higher pO2 in the intestinal epithelium compared to controls. Butyrate supplementation of
antibiotic-treated mice physiologically restores levels of low pO2 and hypoxia-dependent
signalling. However, protection of the intestinal epithelial barrier by butyrate did not occur
in cells lacking HIF [9]. These results indicate that the butyrate–HIF axis is an important
pathway in host–microbe interactions. Another metabolic deficiency reported in GF mice is
that colonic cells show significantly reduced levels of ATP and NADH/NAD+ in addition
to decreased capacity for oxidative phosphorylation [57].

Depletion of butyrate-producing bacteria by antibiotics decreased the expression
of peroxisome proliferator-activated receptor-γ (PPARγ), a receptor mediating butyrate
oxidation. The reduction in PPARγ increased oxygen availability in the gut lumen, which
promotes the colonialization with aerobic Enterobacteriaeae [58,59].

These observations suggest that a viable gut microbiota that enables stable oxygen
gradient is important for preserving intestinal homeostasis and, consequently, resistance to
pathogen colonization. Decreasing normal microbiota with antibiotic manipulation could
lead to imbalanced oxygen homeostasis (increase in O2 levels, growth of aerobic bacteria)
that can lead to pathological conditions and epithelial damage [56,58,60].

5. Microbiota and Its Metabolites

The gut microbiota is composed of more than 100 trillion microorganisms [61], con-
sisting of approximately 160 species [62]. A major role of the microbiota is the breakdown
of nutrients from food and the controlled regulation of intestinal and systemic immune
responses. In addition to assisting in digestion, the microbiota produces a number of
signalling molecules and benefits the host through the local synthesis of SCFA. Bacteria
present in the microbiota can also produce various gaseous molecules such as nitric oxide
(NO), carbon monoxide (CO), hydrogen sulphide (H2S), and ammonia (NH3) that interact
with HIF [14]. These complex interactions between microbiota, epithelial barrier and nutri-
ents are also dependent on oxygen homeostasis at the epithelial barrier site. Microbiota
metabolites influence oxidative phosphorylation [63], nuclear receptors [64] and other
functions related to the metabolism at the epithelial barrier site of intestine [59].

Facultative anaerobic bacteria are the predominant bacterial species in the microbiota
and they decrease the O2 content in the environment; therefore, the gut in general is a highly
hypoxic tissue compared to other tissues. In the intestine, anaerobic bacteria ferment and
extract energy from other polysaccharides such as dietary fibre and starch and synthesize
the by-product SCFA consisting of primary N-butyrate, propionate and acetate, which are
present in high concentrations in the lumen [65]. A high fibre diet results in the production
of 400–600 mmol of SCFA in the cecum per day; these account for ~10% of human caloric
requirements [66].

Primarily, SCFA are involved as energy substrates in oxidative phosphorylation, where
oxygen is consumed for the production of ATP. The type and amount of SCFAs produced
depends on the composition of the gut microbiota and the metabolic interaction between
microbiota and ingested macro- and micronutrients [66]. SCFAs are also mediators of
metabolism in mitochondria as they serve as ligands for free fatty acid receptors 2 and
3 (FFAR2, FFAR3), also known as G-coupled receptor protein 43 (GRP43) and GRP41,
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respectively, which regulate glucose and fatty acid metabolism [66]. Small intestinal
epithelial cells have a preference to utilise glucose and glutamine [67], whereas mature
colonic epithelia mainly generate energy by oxidation of SCFA such as butyrate, which
may render the mucosal surface more hypoxic. Increased SCFA correlate with reduced
lipolysis and adipogenesis of adipocytes [68,69] and also inhibit insulin-stimulated lipid
accumulation in adipocytes via FFAR2 signalling, resulting in more responsive adipocytes
associated with reduced inflammatory infiltrate in the adipose [10,69,70].

In addition to SCFA’s role as an energy substrate mentioned above, SCFA also have
several immunomodulatory effects [37,71]. Treatments where they increase the intestinal
concentrations of SCFA are effective in reducing tissue damage and improving immune
response. In this way, SCFA can improve the host response to inflammatory and infection
stimuli [72,73]. There is increasing evidence supporting a homeostatic role for SCFA in
colonic inflammation in both strengthening the intestinal barrier and promoting healing of
colitis [74]; this is discussed in more detail in the next section.

Butyrate is one of the predominant SCFAs in the colon and can reach luminal concen-
trations of up to 30 mM. It is a metabolic substrate for colonic epithelial cells, with up to
30% of energy in the healthy colon derived from butyrate [63]. An increase in butyrate
production has been observed in mice harbouring the microorganisms Roseburia intestinalis,
Eubacterium rectale, and Clostridium symbiosum that were on low-fat, high-fibre diets [63]. In
contrast, in mice that were on high-fat, low-fibre diet and with consequently low butyrate
production, there was an increase in CD3+ intraepithelial lymphocytes and CD68+ lamina
propria macrophages, suggesting increased inflammation in the absence of fibre degrada-
tion and SCFA production [75]. Propionate and butyrate are established as activators of
nuclear receptors such as PPARγ [76,77], which, after activation, mediate mitochondrial
β-oxidation of fatty acids [57,78] and, as mentioned before, receptor mediated butyrate
oxidation [58]. By fuelling oxidative phosphorylation, butyrate is critical for initiation and
to sustain a hypoxic/HIF gradient in the intestine [9,14]. Administration of butyrate to
germ-free mice rescues mitochondrial respiration in colonocytes and prevents them from
undergoing autophagy [57].

All these studies show that butyrate has many beneficial roles in the intestine [63,75,76].
However, butyrate can have deleterious properties, sometimes referred to as the “butyrate
paradox” that was observed in studies looking at the impact of butyrate on colonic stem
cells versus colonocytes [79]. In these studies, butyrate was identified as a potent suppressor
of stem cell proliferation and inhibitor of histone deacetylase (HDAC). This results in
chromatin remodelling and changes in gene expression. On the contrary, colonocytes
were resistant to butyrate-mediated HDAC inhibition with no significant alteration in gene
expression. Colonocytes also tolerated higher doses of butyrate compared to stem cells [80].

Microbial ligands can be recognised by pattern recognition receptors (PRR); an ex-
ample is the activation of PPR-related transcription factors in IEC, such as via Bacteroides
vulgatus-mediated NF-κB signalling [81]. In addition to PRRs, luminal metabolites from
food, gut microbiota and digestive fluids (e.g., dietary lipids, SCFA, bile acids and many
more) are sensed via a variety of host-expressed metabolic receptors. Metabolic activities
of the microbiome include influencing the tryptophan-related aryl hydrocarbon receptor.
The small intestine of wild-type mice fed with a diet depleted of AhR ligands harbours
lower levels of Firmicutes and higher levels of phyla Bacteroidetes than mice fed with a diet
containing AhR ligands [82]. The intestine of mice deficient in AhR also has increased levels
of phyla Bacteroidetes and these mice are very susceptible to DSS-colitis [83]. AhR signalling
is essential for normal gut immune function and is triggered by plant compounds that are
converted to AhR ligands in the gut environment [83].

Metabolites derived from microbiota can serve as metabolic sensors with several
important roles at the intestinal epithelial barrier. They can serve as fuel in metabolic
processes, have an impact on hypoxic regulation, have immunomodulatory effects, activate
nuclear receptors, activate vitamin D receptors, and consequently, affect oxygen home-
ostasis. Organic synthesis of these metabolites is a good opportunity to manipulate gut
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microflora for medical purposes and to carry out further research in the field of intestinal
microbiota. Although, it is likely that the implication of artificial versions of these metabo-
lites will have a lower impact on the organism as metabolites produced naturally by healthy
viable microbiota. However, much research in this direction needs to be undertaken to
elucidate the role of metabolites in the biology of epithelial cells and immune cells at the
intestinal barrier [64,84].

6. Oxygen Sensing at the Epithelial Barrier in IBD

Oxygen homeostasis in healthy intestines is assured by dynamic and rapid fluctuation
in cellular oxygen tension. In inflammatory bowel disease (IBD), this cellular oxygen
tension is dysregulated [40]. IBDs are chronic, immunologically mediated diseases of
the gastrointestinal tract. The current understanding of IBD pathogenesis assumes that
in genetically predisposed individuals, an improperly regulated interaction between the
microbiota and the mucosal immune system leads to an inappropriate inflammatory
response and that disease recurrence is triggered by environmental factors that remain to
be fully characterized (Figure 3) [85]. The sensors that detect fluctuating oxygen levels
appear in normal and disease states. They are an important link between metabolism and
chromatin regulation; therefore, it is warranted to further address how oxygen-regulated
metabolic adaptations affect the epigenome and how this impacts the function of cells [86].

It is noteworthy that inflammation is associated with hypoxia [87]. Infiltrating immune
cells, invading pathogens, bacteria, and the increased energy demands of resident cells
can force a sharp drop in available oxygen [5]. In colitis, hypoxia is observed in all parts
of the mucosa [40]. These oxygen-limiting conditions impair β-oxidation, and can lead to
remodelling of membrane lipids and proteins, with an increase in saturated fatty acids [29].
In addition, with pO2 reduction due to inflammation, IECs can release pro-inflammatory
cytokines such as TNF. Furthermore, a drop in pO2 contributes to increased epithelial cell
apoptosis [88].

The exact mechanism for the increase in hypoxia in IBD is not yet clear [40]; it probably
occurs due to several factors. Inflammation may lead to an increase in oxygen consumption
by epithelial cells or an increase in vasculitis (inflammation of blood vessel walls) and
thus, a decrease in oxygen availability in the inflamed areas. It is also possible that during
inflammation, migrating neutrophils consume local oxygen and thus, increase hypoxia in
colitis [5,89].

In the inflamed mucosa, HIF-1α increases barrier protection genes, enhances innate
immune responses, and activates an antimicrobial response by increasing β-defensins,
antimicrobial peptides implicated in the resistance of the surface of epithelia to microbial
colonization. β-defensin expression requires low-oxygen conditions and HIF-1α activa-
tion [90]. All of these activities of HIF-1α in colitis result in a protective response. On the
contrary to HIF-1α, HIF-2α are essential for the maintenance of an epithelial inflammatory
response and, when chronically activated, can also increase the pro-inflammatory response,
intestinal injury, and cancer [40]. However, more work is needed to fully understand the
dynamic regulation of HIF-1α and HIF-2α in inflamed mucosa.

IBD is classified into two broad groups: ulcerative colitis (UC) and Crohn’s disease
(CD). In UC patients, inflammation is localised in the colonic region. In CD patients, inflam-
matory lesions are seen throughout the gastrointestinal tract, with some extra ulcerated
mucosa and granulomas [91]. Both HIF-1α and HIF-2α expression are increased in the
intestinal epithelium of UC and CD patients and in a mouse model of colitis [87].

The composition of the microbiota is frequently associated with IBD [92]. In IBD, there
is an overall decrease in microbial diversity, including decreased abundance and even loss
of major phyla of obligated anaerobe bacteria such as Firmicutes and Bacteroidetes, which, in
healthy individuals, represent 90% of all microbes present [56,84,93,94]. This suggests the
presence of elevated oxygen levels. Following this, the abundance of facultative anaerobic
bacteria, such as Enterobacteriaceae, is markedly elevated in individuals with IBD. The
abundance of facultative anaerobic bacteria in the colon is correlated with the distribution
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of oxygen emanating from the host tissue [56,84,95]. Whether oxygen pressure alterations
are causative or a result of the dysbiosis found in IBD remains to be determined.
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A homeostatic role for SCFA in the distal gut during inflammation is important in the
progression of inflammatory diseases. It was reported that a reduction in SCFA is asso-
ciated with IBD [63,92]. In addition, the epithelial transporter—the cell-specific butyrate
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transporter (encoded by SLC16A1)—is downregulated in the inflamed colonic mucosa of
patients with IBD. The reduction in butyrate and subsequent inhibition of β-oxidation may
be particularly detrimental in the context of intestinal inflammation [96,97]. Administration
of exogenous butyrate promotes resistance to experimental colitis [98]. Butyrate can also
protect mice from Clostridium difficile-induced colitis through a HIF-1-dependent mecha-
nism [37]. SCFAs are currently the most studied bacterial metabolites that, from studies,
can be identified as beneficial to colon homeostasis. IBD is correlated with disruption
of commensal bacteria and the levels of expression of genes in commensal bacteria [99].
Although patients with IBD exhibit decreased overall diversity of the microbiome with
alternation in microbiota, it is still not clear if these changes initiate disease pathogenesis or
are secondary to inflammation [100]. The microbiota of patients with active CD is 50% less
diverse and the microbiota of patients with UC is 30% less diverse [101]

Increased hypoxia, a lack of metabolites from the microbiota and a dysfunctional
microbiota are the main characteristics of IBD. These characteristics of IBD underpin the
disease course and contribute to extra-intestinal symptoms. Although of diagnostic value,
which of the alterations are causative and which offer viable entry points for therapy
beyond reducing symptoms remain to be investigated.

7. Conclusions

The differences in pO2 levels and energy demands of mucosal epithelial tissue in
comparison to other tissues during physiological functions or disease are unique. Its study
provides opportunities to understand intestinal metabolism in health and disease. There is
a dynamic and fast fluctuation in cellular oxygen tension between the tip and base of the
villus in the small intestine, where the base is better oxygenated and the tip of the villus is
hypoxic. There is also a steep decrease in oxygen longitudinally from the small intestine
towards the colon. The main part of the intestinal epithelium is constantly exposed to low
oxygen, and this represents a prototypic environment in which adaptation to the hypoxia is
a key. Hypoxia is regulated through HIF transcription factors that regulate the expression
of 500 genes, among which many are crucial to mucosal barrier function, such as junctional
proteins, antimicrobial proteins and mucus. In inflammatory bowel disease (IBD), this
cellular oxygen tension in the intestine is dysregulated. Current understanding of IBD
pathogenesis assumes that in genetically predisposed individuals, the interaction between
microbiota and the mucosa immune system results in an inappropriate inflammatory
response. However, the recurrence of the disease is triggered by environment agents that
still need to be fully characterized. Future studies to better understand the equilibrium
between microbial crosstalk, mucosal immune system and oxygen consumption are becom-
ing increasingly recognized in the field of mucosal immunology and intestinal epithelial
barrier biology and will help us to better understand how the epithelial barrier behaves in
health and disease.
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