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Doxorubicin Conjugated to 
Immunomodulatory Anticancer 
Lactoferrin Displays Improved 
Cytotoxicity Overcoming Prostate 
Cancer Chemo resistance and 
Inhibits Tumour Development in 
TRAMP Mice
Jayanth Suryanarayanan Shankaranarayanan, Jagat R. Kanwar, Afrah Jalil Abd AL-Juhaishi & 
Rupinder K. Kanwar

Advanced, metastatic, castration resistant and chemo-resistant prostate cancer has triggered change 
in the drug development landscape against prostate cancer. Bovine lactoferrin (bLf) is currently 
attracting attention in clinics for its anti-cancer properties and proven safety profile. bLf internalises 
into cancer cells via receptor mediated endocytosis, boosts immunity and complements chemotherapy. 
We employed bLf as an excellent functional carrier protein for delivering doxorubicin (Dox) into 
DU145 cells, CD44+/EpCAM+ double positive enriched DU145 3D prostaspheres and drug resistant 
ADR1000-DU145 cells, thus circumventing Dox efflux, to overcome chemo-resistance. Successful bLf-
Dox conjugation with iron free or iron saturated bLf forms did not affect the integrity and functionality 
of bLf and Dox. bLf-Dox internalised into DU145 cells within 6 h, enhanced nuclear Dox retention up to 
24 h, and proved significantly effective (p < 0.001) in reducing LC50 value of Dox from 5.3 μM to 1.3 μM 
(4 fold). Orally fed iron saturated bLf-Dox inhibited tumour development, prolonged survival, reduced 
Dox induced general toxicity, cardiotoxicity, neurotoxicity in TRAMP mice and upregulated serum levels 
of anti-cancer molecules TNF-α, IFN-γ, CCL4 and CCL17. The study identifies promising potential of a 
novel and safer bLf-Dox conjugate containing a conventional cytotoxic drug along with bLf protein to 
target drug resistance.

Prostate cancer is one of the few cancers where chemotherapy is not the primary mode of therapy and is used only 
when surgery and androgen ablation therapy fails. Also, castration therapy is increasingly resulting in the emer-
gence of hormone-insensitive and highly chemo-resistant tumour cells1 which limits the use of cytotoxic drugs 
in prostate cancer. Hence, it is the need of the hour to develop effective chemotherapeutics that can cause greater 
cancer specific cell death and overcome chemo-resistance at lower doses.

Doxorubicin (Dox) -the most frequently used chemotherapeutic targets actively dividing cells by intercalating 
with the nuclear DNA and preventing the activity of human topoisomerase II enzyme2. Earlier Dox used to be the 
primary highly effective mode of therapy to prostate cancer3 however, the increased risk of cardiac arrests due to 
cardio-toxicity of Dox and the chemo-resistance offered by prostate cancer, reduced the use of Dox4. Dox has con-
sistently performed as an efficient chemotherapeutic in cell culture, however several combination strategies5 have 
been employed to improve its in vivo efficiency6. Although these strategies were able to overcome the non-specific 
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cardio toxicity of Dox, they failed to overcome the chemo-resistance conferred due to the activation of several 
drug resistance proteins such as P-glycoprotein (P-gp) upon Dox exposure.

Apart from P-gp, several other molecules have been found to play a role in prostate cancer chemo-resistance7 
such as multidrug resistance related protein 1 (MRP-1), which plays a greater role than P-gp in prostate cancer8. 
Anti-apoptotic protein Bcl-2, as a mediator of chemo-resistance and hormonal resistance, was established in 
prostate cancer9 along with another key molecular player PTEN which is often mutated or suppressed in case of 
advanced prostate cancer10.

Survivin plays a pivotal role in many pathways relating to therapeutic resistance generally in tumours includ-
ing prostate cancer11,12 both in vitro and in vivo13. Clonally derived prostate cancer stem like cells (CSCs) express-
ing high levels of CD44, CD133 and nestin from patient tissues were able to form highly drug resistant prostate 
tumours in vivo14. These studies suggest that prostate cancer chemo-resistance can be overcome by targeting the 
crucial molecular regulators such as survivin; MRP-1, Bcl-2 and PTEN along with CSCs in combination to Dox.

Antibody-drug conjugates have been the focus of many anti-cancer studies to improve the specificity of Dox 
and overcome chemo-resistance15. A recent strategy of delivering Dox, targeted to mitochondria by a mitochon-
drial localising peptide, improved on the drug resistance response of cells to Dox16. However, these strategies only 
work by means of physical constraint and does not regulate the molecular activation of drug resistance pathway, 
hence a need for conjugating Dox to a biologically active molecule was considered.

Bovine lactoferrin (bLf) is an iron binding milk glycoprotein, investigated extensively by our laboratory and 
others for its anti-inflammatory, immuno-modulatory17, anti-microbial18, anti-oxidant19 and proven anti-cancer 
properties20. The commercially available native form of bovine lactoferrin (Nat-bLf) and the iron free form of bLf 
(Apo-bLf) have been found to have interestingly different anti-cancer properties21,22. Further we have reported 
anti-survivin activity against colon CSCs and tumours by nanoformulated iron saturated form of bLf (Fe-bLf)23.

Interestingly, bLf is one of the easiest proteins for EDC-NHS based conjugation, due to its high chemical 
and temperature stability and has been used in a number of studies for the conjugation of PEG-NHS esters24. 
Engineered nanoparticles containing bLf to conjugated PEG-PLA block copolymer are used as targeting moiety 
for the uptake of these nanoparticles by the transferrin receptor in the brain cells25. Deferasirox - bLf conjugates 
developed using EDC-NHS coupling reaction showed effective uptake of the drug by the PC-12 brain cells, and in 
rat models when compared to the non-conjugated deferasirox alone26. These studies demonstrated the potential 
of bLf as a carrier and targeting protein, a less explored facet of this multi-dimensional protein.

Earlier we have shown that orally fed Fe-bLf act as a fortifying agent for augmenting cancer chemotherapy in 
mice, and sensitizes drug resistant tumours to widely employed chemotherapeutics including Dox27. Our recent 
preclinical studies revealed that both Apo-bLf and Fe-bLf rapidly internalise into cells mediated by lactofer-
rin, transferrin and lipo-protein receptor related proteins (LRP) receptors23,28. Considering, the ability of bLf (in 
iron free and iron saturated) forms to overcome chemo-resistance and to internalise rapidly in cancer cells, two 
protein-drug conjugates of Apo-bLf and Fe-bLf with Dox were prepared and their ability to overcome drug efflux 
mechanism was investigated.

Results
Synthesis of bLf-Dox conjugates. Dox was conjugated to Apo-bLf and Fe-bLf, using NHS-ester medi-
ated conjugation, which resulted in the formation of two protein drug conjugates, Apo-bLf-Dox and Fe-bLf-Dox 
(Fig. 1). The SDS-PAGE (Fig. 1A) shows a single dark prominent band for bLf ~78 kDa for both pure bLf sample 
s as well as their conjugates. Further absence of any prominent higher bands in the 150 kDa region in SDS-PAGE 
confirms that there was no protein-protein coupling induced during the EDC-NHS coupling procedure. Western 
blotting using anti-bLf antibody (Fig. 1B) confirmed that the obtained conjugates contain pure bLf molecules in 
its active form.

Physico-chemical characterisation confirms the chemical conjugation of Dox to bLf. Fourier 
Transform Infra-Red Spectroscopy (FTIR) confirmed the formation of amide bonds and a conjugation between 
bLf and Dox Fig. 1C. The presence of amide I and amide II vibrations in the spectra of both Apo-bLf-Dox and 
Fe-bLf-Dox at 1700 cm−1 and 1500 cm−1, which are the C= O stretch of free and quinone bound carboxyl group, 
indicates that the protein structure in the conjugates was intact, because these peaks are characteristics of an 
intact α  helix structure29. The peaks seen at the 870 cm−1 and 805 cm−1 of the only Dox spectra are completely 
dampened in the case of conjugates because of the conjugation of NH2 groups in Dox reacting with COOH group 
of the proteins. The presence of the out of plane O-H vibration at 895 cm−1 (characteristic of Dox)30 is conserved 
in the conjugates, indicating that bLf-Dox consists of Dox moieties as well confirming the conjugation.

Differential Scanning Calorimetry (DSC) thermograms (Fig. 1D) of pure Dox indicates a sharp melting endo-
therm at 140 °C that is a characteristic of crystalline, insoluble Dox. In the case of drug conjugates, the sharp 
peak of Dox has disappeared and merged with the broad protein endotherms at 70 °C. Circular Dichroism CD 
spectroscopy (Fig. 1E), revealed that the spectra of both Apo-bLf and Apo-bLf-Dox were identical with a broad 
trench between 230 nm and 200 nm similar to Fe-bLf and Fe-bLf-Dox. The identical molar elipticity values for the 
proteins and the conjugates at the crucial wavelengths such as 193 nm, 196 nm and 207 nm indicates no significant 
conformational change in the protein folding. Quantitative secondary structural analysis revealed an increase in 
the percentage of α -Helices from 25.8% to 39% accompanied by a reduction in β -sheets to 9% from 19% between 
Apo-bLf and Apo-bLf-Dox whereas the secondary structural quantification remained similar between Fe-bLf and 
Fe-bLf-Dox apart from the reduction in α -Helices from 27.6% to 21.9%.

In order to verify if the bound Dox in conjugates is still functional, its topoisomerase inhibitory activity was 
assessed (Fig. 1F). Catenated kinetochore DNA - kDNA (Lane 3) which on incubation with TOPO II, gets decat-
enated and runs as two distinct bands in the gel representing nicked circular kDNA and relaxed circular kDNA 
(Lane 4). This reactive formulation in lane 4 (kDNA +  TOPO II) was then incubated with different concentrations 
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of Dox, Apo-bLf-Dox and Fe-bLf-Dox. Dox (800 nM) completely inhibited the decatenation activity of TOPO II 
(Lane 5) with an intact kDNA appearing on the wells without any decatenated products. This effect of Dox was 
seen to be reduced upon lowering its concentration to 200 nM and 100 nM (Lane 6 and 7). Apo-bLf-Dox and 
Fe-bLf-Dox also showed a similar inhibition pattern of TOPO II (Lane 8–Lane 13).

bLf-Dox conjugates help in longer retention of Dox within cancer cells, resulting in increased 
cytotoxicity. Cellular Dox content analysis revealed that Dox alone was taken quickly by cells within 30 min 
but it gradually tapered into a saturation phase over the 24 h period, thus giving an overall absence of cellular 
accumulation (Fig. 2D). The conjugates showed similar rate of accumulation within first 30 min without any 
significant difference, and cells showed an increased uptake at 3 h period (P <  0.05). Following this time point, 
accumulation of Dox using Apo-bLf-Dox conjugate tapered down until 24 h. However, Fe-bLf-Dox showed con-
sistently improved accumulation of Dox within the cells until 24 h which was much higher (P <  0.001) than drug 
alone, at this time point. This phenomenon was also reflected in the Dox efflux assay which suggested that free 
Dox was easily excluded from the cells, in comparison to bLf-Dox conjugates (Fig. 2E).

Figure 1. Synthesis and characterisation of bLf-Dox conjugates. (A) Image indicates the purity of synthesised 
forms of bLf-Dox conjugates prepared from Apo-bLf and Fe-bLf using SDS PAGE represented by a single 
non-denatured band around 78 kDa. (B) Western blot was carried out for the synthesised bLf-Dox conjugates 
against goat anti-bLf monoclonal antibody (1:1000) showing antigen reactivity ~78 kDa. (C) FTIR spectroscopy 
analysis was performed between 4000 and 400 cm−1 at a resolution of 4 cm−1 averaging 10 scans. The spectrum 
of each sample was then plotted with percentage transmittance against wavenumber. Crucial peaks are 
highlighted in the spectra. (D) The thermal stability and the crystallinity of the conjugates was studied using 
differential scanning calorimetry (DSC) and the endotherm has been represented. (E) The secondary structural 
characteristics of Apo-bLf and Fe-bLf before and after Dox conjugation was studied using Circular Dichroism 
(CD) spectroscopy. CD values were obtained for secondary structure prediction at a wavelength range of 
250 nm to 190 nm at an interval rate of 0.1 nm/s and the resultant CD spectra of milli degrees vs wavelength 
was plotted in the graph. The functional stability of Dox in the form of conjugates was confirmed by its ability 
to inhibit human topoisomerase II (TOPO II) to decatenated human kinetochore DNA (kDNA). The presence 
of nicked circular kDNA and relaxed circular kDNA was considered as a positive for the activity of TOPO II 
uninhibited by Dox. The presence of only the catenated kDNA at the wells is considered complete inhibition of 
TOPO II by Dox.
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Figure 2. bLf-Dox conjugates promote greater retention of Dox resulting in enhanced cancer cytotoxicity. 
(A) Representative confocal microscopy images of DU145 cells showing the time dependent internalisation of 
Apo-bLf-Dox and Fe-bLf-Dox studied by immunofluorescence using goat anti-bLf primary antibody (1:100) 
and anti-goat IgG FITC conjugated secondary antibody (1:100). The internalisation of Dox was studied using its 
auto-fluorescence with excitation at 488 nm and emission at 630 nm. The nucleus was counterstained with DAPI 
indicated by the blue fluorescence along with a competitive binding to Dox. Scale =  25 μ m. (B) The percentage 
of cells showing green and red fluorescence co-localised in cytoplasm (yellow) was considered as percentage bLf 
conjugated Dox plotted as histogram mean ±  S.D. (C) Histogram showing presence of nuclear red fluorescence 
within the cells among 100 counted cells (mean ±  S.D). (D) The amount of Dox present within the cells at 
various time points was considered as Dox retention and the relative fluorescence was plotted against time. 
Measurements were performed thrice in triplicates and the results are represented as mean ±  S.D. (E) The  
amount of Dox present in the supernatant of the cells treated at various time points was considered as Dox 
retention and the relative fluorescence was plotted against time. Measurements were performed thrice in 
triplicates and the results are represented as mean ±  S.D. (F) Cytotoxicity determination based on the LDH 
release from the cells post 24 h treatment at different concentrations in DU145 cells. The experiment was 
carried out thrice in triplicates. The X-axis is represented in terms of (F). bLf protein concentrations and (G). 
Dox concentrations. The determination of LC50 was carried out by non-linear regression fitted curve of the 
cytotoxicity against concentration and values are represented in the graph.
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In Fig. 2A confocal images show clearly the ability of the both Apo-bLf-Dox and Fe-bLf-Dox to internalise 
into the cells. A clear cytoplasmic co-localisation of bLf (green fluorescence, visualized for anti-bLf antibody) and 
inherent fluorescence of Dox (red), associated with its central anthracycline chromophore group was observed 
within first 30 min, indicating that bLf being analysed is indeed conjugated with Dox. At 6 h however, increased 
nuclear localisation of Dox was seen with a decreased co-localisation of Dox and bLf. During the first 30 min 
only 18.1% and 6.3% of cells showed nuclear Dox, which then increased to 98.2% and 99% after 6 h in both the 
treatments (Fig. 2B,C).

Figure 2F,G shows that there was a several fold increase in the cytotoxicity induced by both Dox as well as by 
bLf when used in the form of conjugates. LC50 value for Dox alone was 5.3 μ M which decreased significantly to 
1.5 μ M and 1.3 μ M in case of Apo-bLf-Dox and Fe-bLf-Dox, respectively. Importantly, Fe-bLf-Dox conjugates 
induced significantly lower cytotoxicity in non-cancerous RWPE-1 cells, in comparison to Dox alone as well as 
Apo-bLf-Dox treatments (Supplementary Figure 1).

Increase in annexin-V expression and TUNEL+ cells confirms the induction of apoptosis. The 
representative confocal microscopy images (Fig. 3A) indicate that Apo-bLf-Dox and Fe-bLf-Dox (1.5 μ M) 
induced higher apoptosis than Dox alone (increased number of cells showing higher green fluorescence intensity 
on cellular surfaces/membranes for annexin-V, represented as histogram in Fig. 3B. The percentage of TUNEL+ 
cells was significantly higher (P <  0.001) in Apo-bLf, Apo-bLf-Dox and Fe-bLf-Dox treatments than the Dox 
alone treatment (Fig. 3C,D).

Molecular analysis of apoptosis (Fig. 3E,F) showed an increase in caspase-7 expression upon all the treat-
ments, with Fe-bLf-Dox showing maximum increase of about 5 fold. Nearly 2-fold increase in cleaved caspase-3 
expression with both the conjugates treatments, suggests the activation of apoptosis cascade. An up-regulation 
of pro-apoptotic Bax expression in Apo-bLf-Dox and Fe-bLf-Dox (4.3 fold and 3.8 fold, respectively) treatments 
is much higher than 2.2-fold increase induced by Dox alone. Further survivin protein expression was highly 
down-regulated with Apo-bLf-Dox (0.61 fold) and Fe-bLf-Dox (0.66 fold), while there was a slight reduction 
with Dox treatment (0.92 fold). A similar trend was also observed in Ki67 expression which indicates negligible 
possibility of cell growth recovery, post bLf-Dox treatment induced apoptosis.

bLf-Dox conjugates downregulate the drug resistance markers. Dox being a substrate for the P-gp, 
increases cellular P-gp expression (Fig. 4A). Apo-bLf-Dox and Fe-bLf-Dox on the other hand did not increase 
the P-gp expression. On a closer analysis (Fig. 4B) it was also revealed that there was a significant reduction in 
the expression of P-gp, with bLf-Dox conjugates which were both much lower than P-gp expression in Dox treat-
ments (P <  0.001) which showed a significant increase (P <  0.01) upon comparison with untreated cells.

Western blot showed a clear downregulation of P-gp expression to 0.86 and 0.69 fold for Apo-bLf-Dox and 
Fe-bLf-Dox, respectively as compared to untreated cells, which increased to 1.2 fold during the Dox alone treat-
ment (Fig. 4C). The MRP-1 expression, also showed a decrease although only in the case of Fe-bLf-Dox to 0.8 
fold.

The expression of PTEN tumour suppressor which decreased with Dox treatment (0.56 fold), while increased 
to 1.5 fold and 1.72 fold with Apo-bLf-Dox and Fe-bLf-Dox treatments, respectively, indicating that molecu-
lar regulation moving towards a reversal of drug resistance. As compared to untreated cells, Bcl-2 expression 
decreased with Fe-bLf-Dox (0.67 fold) and with Dox (0.91 fold).

Advanced drug resistant (ADR1000-DU145) cells were sensitive to bLf-Dox treatments but not 
Dox alone. DU145 cells were grown under cytotoxic stress with pulse exposure of increasing Dox concen-
tration upto 1000 nM and the surviving cells were drug resistant, ADR1000-DU145 cells. Figure 5B indicates, 
that with pulse exposure, doubling time of DU145 cells increased from 24 h for DU145 cells to 21 days for the 
ADR1000-DU145 cells. After few days of pulse exposure of 1000 nM Dox only, the polyploid giant cancer cells 
(PGCC) remained alive in culture which divided into a number of small cells forming the drug resistant subline 
ADR1000-DU145 ( Fig. 5A). These cells displayed increased gene expressions of cancer stem cell markers CD44 
and CD133 as well as several fold increase in the gene expressions of drug resistance genes, with P-gp expression 
especially showing 32-fold increase (Fig. 5C).

ADR1000-DU145 cells being an induced chemo-resistant cell line of DU145, showed very high LC50 against 
Dox equal to 11.31 μ M, which was at-least 2 fold higher than LC50 of DU145 cells against Dox alone treatment 
(5.3 μ M). This LC50 of ADR1000-DU145 cells against Dox reduced to 2.17 μ M and 1.89 μ M in Apo-bLf-Dox and 
Fe-bLf-Dox treatments, respectively (Fig. 5D,E).

Spheroid diameter analysis (Fig. 5F,G) shows that Dox at 6 μ M concentration was least effective, with no 
significant reduction in spheroid diameter even after 96 h treatment. Apo-bLf-Dox and Fe-bLf-Dox were not sig-
nificantly more effective than their corresponding protein alone treatments at 24 h and 48 h time-points whereas, 
after 96 h treatment both Apo-bLf-Dox and Fe-bLf-Dox showed significant spheroid size reduction compared to 
Apo-bLf and Fe-bLf, respectively (P <  0.05) as well as Dox (P <  0.001).

Further, effectiveness of bLf-Dox conjugates against drug resistant CD44+ /EpCAM+  double pos-
itive cancer stem cell enriched DU145 cells was tested, which showed that both Apo-bLf-Dox and 
Fe-bLf-Dox were capable of inhibiting clonogenic, migration as well as 3D growth properties of these cells 
(Supplementary Figure 2).

TRAMP mice showed prolonged survival and reduced tumour growth when treated with 
Fe-bLf-Dox conjugates. Transgenic Mice exhibiting Adenocarcinoma of Prostate (TRAMP mice), were 
employed further to study therapeutic effectiveness of Fe-bLf-Dox upon oral feeding. Only Fe-bLf-Dox was cho-
sen for animal study due to its lower toxicity exhibited on normal RWPE-1 cells compared to Apo-bLf-Dox 
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(Figure S-1). These mice are capable of developing prostate cancer spontaneously after puberty31. Treatments 
were started at the age of 18 weeks and continued till 24th week, beyond which prostatic adenoma formed is 
expected to metastasize. All TRAMP mice treated with Fe-bLf-Dox (n =  9) survived until to 24 weeks of age, in 
comparison to 3/9 mice that survived in control group and 5/9 mice in Dox IP treated group (Fig. 6A). Control 
group mice developed large tumours (Fig. 6B) due to which they were humanely killed during study period. 
Although only 3/9 Dox IP treated mice developed large tumours as seen in the measure of Urino-Genital Tract 
(UGT) weights (Fig. 6C), the percentage survival was lower in this mice group due to significant body weight 
loss and hair loss observed in mice of this group. Fe-bLf-Dox treated mice had significantly reduced the UGT 
weight than control mice (P <  0.001) thereby suggesting that Fe-bLf-Dox was more effective in inhibiting 

Figure 3. bLf-Dox conjugates treatment induces cancer cell apoptosis. (A) Representative confocal 
microscopy images of DU145 cells showing the expression of annexin-V as a marker of apoptosis post treatment 
with Dox, Apo-bLf-Dox and Fe-bLf-Dox. The annexin-V was stained using immunofluorescence with rabbit 
anti-annexin-V primary antibody and anti-rabbit-IgG FITC conjugated secondary antibody represented in 
green fluorescence. Dox auto-fluorescence is represented in red. The nucleus was counterstained with DAPI 
(blue). Scale bar =  50 μ m. (B) Percentage of cellular annexin-V expression from 5 images each was calculated 
and represented as a histogram (Mean ±  S.D.). (C) The presence of fragmented DNA as an end product of 
apoptotic cascade within the cell was considered as the confirmatory test for induction of apoptosis especially 
the Dox mediated DNA damage using TUNEL assay. The nucleus was counterstained with DAPI and Dox 
auto-fluorescence is represented in red. (D) Percentage of TUNEL positive cells from 5 images each has been 
represented as a histogram. Statistical analysis was performed using one-way ANOVA and a post-hoc Tukey’s 
test. (E) The molecular regulation of apoptosis was studied using Western blots for various apoptotic markers. 
The Western blotting was carried out with 100 μ g of complete cell lysates against respective primary and 
secondary antibodies. (F) The Western blot images acquired were analysed for band density using ImageJ (NIH) 
software and the protein expression was given in relative fold change as compared to the untreated sample 
normalised against GAPDH and expressed as a histogram.
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tumour development than Dox alone injections, which showed no significant reduction in tumour weight in 
comparison to control (Fig. 6C).

Fe-bLf-Dox fed mice showed normal histology and blood composition, with improved 
anti-tumour cytokine response, whereas Dox alone showed several side effects. Apart from 
the general observation of large tumour appearing in the prostate gland of control mice, other abnormalities 
were observed in the Dox IP treated animals. Most importantly observed differences were the enlarged heart and 
spleen in Dox IP treatments, relative to control or Fe-bLf-Dox treated mice. Although there was no significant 
difference in the heart weight between the treatments, histopathological analysis of the heart displayed a larger 
and irregular cell structure with Dox IP treatment. On the other hand, regular aligned cardiomyocyte arrange-
ment was observed in the Fe-bLf-Dox treated mice in relation to the control mice. Similarly, larger spleens were 
found in the Dox IP treated mice. The histological analysis shows splenic damage after Dox IP treatment whereas 
Fe-bLf-Dox treatment showed normal spleen pathology as of the control group (Fig. 6D). Histology of the intes-
tines revealed no significant destruction to the intestinal villi after Fe-bLf-Dox feeding. The prostate histology 
sections also revealed a higher grade tumorous architecture in the control and Dox IP treated groups, in com-
parison to the Fe-bLf-Dox fed mice (Fig. 6D). Apart from these anomalies, the total blood analysis revealed that 

Figure 4. bLf-Dox conjugates are capable of overcoming molecular drug resistance pathway.  
(A) Representative confocal microscopy images of DU145 cells showing the expression of P-gp as a marker of 
drug resistance. The P-gp was stained using immunofluorescence with mouse anti-P-gp primary antibody and 
anti-mouse-IgG FITC secondary antibody visualised in green fluorescence. Dox–Red; Nucleus–Blue. Reduced 
DAPI fluorescence was observed in treatment involving Dox due to competitive nuclear binding. (B) Percentage 
of cellular P-gp expression was calculated as an average from 5 images for which data has been represented as a 
histogram (B). Statistical analysis was performed using multiple Student’s t-tests. (C) The molecular regulation 
of drug resistance was studied using Western blots for various drug resistance markers. The Western blotting 
was carried out with 100 μ g of complete cell lysates against respective primary and secondary antibodies.  
(D) The Western blot images acquired were analysed for band density using Image J (NIH) software and the 
protein expression was given in relative fold change as compared to the untreated sample normalised against 
GAPDH and expressed as a histogram.
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Figure 5. Advanced drug resistant (ADR1000-DU145) cells were sensitive to bLf-Dox treatments but 
not Dox alone. (A) The images represent the morphological changes in the DU145 cells upon subjected to 
pulse exposure of increasing concentration of Dox from 1 nM to 1000 nM. The cells accustomed to 640 nM 
Dox were treated with 1000 nM Dox on alternate days in complete growth media. The Dox treated DU145 
cells were photographed every day following the first treatment and the different stages the cells undergo 
before they become accustomed to 1000 nM Dox has been represented. These cells were considered Advanced 
Dox Resistant at 1000 nM (ADR1000-DU145 cells). (B) Doubling time of cells subjected to development of 
chemo-resistance with Dox. (C) qRT-PCR was performed on the cDNA of DU145 cells and ADR 1000-DU145 
cells. The relative fold expression changes of 9 genes of drug resistance and CSC markers were studied and is 
represented as bar graph (Livak Method). All values are represented as mean ±  S.D and the experiment was 
done twice in duplicates. (D) Cytotoxicity of bLf-Dox conjugates on ADR1000-DU145 cells as a measure of 
LDH release from the cells was calculated after 24 h treatment at different concentrations. The LC50 values are 
represented mean ±  S.D against respective Dox concentration. (E) Cytotoxicity (LC50) of bLf-Dox conjugates 
on ADR1000-DU145 cells represented as a function of protein concentrations. (F) ADR1000-DU145 cells were 
allowed to form prostaspheres for 7 days. Following spheroid formation, they were treated once at 0 h and again 
at 48 h and the spheroids were imaged under the microscope. (G) The size (Diameter) of the tumour spheroid 
was measured at 24 h, 48 h and 96 h post first treatment was measured using Image J (NIH) software tool. The 
experiment was carried out thrice with 5 spheroids per treatment. Two-way ANOVA with post-hoc Tukey’s test 
was used for statistical analysis. (H) Trypan blue dye exclusion analysis was performed post 96 h treatment to 
analyse the percentage viable cells left in the spheroids.
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Dox IP treated mice had abnormally low RBC count, haemoglobin content and haematocrit content which were 
at normal levels for Fe-bLf-Dox treated mice (Table 1).

Upon analysing the cytokine mediated immune response of TRAMP mice mediated by treatments (Fig. 6E), 
it was clearly visible that Fe-bLf-Dox was capable of triggering greater anti-tumour immune response in mice 

Figure 6. Fe-bLf-Dox conjugates inhibited tumour development and prolonged the survival of TRAMP 
mice. (A) Kaplan—Meier survival analysis of TRMP mice groups (Control, Dox IP and Fe-bLf-Dox diets) 
for n =  9 mice per group following treatment post 18 weeks of age for 45 days. (B) Dissected Urino-Genital 
Tract (UGT) of the TRAMP mice displaying seminal vesicles (S.V), bladder (B), testes (T) and the prostate 
(Red =  Tumourous; Green =  Normal). (C) Normalised UGT weights against the mice body weights as a 
measure of tumour development in TRAMP mice in control, Dox IP and Fe-bLf-Dox feed groups (n =  9). Two-
way ANOVA was performed to evaluate statistical significance followed by post-hoc analysis by Tukey’s test. 
(D) Histopathological analysis of TRAMP mice tissues post haematoxylin and eosin staining viewed under 
optica light microscope 400X magnifications. Sections of mice intestine, heart, spleen and prostate are provided. 
(E) Proteome profiler array analysis of serum cytokine expression profile of TRAMP mice treated with Dox 
and Fe-bLf-Dox (n =  3). Image J analysis of micro-array profile was carried out and relative fold change in the 
integrated density of each cytokine has been represented as histogram (Mean ±  S.D.).

S. No Blood Parameter Control Dox IP Fe-bLf-Dox Feed

1 WBC (103/mm3) 2.366 ±  1.307 2.966 ±  0.555 5.166 ±  1.108

2 RBC (106/mm3) 6.01 ±  3.489 2.47 ±  1.001 (L) 9.52 ±  0.499

3 HGB (g/dL) 10 ±  5.256 5.633 ±  1.184 (L) 15.333 ±  0.984

4 HCT (%) 28.9 ±  17.54 (L) 10.53 ±  4.733 (L) 44.33 ±  3.445

5 MCV (μ m3) 46.33 ±  3.091 41.67 ±  3.299 46.333 ±  1.247

6 MCH (pg) 17.66 ±  1.800 25.23 ±  8.017 (H) 16.066 ±  0.34

7 MCHC (g/dL) 38.56 ±  6.86 62.43 ±  25.17 (H) 34.63 ±  1.319

8 PLT (103/mm3) 136 ±  27.796 634 ±  265.92 189.33 ±  66.10

9 Serum Iron (μ g/dL) 183.33 ±  10.338 121 ±  12.832 239.33 ±  26.83

Table 1.  Parametric blood composition analysis for TRAMP mice. WBC - white blood cells, RBC - red 
blood cells, HGB - haemoglobin, HCT - haematocrit, MCV - mean corpuscular volume, MCH - mean 
corpuscular haemoglobin, MCHC -mean corpuscular haemoglobin concentration, PLT-platelets. Values lower 
than the normal levels are indicated (L) and values higher are indicated (H).
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than Dox treatment. Both Dox and Fe-bLf- Dox significantly increased the protein expression of G-CSF, IFN-γ , 
IL-1a, IL-13, IP-10, CCL2, CCL5 and TNF-α  (P <  0.05), whereas both treatments reduced the expression of IL-5, 
IL-6 and IL-12. More importantly, Fe-bLf Dox was capable of inducing greater expression of anti-tumour and 
macrophage homing chemokines such as GM-CSF (1.7 fold), CCL11 (1.8 fold), IL-1ra (1.3 fold), IL-23 (1.5 fold), 
CCL12 (1.8 fold), CCL4 (1.5 fold) and CCL17 (1.7 fold), than Dox injections.

Discussion
Multi-drug resistance (MDR) is the major issue, apart from the unpleasant and detrimental side effects concerning  
the long term use of cancer chemotherapeutics. Hence there is a focus on novel therapeutics development that can 
provide effective therapy even in case of drug resistant cancer phenotypes. Dox is a drug, notorious for its ability 
to induce chemo-resistance in tumours along with cardiotoxicity and requires effective strategies to overcome it. 
Several drug conjugates have been developed by researchers to enhance their functionality, and our laboratory 
has also shown that siRNA-EpCAM aptamer conjugates32 and various chimeric aptamers can be the next novel 
class effective therapeutics33.

Cellular internalisation of bLf has been highly characterised and found to be facilitated by receptor mediated 
endocytosis17,28. As a complex of protein-drug conjugate, Dox can enter the cells through receptor mediated 
endocytosis facilitated by Apo-bLf and Fe-bLf undetected by the membrane transporter pumps/proteins. This can 
also facilitate a longer retention of drug within the cells34. bLf was therefore employed in novel drug conjugation 
strategy to improve Dox cytotoxicity against prostate cancer.

Bovine lactoferrin in its iron free (Apo-bLf) and iron saturated (Fe-bLf) forms, was conjugated to Dox using 
EDC-NHS mediated cleavable amide bond formation in an attempt to exploit the anti-drug resistance and recep-
tor mediated cellular internalisation properties of these bLf forms in delivering Dox. There was no degradation 
of the proteins during the conjugation process suggested by the absence of any smaller bands in the bLf-Dox in 
SDS-PAGE.

FTIR spectra of conjugates confirmed the presence of stably conjugated Dox by Dox specific out of plane OH 
stretching at 895 cm−1 30, which was otherwise absent in protein only samples. Since it is important for a drug to be 
amorphous in order to have greater solubility to reach the targets through the blood stream35, DSC thermograms 
indicate a shift from crystalline to amorphous form of Dox post conjugation, resulting in increased solubility of 
the conjugated drug observed through the peak broadening36. CD spectra suggested preservation of the second-
ary structure of both Apo-bLf and Fe-bLf post conjugation with Dox. The increase in percentage α -Helices in 
Apo-bLf-Dox is due to the stabilizing effect of Dox binding on the structure of Apo-bLf, which otherwise has a 
an open unfolded structure as against Native bLf. However, the changes in the secondary structural composition 
of Fe-bLf-Dox was not significant. Due to the similarity in structures of bLf and bLf-Dox, (irrespective of it being 
in iron free or in iron saturated form) CD studies indicate that secondary structure of bLf is mostly not affected 
by the process of conjugation with Dox. At 800 nM concentration, the ability of Dox to inhibit the decatenation 
activity of human DNA topoisomerase II on catenated kDNA, suggests that the Dox present in the conjugates 
is in its active form behaving in the same manner as that of free Dox16. Thus bLf-Dox synthesised was pure, 
non-degraded and active.

The analysis of intracellular retention of Dox within DU145 indicated that improved intracellular retention 
of Dox (significantly by several fold), when delivered as conjugates especially with Fe-bLf-Dox. Fe-bLf uptake is 
characterised by gradual constant, receptor mediate uptake resulting in an increased retention up to 24 h. In a 
complementary study, ability of DU145 cells to pump Dox out of cells was analysed with Dox alone treatments 
releasing maximum Dox back into cell media during the 24 h period, indicating the activity of membrane efflux 
pumps in removing cellular Dox which was suppressed in the case of bLf-Dox conjugates. On a bigger picture 
however, Fe-bLf-Dox showed greater retention in DU145 than its iron-free counterpart because Fe-bLf pref-
erentially used the Lf receptors whereas Apo-bLf could be internalised through other receptors (unpublished 
observations).

Following receptor mediated endocytosis, bLf enters the endo-lysosome21 which could cause the cleavage 
of the drug from the protein due to the action of the digestive enzymes and the acidic environment leading to 
hydrolysis of covalent bond37. This results in nuclear Dox accumulation which was confirmed by reduced fluores-
cence of nuclear counterstain DAPI due to the competitive binding by Dox, proving our hypothesis that bLf-Dox 
leads to the increased retention of the drug. Thus bLf-Dox conjugates can also be considered as pro-drugs for Dox 
however; in this case bLf is also a functional component unlike in other pro-drugs.

Due to their enhanced cellular uptake leading to reduced drug efflux, and further combined with cytotoxic 
nature of both bLf and Dox, the reduction in LC50 of Dox by more than 4 fold was very prominent, similar to the 
reduction in the LC50 value of Dox when co-treated with P-gp inhibitor such as carvedilol or verapamil38. This 
implied a role played by bLf as a P-gp suppressor. There is also another possibility that the conjugates by-pass the 
P-gp activity because protein sequesters Dox from acting as a substrate for P-gp. However, the fact that there was 
no Dox efflux even after 24 h, suggests that P-gp bypass could not be the only mechanism, because if there was 
no down-regulation of P-gp, then after 6 h, free Dox would still be available for P-gp to pump it out of the cells.

The above observations lead to the conclusion that both the down-regulation of P-gp as well as the bypass of 
P-gp takes place with bLf-Dox confirmed by the immunofluorescence images which indicate that P-gp expres-
sion increases upon exposure to Dox alone. This is because Dox is a prominent substrate of P-gp causing its 
transcription as soon as Dox gets detected in the tumour cell and its microenvironment39. This does not happen 
in the case of the conjugates which prove the point that bLf-Dox conjugates can by-pass the P-gp drug efflux 
mechanism. However, it can also be noted that the expression of P-gp in cells treated with Apo-bLf-Dox and 
Fe-bLf-Dox was further lower than the untreated cells, indicating that these bLf-Dox conjugates are also capable 
of down-regulating the P-gp expression. This results in the observed preferential retention of the bLf-Dox conju-
gates within the cell causing greater cancer cell death. The P-gp targeting activity of bLf was similar to that of the 
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Akt inhibitor Perifosine that can down-regulate P-gp expression indirectly and induce apoptosis by an indirect 
independent mechanism40.

The loss of PTEN function due to the Bcl-2 overexpression is the main cause for the elevation of drug resist-
ance in cancer41. The over-expression of PTEN in turn supresses Bcl-2 mediated anti-apoptotic activity in these 
cells where p53 is constitutively mutated42. Bcl-2 and MRP-1 are also a major proteins contributing to the Dox 
and cisplatin induced chemo-resistance and a replacement of Bcl-2 was able to restore the chemo-sensitivity 
to Dox in chondrosarcoma43. Fe-bLf-Dox was seen to be most effective in reducing the Bcl-2 expression levels 
accompanied by the increase in PTEN expression without any increase to MRP-1 levels, and a slight decrease in 
MRP-1 expression with Fe-bLF-Dox to 0.8 fold was observed. Considering the fact that the bLf-Dox conjugates 
increase the retention of Dox in the cells, it is natural that the cellular response would be to increase MRP-1 to 
several fold which hasn’t happened in this case. While, the released Dox from the conjugates continues to elevate 
the MRP-1 levels, the bLf component appears to regulate its expression. Fe-bLf on its own is capable of reducing 
MRP-1 expression in DU145 cells (unpublished observations from our lab). This implied that bLf-Dox conjugates 
can overcome drug resistance mechanism by down-regulating P-gp and MRP-1 via inhibiting the mTOR pathway 
described schematically in Fig. 7.

The induction of apoptosis was confirmed using TUNEL assay. DNA fragmentation is a characteristic of Dox 
induced cell apoptosis due to topoisomerase inhibition44 and was found to be induced at a much higher frequency 
in case of conjugates in contrast to Dox alone. Dox, apart from being a topoisomerase inhibitor, also induces 
caspase dependent apoptosis that can be reversed by the over-expression of anti-apoptotic molecules leading to 
cellular senescence45. We also noted that the ability of bLf to reduce survivin expression has been retained even 
in the form of Dox conjugates, suggesting that the functional aspect of the bLf as an anti-survivin bio-molecule 
is retained.

As a whole in this study, Fe-bLf-Dox was seen to be more potent than Apo-bLf-Dox. Iron also plays a major 
role in this enhanced toxicity displayed by Fe-bLf, because iron is a crucial effector of Dox induced cytotoxicity46. 
Further, during Dox chemotherapy there is a severe loss of serum iron, haemoglobin and RBC content which can 
be overcome by Fe-bLf-Dox. Tumour cells, due to their requirement of high iron content, display ability to uptake 
enormous quantity of iron complexes via transferrin receptors47. Hence DU145 cells internalise and retain the 
iron containing Fe-bLf-Dox for a longer period and to a greater extent thereby further increasing the potential of 
Fe-bLf-Dox within the tumour. This confirmed the study of role played by iron in enhancing the ability of bLf in 
functioning as an adjuvant for chemotherapy. Iron saturation in bLf enhanced its chemosensitisation properties 
in lymphomas and B16 melanomas thereby, Fe-bLf proving to be more effective than Apo-bLf27.

Figure 7. Schematic representation summarizing the inferences of this study about the role of Fe-bLf-
Dox conjugates in overcoming drug resistance. Dox alone (Left) causes increase in chemo-resistance by 
up-regulating P-gp and MRP-1 expression thereby getting effluxed out of the cancer cells quickly causing 
minimal damage. bLf-Dox conjugates are easily internalised by cancer cells without triggering P-gp increase 
and facilitates longer nuclear retention of Dox increasing its cytotoxicity. Meanwhile bLf also decreases 
survivin, P-gp and MRP-1 expression and increases PTEN expression to decrease chemo-resistance and trigger 
cancer cell apoptosis. Fe-bLf-Dox treatment in TRAMP mice also reversed the RBC and HGB loss due to Dox 
treatments and induced anti-tumour immunogenicity. The schematic illustration was generated by modifying 
images purchased in the PPT Drawing Toolkits-BIOLOGY Bundle from Motifolio, Inc.
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The results obtained using CD44+ /EpCAM+  double positive DU145 cancer stem cells concurred with the 
fact that bLf-Dox conjugates were more effective than Dox alone in reducing the aggressiveness of resistant 
cancer stem like cells by inhibiting their migration and tumour formation (Supplementary Information). In an 
attempt to generate a drug resistant phenotype of DU145 cells, the clinically relevant pulse exposure method was 
attempted for developing (advanced Dox resistant) ADR1000-DU145 cells48. The change in the morphology of 
the DU145 cells post-exposure to increasing concentration of Dox was an indication of cytotoxic stress related 
cellular adaptation. The presence of PGCCs (Polyploid Giant Cancer Cells) is a characteristic response of cellular 
survival post hypoxic or cytotoxic stress49. PGCCs then undergo budding and form many small daughter cells 
which then develop into mono nuclear resistant cells that were present in ADR1000-DU145 cells.

The 2D cell cytotoxicity assay using ADR1000-DU145 revealed a higher resistance shown by these cells against 
Dox treatment, with an increase in the LC50 value for Dox to be increased by at-least 2 fold to 11.31 μ M. Evidence 
shows that laboratory generated drug resistance cancer cell phenotypes showed about 5 to 10 fold increase in their 
LC50 value50 and a similar adriamycin resistant phenotype of DU145 cells showed 263 fold increase in LC50 value 
for Dox to 42 nM48. The resultant LC50 in current study was lowered when bLf-Dox conjugates were used, that 
indicated that ability of bLf to reduce P-gp and MRP-1 expression thereby sufficient to restore the sensitivity of 
ADR1000-DU145 cells towards Dox. Similar results were also obtained in the 3D spheroid assay, thus displaying 
success in solid tumours.

The in vitro experimental findings were further augmented by observations in TRAMP mice models which 
showed a complete inhibition of tumour development in Fe-bLf-Dox treated group, at the same total concen-
tration of Dox alone in IP injection. Dox in general is very toxic to normal cells especially in cell culture since it 
targets cell proliferation51. Since Fe-bLf-Dox conjugate induced significantly lower toxicities in normal RWPE-1 
cells, compared to either Dox alone or Apo-bLf-Dox and hence Fe-bLf-Dox was only considered for mice study. 
Generally, around 24 weeks of age Male TRAMP mice harbour large solid prostate tumours, which were com-
pletely absent in the Fe-bLf-Dox conjugates. More importantly, the reduced side effects of chemotherapy upon 
treatment with cytotoxic drugs observed with the use of Fe-bLf-Dox prompts to a target specific enhanced func-
tionality of the bLf-Dox conjugates.

Analysis of serum cytokine profiles revealed that Fe-bLf-Dox was capable of triggering an anti-cancer immune 
response as against that of Dox alone injections owing to the immuno-modulatory activity of Fe-bLf17. The lack 
of complement activation seen from the low complement 5a value indicates a lack of non-specific inflammatory 
response being induced apart from indicating that purified Fe-bLf-Dox was free of endotoxin contamination. 
Pro-inflammatory cytokines such as IL-5, IL-6 and IL-17 are capable of promoting tumour growth which were 
reduced significantly by Fe-bLf-Dox. The serum levels of tumour inhibiting cytokines such as IFN-γ  and TNF-α 52  
were elevated significantly by both Dox as well as Fe-bLf-Dox compared to control group. However, between 
the Dox and Fe-bLf-Dox treatments no significant difference in TNF-α  levels was observed while IFN-γ  levels 
elevated significantly (p <  0.05) with Fe-bLf-Dox. bLf being an innate immunity component is widely studied as 
an immumodulatory protein17. However, there are no conclusive reports on the TNF-α  response upon bLf expo-
sure. Also, the research data about effect of Fe-bLf on cytokine and chemokine levels in anti-tumour immunity 
is scarce. We have shown earlier that Fe-bLf can induce TNF-α  production as an anti-tumour response but it 
was not much different from that associated with Dox induced increase27. Hence TNF-α  expression seen in this 
study is likely a sum total of Dox as well as Fe-bLf triggered levels. Yet, similar to that of TNF-α , deeper analysis 
is required to understand why the reason for such subtle changes. The cytokine analysis data in this study shows 
that there was not any adverse inflammatory response in mice upon the introduction of Fe-bLf to Dox while a 
favourable response towards the generation of anti-tumour cytokine profile was seen. Future detailed investiga-
tions are warranted to analyse the immune-regulatory property of Fe-bLf-dox conjugates so that contribution of 
each component to the generation of cytokine response can provide a clear picture of why there is no change in 
the TNF-α  levels between Dox and Fe-bLf-Dox treatment.

Chemokines that work in the favour of recruiting tumour homing cytotoxic T-lymphocytes and macrophages 
such as GM-CSF, CCL17 and CCL4 were increased specifically in Fe-bLf-Dox treatment. On the other hand, 
significantly increased expression levels of CCL11 and CCL12 which are sometimes associated with cancer inva-
siveness53 were also seen during Fe-bLf-Dox treatment, which could be a survival response from the stressed 
tumours. Since CCL11 is known for its neurodegenerative and allergic inflammation activities, paraffin embed-
ded mice brain sections were stained with anti-mouse Mouse CCL11/Eotaxin antibody. Interestingly, in contrast 
to high serum levels, Fe-bLf-Dox conjugate treated mice brain tissue revealed no CCL11 expression, no signs of 
neurotoxicity while low to moderate CCL11 expression in Dox treated mice brain tissue was seen (with evident 
neuronal loss), in comparison to a very low CCL11 expression in control mice brain (Supplementary Figure 3 ). 
As discussed in the Supplementary information, the retained neuroprotective ability of Fe-bLf, while fed orally as 
a dug conjugate to circumvent Dox induced neurotoxicity, is an interesting finding that warrants more research. 
Hence, further follow up investigations of Fe-bLf and Fe-bLf-Dox may prove the conjugate as very effective  
multi-functional pro-drug for the treatment of prostate cancer.

Conclusion and Future Perspectives. A successful synthesis of a bLf-Dox conjugate resulted in a pure and 
functional bio-conjugate of bLf and the drug doxorubicin (Dox). Both Apo-bLf-Dox and Fe-bLf-Dox induced 
increased cytotoxicity in DU145 prostate cancer cells when compared to Dox alone. However, on a molecular 
basis the Fe-bLf-Dox induced significant apoptosis and increased chemo-sensitivity than Apo-bLf-Dox in DU145 
cells, apart from being effective against the drug resistant ADR1000-DU145 cells. Taking into consideration the 
lower toxicity of Fe-bLf-Dox in non-cancerous RWPE-1 cell line than Dox and Apo-bLf-Dox, we conclude that 
Fe-bLf-Dox can be a vital cog as an improved future chemotherapeutic against prostate cancer. Targeted oral 
nano-formulations can in future be used to deliver the promising drug payloads towards prostate cancer. Further 
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considering the improvement in RBC levels and the cytokine response in mice, induced by the Fe-bLf Dox treat-
ments, the next ideal step would be to take it to the clinical trials for patients undergoing chemotherapy.

Methods
Preparation of bLf-Dox conjugates. Doxorubicin (Dox) and bovine lactoferrin (bLf) conjugates were 
prepared to improve the retention of Dox within cancer cells and to improve its therapeutic efficiency. 5 mL of 
80 mg/mL bLf solution Apo-bLf and Fe-bLf) was taken. Apo-bLf and Fe-bLf were prepared from commercially 
available health grade native bLf (Australia’s Own Pty. Ltd) according to the protocol27. To these protein solutions, 
around 0.4 mg of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) (Sigma-Aldrich, Australia)/mg of 
protein was added and 0.6 mg of N-Hydroxysuccinimide (NHS) (Sigma-Aldrich, Australia) per mg of protein was 
supplemented. The mixture was allowed to stir at room temperature for 1 h and pH was maintained at 8.0. After 
1 h, reaction was arrested using 10 μ L of 2 mercaptoethanol (Sigma-Aldrich, Australia). To the mixture, 4 mg of 
pure Dox (Sigma-Aldrich, Australia) dissolved in 400 μ L of DMSO was added and mixture was further incubated 
with constant stirring at 17 °C. Excess reagents were removed using dialysis against water at 4 °C for 48 h using a 
10 kDa molecular weight cut-off dialysis membrane (Spectrum Labs, Australia). The conjugates were then freeze 
dried and subjected to further characterisation.

DNA decatenation assay to study Dox activity. In order to determine if the doxorubicin is still active, 
bLf-Dox conjugates were tested for their topoisomerase inhibition activity in vitro using human topoisomerase 
assay kit (Topogen, USA)54. Briefly, Human Topoisomerase II Enzyme was incubated with 0.2 μ g of kinetoplast 
DNA (kDNA) for 30 min at 37 °C using assay buffer supplied with the kit. In case of treatments, the mixture of 
kDNA and topoisomerase was also incubated with varying concentrations of Dox in the form of drug alone or in 
the form of the conjugates. The enzyme concentration was maintained at 0.2 units per μ L. Reactions were termi-
nated using stop buffer and loaded directly onto a 1% agarose gel containing 1X SYBR safe dye. After electropho-
resis, the gel was photographed using Chemi-doc XRS+  gel documentation system.

Fourier Transform Infra-Red spectroscopy (FTIR). Apo-bLf, Fe-bLf, Apo-bLf-Dox and Fe-bLf-Dox and 
Dox samples were mixed individually with 200 mg of KBr powder (Sigma-Aldrich, Australia) and pelleted into 
a KBr disc using a hydraulic press55,56. FTIR spectroscopy (Bio-Rad with OPUS 5.5 software) analysis was per-
formed between 4000 and 450 cm−1 at a resolution of 4 cm−1 averaging 10 scans.

Differential Scanning Calorimetry. 5 mg of each sample was measured accurately by sensitive balance 
and sealed into an aluminium pan. DSC (TA instrument DSC Q200) scans were programmed in the temperature 
range of − 50− 175 °C and at heating rate of 10 °C min−1. Plain sealed aluminium pan was kept as the reference for 
measuring the heat flow. A graph of heat flow vs temperature was plotted for analysis.

Maintenance and subculturing of cells. DU145 cells were obtained from ATCC (HTB–81) supplied by 
Cryosite, Australia. RWPE-1 cells were provided as a kind gift by Prof. Gail P. Risbridger’s laboratory of Monash 
University, Australia. DU145 cells were grown in minimum essential media with Earle’s salts (EMEM) containing 
10% foetal bovine serum (FBS) and 1% antibiotic (Penicillin-Streptomycin). RWPE-1 cells were grown in kerati-
nocyte serum free medium (KSFM) containing the supplements 0.05 mg/mL bovine pituitary extract (BPE) and 
5 ng/mL epidermal growth factor (EGF). The cells were grown at standard conditions of 37 °C and 5% CO2 in 
a humidified cell culture incubator (Thermoline, Australia). All the reagents for cell culture were tissue culture 
grade and purchased from, Invitrogen, Life Technologies, Australia.

Development of advanced drug resistance DU145 cells - ADR1000-DU145 cells. In order to 
mimic the formation of drug resistant prostate cancer cells, DU145 cells were forced to grow under constant 
cytotoxic stress to increase their resistance against cytotoxic drugs. The pulse exposure method is the clinically 
most relevant method for inducing drug resistance57. In this method, DU145 cells were incubated with increasing 
concentration of Dox (80 nM, 160 nM, 320 nM, 640 nM, 1000 nM) on alternate passages with time given for the 
cells to recover from cytotoxic shock for a day. The cell lineage at the end of the 1000 nM treatment were consid-
ered to be advanced drug resistant to Dox (ADR1000-DU145). These cells were then continuously cultured by the 
pulse exposure method at 1000 nM of Dox.

Internalisation of bLf and bLf-Dox in DU145 cells. Cellular uptake of Apo-bLf, Fe-bLf and 
Apo-bLf-Dox and Fe-bLf-Dox was studied by immunofluorescence and visualized by confocal microscopy56. 
DU145 cells were seeded in 8- -well slides at a density of 1 ×  105 cells/well and were allowed to grow for 1 day. 
They were then treated with 10 nM of the different bLf forms for different time intervals in complete growth 
media. Following treatment, medium was removed, and cells were washed thoroughly using PBS (pH 7.4) to 
remove unbound and non-internalized bLf from the cell layer, followed by fixation with 4% paraformaldehyde. 
The cells were permeabilised with 0.1% TritonX-100 for 5 min on ice. Cells were then incubated with primary 
antibody, goat anti-bovine lactoferrin at a dilution of 1:200 in PBS at 37 °C for 1 h. The primary antibody was then 
removed and after washing, cells were incubated with anti-goat IgG-FITC (1:100) conjugate and counterstained 
for nucleus with DAPI in fluorshield. Untreated cells and cells without primary antibody were used as control. 
The slides were imaged using TCS SP5 Leica broadband confocal microscope and processed using LAS-AF soft-
ware. Dox was visualised using its autofluorescence with excitation at 488 nm and emission between 570–630 nm. 
Other immunofluorescence based assays were also performed using the same procedure with respective primary 
and secondary antibodies.
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Analysis of cellular Dox content and Dox exclusion. DU145 cells were plated out in a 96 well plate at 
a density of 1 ×  104 cells per well and allowed to grow overnight. On the following day, the cells were treated with 
1 μ M concentration of Dox both in the form of drug alone as well as in the form of conjugates for different time 
points of 30 min, 1 h, 3 h, 6 h, 12 h and 24 h. Following the treatments, media containing treatments were removed 
and replaced with fresh media for 2 h. Finally, all media were aspirated out of the wells and the cells were permea-
bilised using 0.1% triton-X-100 for 30 min at 37 °C. After the permeabilisation, amount of Dox present inside cells 
was measured using fluorescence with excitation at 480 nm and emission at 630 nm. The amount of Dox present 
in the supernatant was also measured as excluded Dox by the cells.

Tumour spheroid/Prostasphere culture. The DU145/ADR1000-DU145 cells were trypsinized using the 
routine protocol and 500 cells/well were plated in 1% agarose-coated 96 well plates for adherence free growth58. 
The coated agarose plates were sterilised under UV for 1 h before plating out cells which were then allowed 
to form prostaspheres for 7 days under constant monitoring with light microscope every day. The media was 
changed every 3rd day to allow healthy spheroid formation from the cells. After 7 days, the tumour spheroids were 
treated with varying concentrations of desired treatments. After incubation with treatments, the tumour sphe-
roids were imaged by light microscopy and the diameter of the spheroids was calculated as a measure of tumour 
growth using ImageJ (National Institute of Health, USA). The values were then plotted as a histogram.

In vivo experimentation on TRAMP mice. All animal experiments were performed within the guide-
lines of Australian Code for the Care and Use of Animals for Scientific Purposes (8th Ed) and by following 
the 3R guidelines. The experiments were approved by Animal Ethics Committee, Geelong (AECG) of Deakin 
University, Australia under the ethics approval number AEC G28/2014. Wild type C57BL/6j mice were obtained 
from Animal Research Centre (ARC, Perth) and TRAMP mice were obtained from Dr. Michael Cater of Deakin 
University. For breeding purposes, one pair of animals (Male WT-C57BL/6j and Female homozygous TRAMP) 
was housed in a cage for 6 weeks for breeding. The heterozygous C57BL/6j x TRAMP mice offspring of 18 weeks’ 
age (n =  9) were used for the study. After 18 weeks, control group mice were fed normal diet, whereas mice in Dox 
alone group were injected with a single I.P injection of 15 mg/kg Doxorubicin. The Fe-bLf-Dox was prepared as 
an oral formulation in AIN93G basic diet and fed to the animals at a dose of 15 mg/kg. The survival and health 
of animals were monitored daily until the age of 24 weeks beyond which they were all humanely killed and ana-
lysed. The urino-genital tract (UGT) was extracted from each animal and was weighed as a measure of tumour 
development normalised against the bodyweight of mice59. Histology sections obtained for all vital organs were 
analysed. Blood was taken by terminal cardiac puncture, serum was isolated and final blood & serum analysis 
was carried out.

Statistical Analysis. All data obtained are expressed as mean ±  S.D. One-way ANOVA/Two-way ANOVA 
was used depending on the number of variable parameters, followed by post-Hoc Tukey’s test. Values of *p ≤  0.05, 
**0.05 <  P <  0.01 and ***0.01 <  P <  0.001 were considered significant. Statistical analyses were carried out using 
GraphPad Prism 6.0 software. The analysis of cytotoxicity (LC50) was performed using a four-parameter sigmoi-
dal non-linear regression based calculation of LD50/LC50 using Graphpad prism software.
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