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A B S T R A C T   

Coronavirus disease (COVID-19) is a severe infectious disease that causes respiratory illness and has had 
devastating medical and economic consequences globally. Therefore, early, and precise diagnosis is critical to 
control disease progression and management. Compared to the very popular RT-PCR (reverse-transcription 
polymerase chain reaction) method, chest CT imaging is a more consistent, sensible, and fast approach for 
identifying and managing infected COVID-19 patients, specifically in the epidemic area. CT images use 
computational methods to combine 2D X-ray images and transform them into 3D images. One major drawback of 
CT scans in diagnosing COVID-19 is creating false-negative effects, especially early infection. This article aims to 
combine novel CT imaging tools and Virtual Reality (VR) technology and generate an automatize system for 
accurately screening COVID-19 disease and navigating 3D visualizations of medical scenes. The key benefits of 
this system are a) it offers stereoscopic depth perception, b) give better insights and comprehension into the 
overall imaging data, c) it allows doctors to visualize the 3D models, manipulate them, study the inside 3D data, 
and do several kinds of measurements, and finally d) it has the capacity of real-time interactivity and accurately 
visualizes dynamic 3D volumetric data. The tool provides novel visualizations for medical practitioners to 
identify and analyze the change in the shape of COVID-19 infectious. The second objective of this work is to 
generate, the first time, the CT African patient COVID-19 scan datasets containing 224 patients positive for an 
infection and 70 regular patients CT-scan images. Computer simulations demonstrate that the proposed method’s 
effectiveness comparing with state-of-the-art baselines methods. The results have also been evaluated with 
medical professionals. The developed system could be used for medical education professional training and a 
telehealth VR platform.   

1. Introduction 

The number of people killed by the coronavirus pandemic continues 
to grow, where over (112,461) confirmed cases were reported in Algeria 
by the end of February 2021. When we refer to the testing categories, the 
polymerize chain reaction (PCR) tests are the most accurate form 
available today [1]. However, it takes around 48 h before the results are 
known. On the other hand, CT scan images are preferred by an experi-
enced doctor to detect the infected lesions in the lungs. CT scan benefits 
comprise less cost, provide valuable data, and wide availability [2]. 

Image segmentation has proven a fundamental part of many 

processing pipelines in the biomedical imaging field [3–6]. However, 
when using clinical, low-resolution lung data [7], image segmentation 
can be challenging. E.g., in acute respiratory syndrome (COVID-19). 
Many of the existing algorithms were developed to deal with different 
stages for facing the COVID-19 outbreak, as well as segmentation 
techniques [8]. These methods can be categorized into two main types: 
Classical approaches [9,10] and AI-based techniques [11]. Ulhaq et al in 
[12], show a broad survey of computer vision methods for screening the 
COVID-19 lesions. Most recently, methods based on Deep learning have 
been developed [13]; yet, just a few of them are sufficiently mature to 
present efficient detection and accurate segmentation of the lesion [14]. 
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Furthermore, these methods require a higher: duration of development, 
a huge amount of data, and they are computationally expensive [15]. 
Moreover, there is a distinct lack of labeled medical images of COVID-19 
lesions [16]. Some examples of image segmentation and classification 
methods in COVID-19 applications are summarized in Table 1 along 
with results obtained of each approach. The abbreviations used in this 
table are as follow: AUC = Area Under the Curve, SEN = Sensetivity, 
ACC = Accuracy, Dice = Sørensen–Dice Coefficient, SPE = Specificity, 
ROC = Receiver Operating Characteristic, PC = Precision-Recall, CT-IM- 
D = CT-Scan images Data. 

In terms of VR visualization, great progress performances were 
achieved [33]. Particularly, the entertainment industry (gaming) where 
great progress was achieved in the last decade, and these developments 
are expected to radically transform healthcare services [34]. Further-
more, VR technology could improve the ergonomic environments of 
clinicians in such a way as to improve training process, treatment plan, 
and support clinical decision [35,36]. 

VR could be considered as an effective solution for 3D visualization 
of medical images since it could provide efficient disease analysis and 
diagnosis regarding the classic approaches. Virtual Reality (VR) gives an 
opportunity to immerse users in a fully artificial digital medical envi-
ronment that involves the human anatomy described in 3D models. 
Today VR systems overcome classical medical imagery problems with 
novel 3D imagery visualization techniques [37]. 

In the ongoing pandemic COVID-19, it has been shown that VR- 
developed techniques help healthcare-related applications [38,39]. 
Another advantage of VR is the possibility to offer valuable learnings for 
medical students and learners for COVID-19 management situations in 
hospitals and clinics. 

Thus, the primary goal will be to develop an advanced VR visuali-
zation platform for automated COVID-19 lesion segmentation and 
infection measurements, analysis, and diagnosis. In summary, our 

contributions are:  

• An advanced Virtual Reality-based 3D Visualization system for 
COVID-19 lesion recognition, measurements, and analysis.  

• Novel optimized unsupervised segmentation procedure through a 
new cost function maximization.  

• Comparison’s study and validation result by the medical staff of the 
infected patient by different COVID-19 methods.  

• New African COVID-19 patient VR visualization database. 

The remainder of the paper is organized as follows. Section 1 reviews 
the related works related to COVID-19 segmentation. Section 2 outlines 
the proposed scheme along with a comparison both on objective and 
subjective perspectives. Meanwhile medical validation is presented in 
Section 3 and in terms of the VR visualization in Section 4. We conclude 
by highlighting the outcome achieved (in the last Section 6). 

2. Proposed lung segmentation on CT-images 

In this section, the proposed COVID-19 lesion segmentation and VR 
visualization used are presented in detail. CT-scan images considered 
one of the best sensing approaches since it allows the physicians and 
radiologists to identify internal structures and see their shape, size, 
density and texture [40,41] in a better settings. Our contribution in the 
context of COVID-19 includes segmentation and VR visualization of 
COVID-19 lesions so the radiologists will have a clear idea to provide 
preliminary analysis and interpretation. Fundamentally, digital image 
processing is an exciting field of research [4,42], especially in biomed-
ical and medical research [43–45]. On the other hand, the segmentation 
process is the approach to detecting and screening images of diseases 
such as COVID-19 lesions. The image segmentation then is the focal 
point of the present work, including VR visualization. 

Deciding on COVID-19 infected area in the lung is one of the essential 
for the correct diagnosis. One issue is to identify which regions are 
infected and which are healthy precisely. Therefore, radiologists are 
required to view the 3D extent of the lesion to determine the infected 
area. Fig. 1 presents the process of 3D visualization of COVID-19 from 
CT-scan images. 

Firstly, complete DICOM dataset imagery is collected by a CT- 
scanner. Secondly, the proposed segmentation approach is applied to 
segment the lesions of giving CT-scan imagery efficiently. A 3D model is 
generated where the lungs, bronchi, and COVID lesions are separated; 
this model will be integrated into the VR platform through Unity 3D 
software. Finally, six radiologists independently evaluate the quality of 
the platform using a Likert scale (seven-point scale). 

Since CT-images illustrate a low-contrast image and contain some 
noises. The use of the original CT-images without pre-processing affects 
the accuracy of image segmentation. Therefore, the original image needs 
to be: i) denoised with informative preservation; and ii) normalized the 
local contrast. To deal with this issue, the below equation explains the 
phenomenon of enhancement adopted. 

Let Xi,j be an original image, consisting of L-th luminance levels, i and j 
represent the pixel location of an image. Xi,j = {x0, x1,⋯, xx− 1|∀x⊂I} and 
Ri,j be the lung regions, containing two luminance levels, Ri,j = {x0, x1|∀
x ⊂ I} 

Yi,j =

(
Xi,j

δmaxXi,j,δ ⊗ Fu,v,δ

)
α.logβ

(
Xi,j

δmaxXi,j,δ ⊗ Fu,v,δ

)

(1)  

For
{

Xi,j ∈
{

Ri,j = x1
}}

where Fu,v,δ represents a directional filter. α represents the gamma 
correction of the linear luminance normalization. u, v and δ represent 
the location of a 3-D filter. u is position in a row, v is position in a col-
umn, and δ is position in a level. ⊗ denotes a 2D convolution operator. β 
represents the gamma correction of the non-linear luminance 

Table 1 
Related works on COVID-19 segmentation approache.  

Literature Segmentation 
approach 

CT-IM Patients Performance 

Zhou et al.  
[17] 

U-Net and Focal 
Tversky 

473 – Dice = 83.1%, SEN =
86.7%, SPE = 99.3% 

Cao et al.  
[18] 

U-Net architecture – 2 – 

Gozes et al.  
[19] 

Deep Learning CT 
Image 

– 157 AUC = 0.99, SPE =
92.2% 

Qiu et al.  
[20] 

MiniSeg 100 – SPE = 97.4%, Dice =
77.2% 

Jin et al.  
[21] 

UNet+, CNN – 723 AUC = 0.99, SEN =
0.97, SPE = 0.92 

Fei Shan 
et al. [22] 

VB-Net 249 249 Dice = 91.6% 

Xie et al.  
[23] 

Contextual two 
stage U-Net 

204 – IOU = 0.91, HD95 =
6.44 

Shen et al.  
[24] 

Region growing – 44 R = 0.7679, P < 0.05 

Yan et al.  
[25] 

COVID-SegNet 861 – Dice = 72.60%, SEN 
= 75.10%. 

Jun et al.  
[26] 

UNet++ 46,096 106 SPE = 93.5%, ACC =
95.2% 

Zheng et al.  
[27] 

Pretrained UNet – 540 ROC-AUC = 0.959 

Xiaowei et al. 
[28] 

VNET 618 106 ACC = 86.7% 

Fan et al.  
[29] 

Semi-Inf-Net 100 – Dice = 73.9%, SEN =
72.5% 

Cheng et al.  
[30] 

2D-CNN 970 496 ACC = 94.9%, AUC =
97.9% 

Chen et al.  
[31] 

U-Net Res 110 – Dice = 94.0%, ACC =
89.0% 

Ophir et al.  
[19] 

U-net architecture – 56 AUC = 0.99, SEN =
98.2%, SPE = 92.2% 

Lin Li [32] U-Net 4356 3,322 SEN = 90%, SPE =
96%  
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normalization. α can improve the details under the bright regions while 
β is very sensitive and impacts to dark regions. log(.) represents a 
common logarithm to base 10, log10(.) = log(.). To avoid all ambiguity, it 
is best to explicitly specify log (⋅) when the logarithm to base 10 is 
intended. 

2.1. Threshold based local mean condition 

The accuracy of the proposed segmentation algorithm depends on a 
segmentation condition. In this sub-section, we defined the mean for 
local-region segmentation. It can be used to exit the iterative segmen-
tation process or control the accuracy of the segmentation, simulta-
neously. The mean of regions will be repeatedly changed when the size 
of regions also gradually changed. To generalize the threshold-based 
local mean method, we combined two threshold-based local mean 
functions as a single function. It can be applied for wide-range seg-
mentation-based applications. It can be described as:  

µ = ωKµK + ωCµC                                                                           (2) 

where µK and µC represent the Kapur’s entropy [46] mean value and a 
cross-mean [47] value, respectively. The function balance two thresh-
olds by using weights, ωK and ωC. 

Kapur et al. [46,47] introduced the single signal-based entropy of 
segmented classes to generate optimal threshold values. This thresh-
olding technique is extensively improved and illustrates remarkable 
performance in many image 

segmentation problems. First of all, the signal must be separated into 
two components: a dark component, Yi,j ≤ xt, and a bright component, 
Yi,j > xt. The local Kapur’s entropy can be calculated as: 

KL(x) =
pL(x)

∑x
i=1pL(i)

log
(

pL(x)
1 +

∑x
i=1pL(i)

)

(3)  

KU(x) =
pU(x)

∑xL− 1
i=x+1pU(i)

log
(

pU(x)
1 +

∑xL− 1
i=x+1pU(i)

)

(4)  

where pL (x) and pU (x) represent a probability density function of a dark 

component and a bright component, respectively. KL(x) and KU(x)
denote a local Kapur’s entropy number of a dark component and a bright 
component, respectively. 

Another local mean is a cross-mean thresholding technique. It was 
first introduced by Trongtirakul et al. [47] in 2020 for segmenting 
backlit regions and non-backlit regions. The concept of this technique 
contains the fundamental of enhancement measure by entropy (EME) 
method. It optimally separates the entire component into several local 
components by taking the maximum relationship between the local 
mean of each component. Also, this technique can be applied for a 
grayscale-based imaging application like CT-scanned, thermal, night- 
vision applications including multi-spectral, hyper-spectral, and ter-
ahertz imaging applications. The cross-mean thresholding can be 
calculated as: 

μc =
∑k

n=1
argmaxkc(x) (5)  

KC(X) = − μL(X)log
(

μL(X)
μU(X)

)

(6) 

Due to the local mean values on a dark component, Yi,j xt, and the 
local mean value on a bright component, Yi,j > xt, contain different 
initialized position. In general, the mean of the bright component is 
higher than another component. Therefore, it needs to be normalized 
their whole luminance range. written as: 

μL(X) =
μL(X) − min{μL(X) }

max{μL(X) − min{μL(X) } }
(7)  

μU(X) =
μU(X) − min{μU(X) }

max{μU(X) − min{μU(X) } }
(8)  

where μL(X) and μU(X) represent a region-based local mean of a dark 
component and a bright component, respectively. 

To calculate a region-based local mean, let Yi,j denote the pre- 
segmented image. X0 and X1 represent a binary value of Yi,j. S denotes 
the size of a local region, Ri,j, and xL− 1 represents the maximum lumi-
nance level of an image. The illustrative example and the calculation of 

Fig. 1. The general architecture of our advanced VR COVID-19 visualization process.  
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region-based local mean can be illustrated in Fig. 2 and written as: 

μL(X) =
1

S⋅xL− 1

∑M

i=1

∑N

j=1

{
Yi,j

}
=

{
Yi,j ∈

{
Ri,j=X1

}
,Yi,jxt

}
;

μU(X) =
1

S⋅xL− 1

∑M

i=1

∑N

j=1

{
Yi,j

}
=

{
Yi,j ∈

{
Ri,j=X1

}
,Yi,jxt

}
;

where ωK and ωC represents the weight of cross-entropy [46] threshold- 
based local mean number and cross-mean [47] threshold-based local 
mean number, respectively. argmaxn(•) represents the n − largest search 
operator to return the elements of entropy functions in which the 
function numbers are maximized. Yi,j represents the pre-segmented 
image. xt represents a threshold luminance level, starting from t = 2, 
3, …, L − 2. M and N represent the size of an image, and xL− 1 represents 
the total number of original luminance levels. 

After that, we designed the fast segmentation on luminance levels. 
Most local segmentation need to be defined the criteria to exit an iter-
ative segmentation process. We used the local mean number as afore-
mentioned in the previous sub-section. Another problem for CT-image 
segmentation is to avoid small, segmented regions. We set this param-
eter to control the accuracy of the segmentation process. Occasionally, 
missing significant parts of the desired region to segment, sometimes 
due to i) the wrong setting in a CT-scanning machine; or ii) the inap-
propriate processes of the pre-segmentation, for example, unsuitable 
filters applied for a denoising process, over-brightness or under- 
exposure for an image enhancement process. The proposed segmenta-
tion process contributes the segmentation performance controlled by 
two conditions: i) threshold-based local mean; and ii) the minimum 
pixel number in each luminance level. The proposed segmentation 
function can be described as:  

Bi,j = { x0, Mi,j ≥ µ, card(Mi,j) > cx1, otherwise                                 (11) 

where Mi,j represents a morphologically open image. The morphologi-
cally open image function, imopen, is also available in MATLAB. µ 
represents a threshold-based local mean. Card (•) represents a cardi-
nality operator. c represents the minimum pixel number in each lumi-
nance level. x0 and x1 represent a non-segmented region and a 
segmented region, e.g., x0 = 0 and x1 = 1 illustrate that segmented re-
gions become white and other regions are presented by black. For 
satisfied segmentation results, we set some parameter in the proposed 
segmentation algorithm as: α = 2.0, β = 2.0, ωK = 1.0, c = 10. 

2.2. Hyper-parameter tuning 

The Otsu method is one of the most well-known methods for auto-
matic image thresholding (segmentation and binarization). It is mini-
mizing the inter-class variance between two foreground and background 
image components information to choose the threshold value. However, 
the Otsu has a limitation; for instance, if the class variance is larger, it 
can miss the weak objects in the image see Fig. 3(b). Also, it performs 
purely if the input image has low contrast, 

salt-and-pepper noise corrupted, or uneven illumination. To solve 
the problem mentioned above, entropy-based segmentation methods are 

used. Those existing state-of-the-art entropy-based methods also have 
some limitations, see Fig. 3. They generate a natural response with a 
slight difference among various luminance levels. Therefore, these 
methods, including Kapur’s and Tsaills’ approaches, fail to segment in 
some cases, as shown in Fig. 3(c-d). The proposed KL2-Entropy method 
enhances the natural response function on the dark image component (x 
≤ 0.5), as shown in Fig. 3. The proposed process generates a notable 
response when the input image is low-contrast like a CT-scanned image. 
The (λ) parameter is set up into the equation to control the output 
segmented regions, as shown in Fig. 3(d). 

3. Results 

This section compares the proposed segmentation method with the 
COVID-19 lesion segmentation method on new CT-images from a local 
hospital containing 224 patients in Algeria who tested positive for the 
coronavirus. These data are provided with a manual labeled ground 
truth manually labeled by a medical expert. Then, we show the VR 
visualization and the effect of the COVID-lesion 

on the patient lungs. We pick active contour [49], GraphCut [50], 
ResNet [51], robust threshold [52,53], Tunable Weka [54] methods to 
quantitatively compare the results against the proposed in terms of 
segmentation quality. 

3.1. COVID-SVR dataset 

Ct-scan data acts as a vital stage in the VR segmentation and diag-
nosis platform. Presently, there are many COVID-19 public datasets 
available but few data from African countries are available. We collect a 
new COVID-19 segmentation and Virtual Reality (COVID-SVR) dataset 
to fill in this gap. In this subsection, we introduce the data collection, the 
professional medical labeling, along with significant statistics of our 
database as shown in Fig. 4. 

To generate high-quality labeling, we first invited two radiologists to 
mark as many lesions as possible from infected CT-images based on their 
clinical experience. As can be seen in the second row of Fig. 4 the 
COVID-SVR data covers different levels of cases. 

3.2. Visual evaluation 

Fig. 6 summarizes the usefulness of the proposed COVID-19 
approach. Regardless of the size or quality of the input CT scan image, 
by enhancing the lungs tissue following by applying our segmentation, it 
is proven visually (see Fig. 6(c) (third row)) that the proposed provides 
accurate extraction of the COVID lesion comparing to state-of-the-art 
segmentation methods (Fig. 6(d–h) (forth-to-eighth). 

3.3. Statistical evaluation metrics 

The metrics used to measure the segmentation performance include 
the Dice coefficient (SDC), Intersection-Over-Union (Jaccard Index), and 
Hausdorff metric. The reason for choosing the Hausdorff metrics is: (i) it 
measures the distance between sets of points, (ii) it commonly used 
metrics over geometric objects, (iii) it operates as a measure of dissim-

Fig. 2. Illustrative example of the region-based local mean calculation.  
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ilarity between binary images, for which it is well suited both for 
theoretical and for intuitive reasons, (iv) it gives a good idea of the 
difference in the optical impressions a human would get from two im-
ages, and (v) it uses extensively in computer vision, pattern recognition, 
medicine, and computational chemistry [56]. Mathematically, the 
Hausdorff (HD) [57] metric is defined as the similarity between two sets 
A and B. 

HD(A,B) = max(h(A,B), h(B,A) (12) 

The justification for choosing the Jaccard index (J) is: it measures the 
similarity between sets of patterns by converting each pattern into a 
single element within the set; it is conceptually and computationally 
simple, it produces easily interpretable results, and it is an appropriate 
measure in a wide variety of domain [57]. Mathematically, the Jaccard 
Index (the similarity between two sets A and B) is defined as the inter-
section (∩) size divided by the size of the union (∪) of the two sets A and 
B: where we say J(A, B) = 1 if |A ∪ B| = 0 

J(A,B) =
|A ∪ B|

|A| + |B| − |A ∩ B|
(13) 

Dice Index is a similarity measure related to the Jaccard index [59]. 
It defined as: 

SDC(A,B) =
2|A ∩ B|
|A| + |B|

(14) 

Dice Coefficient. The dice similarity coefficient is a measure of pos-
itive overlap 

between two binary images. It defines as:  

DC = 2⋅TP 2⋅TP + FP + FN                                                          (15) 

Where TP is the number of actual positive pixels in the images, FP is 
the number of false-positive pixels, and FN is the number of false neg-
atives. It is a similarity measure ranging from zero to one–one meaning 
the two images are identical. The primary benefit of the is that it does 
not depend on actual negative values. Mean IoU measure: it calculates 
the ratio of overlapping area between two images with the intersected 
area subtracted from their union as shown in: 

4. meanIoU  

A,B = |A ∩ B| |A| + |B| − |A ∩ B|                                                     (16) 

A perfect segmentation yields an SDC and J score of 1. On the flip 

side, the Hausdorff metric measures the degree of mismatch between 
two sets by measuring the distance of the point of A that is farthest from 
any point of B and vice versa. Small values of H indicate better seg-
mentation, (h) is the distance between point A and the closest point in 
set B. The resultant segmentation for a set of samples COVID images is 
shown in Table 2. From the mean values listed in the aforementioned 
table, it has been seen that the means of SDC and Jaccard metrics are 
significantly higher using the proposed, except in terms of SDC where 
tunable Weka competes (see Table 3). 

Visual assessments for the lung segmentation are given in Fig. 5 and 
Fig. 6 respectively on the COVID-SVR and MosMedData. These examples 
illustrate those segmented regions using state-of-the-art methods make 
different mistakes. Furthermore, some areas are wrongly predicted to be 
a lesion or healthy tissue by most of the approaches or even all of them. 
Concerning clinical practice, the near to ground truth segmentation of 
lesion is the most important that showcases the severity of the disease. 
Thus, from the qualitative results provided by the proposed (see Figs. 5 
and 6) we notice that the propose (Figs. 5 and 6c) provide a near seg-
mentation to ground truth. 

Virtual Reality was considered with CT-scan imaging to provide a 
comprehensive display of lungs with COVID-19 detailed lesions. The 
results obtained from the segmentation of CT-scan images are used as 
processed data to generate a 3D COVID-19 lesions visualization system. 
Although our segmentation method provides a reasonable segmenta-
tion, the method proposed is less time-consuming and doesn’t require a 
high-performance graphical card. This makes 

it possible to perform segmentation and 3D visualization faster. Our 
approach could be suitable for practical situations. Radiologists, in 
hospitals and clinics, should have the results as quickly as possible in 
order to deal with a high number of patients, provide adapted treatment, 
facilitate management of disease and reduce coma situation. 

5. VR system design 

In this section, we dealt with improving the medical diagnostic 
proposed method. For that purpose, we provide for radiologists an 
immersive and interactive VR application to visualize and interact with 
3D infected COVID-19 lungs of actual patients. To measure the proposed 
COVID-based VR application performance, we conducted experiments 
with doctors and radiologists on a set of patients with COVID-19, 
including those with mild, moderate, severe, and critical diseases. 

Fig. 7 shows the general diagram developed in the Unity game en-
gine, showing the components of the VR developed application. The 
software part was considered by Unity 3D. In this case, we integrated 

Fig. 3. Parameter influence of the proposed segmentation method a) Input Image; b) Otsu’s Threshold, xt = 105; c) Kapur’s Entropy, xt = 80, d) KL2-Entropy, xt =
122, λ = 0.75, and e) natural response functions. 
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seven packages: the virtual environment package which integrated 
optional 3D objects of the scene such as walls, tables, lamps, paintings, 
etc., three packages for 3D lungs design (3D lung models, 3D bronchus 
models, and 3D covid-lesion models), interaction package for human-
–computer interaction management, data manager package for data 
exchange between packages and 3D scene updates. 

The hardware part is composed of Oculus Rift S Head Mounted 
Display (HMD) (version updated of Oculus Rift [56]) connected to a 
computer monitor. It integrates sensors to recognize the user’s head 
movements in the space. Oculus Touch, mouse, and keyboard, manage 
the 3D interaction between the user and the VR application. The user 
manipulates can manipulate the 3D infected lungs and go inside the 
lungs to view the 3D COVID-lesion in more detail (which is possible with 
2D CT-scan images). Oculus SDK [64] supports 3D visualization and 
Hand interaction management. 

6. VR application results 

We developed a VR application that allows 3D data generation, 
visualization, and manipulation from medical imaging resources (in our 
case, we used scanner images). In fact, a DICOM imagery stack was 
converted to [obj] file and/or [slt]. In our configuration, we used 
Blender software framework [65] to import [obj] files and generates 
FBX format [66] directly used to provide 3 lung visualizations. 

Fig. 8 shows 3D images obtained using a 3D slicer, with a segmented 
area of the bronchi, lung with veins, and COVID lesions. The color map 
that transforms the intensities of the RGB scale into color was manually 
adjusted so that bronchi, veins, and lesion that contains different views 
of the object. We used the Unity 3D game engine [67] to import FBX 
formats and design VR infected lungs where COVID-19 lesions are well- 
segmented, and 3D described as shown in Fig. 8. Table 4 presents a 
comparison of the statistics of the progression and growth of the COVID 
lesion over time of the same person. From the fourth row, we can see 
that the SDC coefficient is equal to (0.057). This value SDC proves that 
the lesion’s severity is proportional to the amount of lung tissue 
destruction, and the lesion grows drastically in 10 days only (as shown in 
the third row). The lesion’s effect is also higher since the volume (in cc) 
of the lesion comparison in voxels in CT scans is on the order of 
(4289.33). 

7. Participants 

A medical staff composed of six (06) participants (radiologists, 
doctors, students, and collaborators) volunteered to explore our COVID- 
19 VR Visualization system and provide their opinions through user 
experience in a subjective survey. The latter was elaborated with VR 
experts to measure doctors’ interaction with 3D realistic infected lungs 
in immersed virtual environments, representing an instant volume- 
rendered segmented data. In our case, we used Oculus Rift S Head 
Mounted Display (HMD), to track the user’s head and hands movement. 

b
Fig. 4. COVID-SVR data statistics, (a) The ages; (b) severity level of infection 
in % 

Table 2 
Statistical segmentation quality measurement by using COVID-SVR Data of the 
proposed against active contour [49], GraphCut [50], ResNet [51], Gated-UNet 
[60], Dense UNet [61], Robust Threshold [52,53], and Tunable Weka [54]. The 
best results are shown in red.  

Segmentation methods Quality measurements  

Dice (SDC) ↑ Jaccard ↑ Hausdorff ↓ 

Proposed  0.49  0.46 5.62 
Active Contour [49]  0.30  0.32 17.77 
GraphCut [50]  0.29  0.29 18.64 
ResNet [51]  0.33  0.31 27 
Robust Threshold [52,53]  0.28  0.34 15.81 
Gated-UNet [60]  0.44  – – 
Dense-UNet [61]  0.41  – – 
Tunable Weka [54]  0.51  0.43 9.68  

Table 3 
Statistical segmentation quality measurement by using MosMedData[63] of the 
proposed against to state-of-the-art segmentation methods. The best results are 
shown in red.  

Methods Dice (SDC) ↑ Jaccard ↑ Hausdorff ↓  

Proposed  0.74  0.61 1.62 
Active Contour [49]  0.32  0.29 3.23 
GraphCut [50]  0.36  0.39 3.62 
ResNet [51]  0.43  0.41 3 
Robust Threshold [52,53]  0.53  0.44 2.1 
Gated-UNet [60]  0.44  – – 
Dense-UNet [61]  0.41  – – 
Tunable Weka [54]  0.54  0.53 3.68 
BiSe-Net[62]  0.7  – – 
A-COVID LIRS&M [8]  0.71  0.57 –  
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This experimentation could be performed using tablets and smartphones 
as well. 

8. Procedure 

The medical staff wears the HMD and visualizes the 3D infected lungs 
of patients for seven minutes but can be extended if needed. Immersion 
time was 

recorded. Then, no training, nor other explanation, for the VR-naive 
examiner was performed. After the experience, participants were asked 
to complete a subjective questionnaire without being disturbed or 
influenced. 

Fig. 9 shows a user using the VR visualization system, which depicts 
the volume-rendered COVID-19 lesions inside 3D lungs in a virtual 
room. Furthermore, we provided a VR background surrounding the 3D 
lung so that participants could be familiar with the VR application. 

In the evaluation part, subjects were asked to compare VR infected 
lung models with scanner images to identify the lesion properties (vol-
ume, extension, distribution, location). After the completion of trials, 
the subjects were asked to answer a short survey about their feelings and 
fill a questionnaire rated on a 7-point Likert scale. 

9. Analysis 

Participants were asked to state to the extent to which they agreed or 
disagreed (a 7-point scale) with 09 statements related to the VR diag-
nostic COVID-19 platform. The data were also analyzed to explore 

whether medical staff volunteers who were new to VR experiences had a 
high comfort score. In this case, it is possible to study the usefulness of 
the VR application regarding radiologists in their daily work and in 
extreme conditions. Finally, participants were asked to state what they 
believed to be the best features. The parameters to evaluate for the 
experimentation are (parameters from 5 to 9 inspired from [68]). 
Meanwhile, parameters from 1 to 4 were proposed by authors:  

1. Immersion is perceived.  
2. Lesion is well observed.  
3. Easy to use.  
4. Could be used for another lesion detection.  
5. Improve knowledge of disease.  
6. An enjoyable experience.  
7. Could help reduce error.  
8. Enhance understanding.  
9. Provide a realistic view of clinical case. 

10. Discussion 

According to question 1, 83% of participants felt Immersed in the 
virtual world when they firstly manipulate the 3D lung. Among them, 
one participant was surprised and provided a strongly agreed opinion. 
More than 80% of experimenters found the 3D COVID-19 lesion clear, 
visible, and realistic regarding the second question. Simultaneously, all 
participants found the system easy to use (Question 3). In question 4, 
17% of experimenters judged that the application could not be used for 

Fig. 5. Visual comparisons of different methods using COVID-SVR Dataset against our segmentation method (c); (a) original images; (b) ground truths; (d) Active 
contour; (e) GraphCut; (f) ResNet; (g) Robust Threshold and (h) tunable Weka. 

A. Oulefki et al.                                                                                                                                                                                                                                 



Biomedical Signal Processing and Control 73 (2022) 103371

8

Fig. 6. Visual comparisons of different methods using MosMedData against our segmentation test set (c); (a) original images; (b) ground truths; (d) Active contour; 
(e) GraphCut; (f) ResNet; (g) Robust Threshold and (h) tunable Weka. 

Fig. 7. Packages of the VR application.  
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another disease detection, where others estimate that the application 
could be suitable to be applied for other forms of pathology diagnosis. In 
terms of question 5, 66% believed that 3D technology improves disease 
knowledge and provides appropriate medical treatment. Similarly, most 
participants denote those diagnostic errors (Question 6) could be 
reduced significantly, they also notice that they perceive a realistic 3D 
view of the COVID-19 lesion and its volume and distribution within the 
lung (Question 8). Finally, all participants found these experiences 

enjoyable and improve their understanding of the disease. Moreover, 
they wish to repeat this experience if they are asked again. Besides, they 
express their ability to recommend these applications to their col-
leagues. The summary of the agreement level provided by doctors is 
illustrated in Fig. 10. 

11. Conclusions 

The accurate visualization and segmentation of the COVID-19 lesion 
is a significant stage to help the radiologist in the interpretation of the 
lesion in a faster way. In this paper, we designed and evaluated an 
automatic tool for automatic COVID-19 lung infection segmentation and 
VR visualization using chest CT-scan images. The computer simulations 
using the MosMedData and COVID-SVR dataset containing (224) 
collected from EL-BAYANI center for radiology show better efficiency 
comparing to the state-of-the-art segmentation approaches, including 
Active contour, GraphCut, ResNet, Robust threshold, Gated-UNet, 
Dense-UNet, tunable Weka, BiSe-Net, and A-COVID LIRSM. The pro-
posed algorithm’s performance is measured using the following assess-
ment scores: SDC, Jacquard index, and Hausdorff distance. These 
contributions prove the prospect of improving diagnosis and visualiza-
tion for COVID-19 and could support the medical professional to eval-
uate a possible lesion and abnormalities inside the lungs. After that, the 
cutting-edge technology using VR is performed to develop a platform of 
COVID-19 VR viewer, where it was 

experimented with by medical staff. As different radiologists with 
doctors conclude after using our system, the visualization of CT-scan 
images using Virtual Reality provides a better interpretation of the 
radiological results and can be a breakthrough for medical treatment 

Fig. 8. VR volume visualization of the automatic segmentation for lung with blood vessels along with COVID-19 lesion.  

Table 4 
Comparison and calculation the volume of the lungs and lesion of the effect of 
COVID-19 on a patient who tested twice by COVID-19   

Segmentation statistics Number of Voxels   

Lung Lesion 

Day 1 8,010,730 16,077 

Day 10 6,621,017 1,306,384   

Comparison  

SDC Coefficient 0.057  
Compare volume (cc) 4289.33  
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planning. According to participants’ opinions, the proposed application 
provides a more detailed and more realistic view of the COVID-19 le-
sion’s location, volume evolution, and distribution within the lung. 
According to a doctor taking part in the trials, the drawback of the 
proposed approach is that it only gives credible results when the doctor 
has preliminary information that patients got COVID-19. The doctor said 
that a lung could have various complex pathologies that differ from the 
COVID-19 disease. Suppose we provide this application to a doctor 
without knowing that COVID-19 affected the concerned patient. In that 
case, he cannot identify the type of pathology even if he uses our VR 
visualization tool. A medical staff composed of six (06) participants 
volunteered to explore our COVID-19 VR Visualization system and 
provide their opinions through a subjective user experience survey. We 

believe that medical professionals could use this tool to visualize 
radiological results. 
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