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Background: Neonatal hypoxic-ischemic brain damage (HIBD) is a clinical syndrome causing brain injury 
in newborns with obscure etiology. Increasing evidence suggests that ferroptosis plays a role in HIBD. This 
study aimed to clarify the key ferroptosis-related genes (FRGs) of HIBD, construct a long non-coding RNA-
microRNA-messenger RNA (lncRNA-miRNA-mRNA) network, and further investigate the pathogenesis  
of HIBD.
Methods: Gene expression data were downloaded from the Gene Expression Omnibus and FerrDb 
databases. The differentially expressed lncRNAs and FRGs were screened, and the related miRNAs and 
mRNAs were predicted. The obtained mRNA was intersected with the differentially expressed FRGs (DE-
FRGs) to identify the key DE-FRGs. Cell-type Identification by Estimating Relative Subsets of RNA 
Transcripts method was applied to analyze the immune cell infiltration level and the relationship between 
key genes and immune cells.
Results: Gene differential expression analysis revealed that 1,178 lncRNAs, 207 miRNAs, and 647 mRNAs  
were differentially expressed in the blood of HIBD patients in comparison to healthy controls. The 
correlations of the lncRNAs, miRNAs, and mRNAs lead to the establishment of a competing endogenous 
RNA (ceRNA) network associated with ferroptosis in HIBD. Further validation using an external dataset 
and quantitative real-time polymerase chain reaction (PCR) analysis of brain tissues from hypoxic-ischemic 
encephalopathy rats confirmed the expression patterns of three key genes, including HMOX1, MYCN, and 
QSOX1. Meanwhile, the three key genes were closely correlated with the infiltration of multiple immune 
cells and might affect the function of HIBD regulatory genes such as CPT2 and GCK. In addition, drug 
prediction suggested that four drugs, including cephaeline, emetine, mestranol, and sulmazole, might 
alleviate HIBD. 
Conclusions: Our study established a ceRNA network, identified three key genes, and predicted four 
drugs that are associated with ferroptosis in HIBD, which provides new ideas for the investigation of the 
disease mechanisms and might facilitate the diagnosis and treatment of the disease. 
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Introduction

Neonatal hypoxic-ischemic brain damage (HIBD) 
represents hypoxic-ischemic brain injury in newborns 
due to perinatal asphyxia and is one of the most common 
causes of neurological disease and death in newborns, 
occurring in 2–3 per 1,000 births (1,2). Unfortunately, 
specific and effective treatments for this disease have not 
yet been developed (3). Despite the timely adoption of mild 
hypothermia treatment, a number of newborns with severe 
asphyxia may have adverse outcomes, such as cerebral palsy, 
intellectual disability, epilepsy, and even death. Moreover, 
adverse outcomes lead to a considerable socio-economic 
burden. Hence, it is crucial to discover an effective method 
for the treatment of HIBD (2,4). 

The pathophysiological mechanism of HIBD has 
not fully been deciphered. According to recent data, the 
development of HIBD can be promoted by various factors, 
such as disrupted metabolism and a protracted inflammatory 
response (5). These factors can lead to different types of cell 
death, a complex process closely related to the development 

and maintenance of body homeostasis and closely linked 
to the occurrence, development, and prognosis of various 
diseases (6). Iron death, also known as ferroptosis, is a 
unique form of programmed cell death (PCD) characterized 
by iron accumulation and oxidative stress with distinct 
morphological, biochemical, and genetic features compared 
to other types of PCDs such as apoptosis, necrosis, and 
autophagy (7). The morphology changes of ferroptotic cells 
mainly include mitochondrial atrophy, increased membrane 
density, and reduction or disappearance of mitochondrial 
ridge (7-10). The most relevant biochemical characteristics 
include increased reactive oxygen species (ROS), decreased 
intracellular glutathione peroxidase 4, accumulation of 
lipid peroxides, and perturbations of iron metabolism (9).  
In the fight against human diseases, including HIBD, 
many types of immune cells, such as neutrophils, T and B 
cells, macrophages, natural killer (NK) cells, and dendritic 
cells, operate as key factors. The function of immune cells 
is regulated by cell death. Some researchers have found 
that ferroptosis is essential for regulating the functions 
and numbers of immune cells, whereas ferroptosis in non-
immune cells may induce the release of damage-associated 
molecular patterns (DAMPs), triggering an immune cell 
response (11). However, the function of ferroptosis in the 
pathogenesis of HIBD is unclear. Therefore, exploring the 
potential role and mechanism of ferroptosis may provide a 
new strategy and approach to preventing and treating such 
patients.

The non-coding RNA (ncRNA) is a non-protein-coding 
transcript containing hidden regulatory signals for gene 
expression and disease progression. Based on the length, 
the ncRNAs can be arbitrarily defined as either long non-
coding RNAs (lncRNAs, at least 200 nucleotides) or smaller 
non-coding RNAs such as transfer RNA, microRNA 
(miRNA) and piwi interacting RNAs (12-14). MiRNAs and 
lncRNAs participate in many immune response processes 
based on the modulation of the immune response genes (15). 
The hypothesis of competing endogenous RNA (ceRNA) 
revealed a new mechanism of RNA interaction. LncRNA 
may compete for miRNA-messenger RNA (miRNA-
mRNA) binding, thus affecting gene expression mediated by 
miRNA (16). However, little is known about the expression 
patterns and the interaction network of ceRNA in HIBD.

Highlight box

Key findings 
•	 We have established a competing endogenous RNA (ceRNA) 

network.
•	 We have identified three key genes.
•	 We have predicted four drugs associated with ferroptosis in 

hypoxic-ischemic brain damage (HIBD).  

What is known and what is new?  
•	 There are studies on iron death in HIBD, but there are few studies 

on the mechanism of iron death.
•	 This manuscript mainly includes identifying key apoptosis-related 

genes of HIBD, constructing a lncRNA-miRNA-mRNA network, 
and further exploring the pathogenesis of HIBD.

What is the implication, and what should change now? 
•	 This paper promotes the further mechanism research of HIBD. 

We further explored the potential molecular mechanisms of key 
genes that affect the progression of HIBD, bringing some new 
ideas for the diagnosis and treatment of HIBD.

•	 A large number of lncRNAs and miRNAs have been identified 
in this study, and their expression in HIBD and the established 
ceRNA network need to be further verified.
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In the present study, we performed a bioinformatic-based 
analysis of the microarray data of HIBD samples from the 
Gene Expression Omnibus (GEO). We identified many 
differentially expressed lncRNAs, miRNAs, and mRNAs, 
which resulted in establishing a ceRNA network associated 
with ferroptosis in HIBD. Moreover, our analysis identified 
three key genes that may play a pivotal regulatory role in 
modulating ferroptosis and immune cell infiltrations via 
multiple signaling pathways in this disease. In addition, the 
drug prediction analysis indicated that four drugs might 
have a role in ameliorating HIBD-related brain injuries. 
The ceRNA network and key genes identified in our 
study might shed new light on the studies of molecular 
mechanisms and new drug development for HIBD. We 
present this article in accordance with the ARRIVE 
reporting checklist (available at https://tp.amegroups.com/
article/view/10.21037/tp-23-596/rc).

Methods 

Data download

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Data were 
downloaded from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/info/datasets.html). The series matrix file 
of GSE121178 was obtained from the GEO database, and 
the annotation platform was GPL22120, which contained 
six samples, including a control group (n=3) and a case 
group (n=3). The series matrix file of GSE112137 was 
obtained from the GEO database, and the annotation basis 
was GPL20301, which contained 16 samples, including 
a control group (n=8) and a case group (n=8). The 431 
ferroptosis-related genes (FRGs) in this study were obtained 
from the FerrDb V2 database.

Differential expression analysis

Limma is an R package for analyzing differentially 
expressed genes (DEGs) to identify genes that exhibit 
obvious differential expression between cases and controls. 
Data on the molecular mechanisms of neonatal ischemic 
hypoxic encephalopathy were analyzed by using limma, and 
DEGs were identified between the two sample groups. The 
DEGs screening conditions were |log fold change (FC)| >1 
and P<0.05. A differential gene volcano map and heat map 
were drawn.

Gene Ontology (GO) term and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis

In order to determine biological functions and pathways 
involved in disease development, Metascape database 
(https://metascape.org/) was applied for annotation and 
visualization; GO analysis and KEGG pathway analysis 
were conducted for specific genes.

Construction of the lncRNA-miRNA-mRNA network

Recently, ceRNA has attracted much academic attention. 
It represents a new mode of gene expression regulation. 
The ceRNA regulatory network is more refined, involving 
abundant RNA molecules; it includes mRNA, pseudogene 
encoding genes, miRNA, and lncRNA, among others. 
miRcode (http://www.mircode.org/) is a popular database 
for querying lncRNA and miRNA relationships. It covers 
lncRNA genes with a length of more than 10,000. In this 
study, we used the miRcode database to predict lncRNA-
miRNA interaction pairs. Moreover, three databases, 
miRDB (http://www.mirdb.org/), miRTarBase (https://
mirtarbase.cuhk.edu.cn/), and TargetScan (https://www.
targetscan.org/vert_80/), were combined to analyze the 
interaction of the two kinds RNA. Targeted mRNAs 
identified by two of the three databases were selected for 
subsequent research. Then, lncRNA-miRNA interaction 
and mRNA-miRNA interaction were combined to establish 
a lncRNA-miRNA-mRNA network, which was visualized 
by Cytoscape (https://cytoscape.org/).

Analysis of immune cell infiltration

To assess the impact of genes on immune infiltration, 
the Cell-type Identification by Estimating Relative 
Subsets of RNA Transcripts (CIBERSORT) method was 
applied to determine immune infiltration level, and the 
corrplot package in R was used to analyze the interaction 
association in immune cells and analyzed the influence of 
the interaction association. The vioplot package was used 
to plot the relative content of immune cells, and Pearson 
analysis was performed for gene expression and immune cell 
content.

Gene set enrichment analysis (GSEA)

The GSEA method was applied to rank genes based on how 

https://tp.amegroups.com/article/view/10.21037/tp-23-596/rc
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differently they were expressed in two groups, and we then 
checked if the predefined gene sets were enriched according 
to the list. In this study, by comparing the differences in 
signaling pathways between the GSEA group and the low-
expression group, the molecular mechanism of core genes 
related to such disease was discussed. The number of 
replacements was set to 1,000.

Transcriptional regulation analysis of key genes

In the present research, the R package “RcisTarget” was 
applied to predict transcription factors (TFs) based on 
motif. The normalized enrichment score (NES) for motifs 
depends on the total motifs. Except for the motifs annotated 
by the source data, we inferred further annotated files. The 
first step in estimating the overexpression of each motif was 
to calculate the area under the curve (AUC) of every motif-
motif set pairs. This was calculated by the recovery curve 
of the sequence based on the gene set. The motif NES was 
determined according to the AUC distribution.

Connectivity Map (CMap) drug prediction

The CMap is a gene expression profile database based 
on intervention gene expression developed by the Broad 
Institute. It is mainly used to reveal functional associations 
of small molecule compounds, genes, and disease states. 
It contains gene chip data before and after 1,309 small 
molecule drugs are treated with five human cell lines. 
Treatment conditions are varied, including different drugs, 
different concentrations, different treatment duration, and 
so on. In this study, the differentially expressed genes of the 
disease were used to predict the targeted therapeutic drugs 
for the disease. The differentially up-regulated and down-
regulated mRNAs were uploaded to the CMap database, 
and L1000 was selected as the background set to predict the 
potential therapeutic drugs for the disease.

Neonatal HIBD in an animal model

Our model references the Rice-Vannucci rat model (17). A 
protocol was prepared before the study without registration. 
All animal experiment procedures were approved by the 
Ethics Committee of the Nantong University (approval 
No. S20220321-008) and were conducted according to the 
institutional animal care and use guidelines for the care and 
use of animals. The newborn rats were fed freely by their 
mothers. The conditions were maintained with a room 

temperature of 24±2 ℃ and a 12-hour light/dark cycle. Rats 
have free access to food and water. Both male and female 
pups received the HIBD model. Neonatal Sprague-Dawley 
(SD) rats (12–17 g, 7 days old) were purchased from the 
Experimental Center of Nantong University. Six newborn 
rats were randomly divided into the HIBD group and sham 
operation control group, with 3 rats in the HIBD group 
and three rats in the sham operation control group. In this 
study, a blind method was used to take pup brains and do 
polymerase chain reaction (PCR). The 7-day-old SD rats 
in the HIBD group were anesthetized with isoflurane, then 
the rats were fixed in supine position, the left common 
carotid artery was exposed, separated from nerves and veins, 
ligation with 4-0 surgical line, and finally sutured to allow 
the animals to recover. After surgery, the rats were placed 
back with their mothers for 1 hour and then placed in a 
closed anoxic chamber (8% oxygen, 92% nitrogen, flow rate 
of 4 L/min) on a heating mat at 37 ℃ for 2.5 hours. After 
hypoxia, the surviving pups were returned to their mothers 
(there were no dead pups in the experiment). The same 
procedure was performed in the sham operation control 
group except that the exposed carotid artery was not lapped. 
After 24 hours, the rats were decapitated and their brains 
removed for subsequent tests.

Quantitative PCR 

The total RNA of rat brain tissues was prepared by 
TRIzol, and reverse transcription was performed using a 
reverse transcription kit. The primers used in quantitative 
rea l- t ime PCR (qRT-PCR) test  were  as  fo l lows: 
HMOX1, F: 5'-GCCTCTTCTGTCACCCTGT-3', 
R:  5 '-TCTGCTTGGCTTCCTCCC-3' ;  MYCN, 
F :  5 ' - A C C C A A C AT C A G C G G T C G - 3 ' ,  R : 
5'-CGTGACTGTCGGGTT TTCCA-3'; QSOX1, 
F :  5 ' - A G C C A C T G C C C TA G AT G TA C C - 3 ' ,  R : 
5'-TGAGGCCTGCGTTTAGTTCC-3'. The initial 
denaturation period of the reaction was 95 ℃ for 10 minutes,  
then 95 ℃ for 15 seconds, 60 ℃ for 60 seconds, and 95 ℃ 
for 15 seconds, for a total of 40 cycles. Fluorescence was 
recorded at each annealing step. After each PCR run, the 
system automatically analyzed the data and obtained the 
amplification map. The expression levels of these genes 
were normalized to endogenous glyceraldehyde 3-phosphate 
dehydrogenase complementary DNA. The results of 
the experiment were represented by relative quantitative 
analysis of 2−△△CT, and all experiments were repeated  
three times.
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Statistical analysis

Most of the statistical analyses in this study were performed 
using R software (version 4.2.1; The R Foundation for 
Statistical Computing, Vienna, Austria). The Kolmogorov-
Smirnov test was applied to data obtained by the qRT-
PCR analysis of the mRNA expression in brain tissues of 
HIBD and control rats. P<0.05 was considered statistically 
significant. 

Results

Differential expression analysis of lncRNA associated with 
HIBD and prediction of miRNA

Figure 1 depicts the workflow of the current study. To 
identify lncRNAs inducing a regulatory function in the 
HIBD process, we downloaded the GSE121178 dataset 
from the GEO database and analyzed the DEGs of 6 
blood samples, including a control group (n=3) and case 
group (n=3). We used the limma package to calculate 

differential lncRNAs in the dataset. The differential gene 
judgment criteria were P<0.05 and |LogFC| >1. Up to 
1,178 differential lncRNAs were screened, including 473 
up-regulated lncRNAs and 705 down-regulated lncRNAs 
(Figure 2A,2B). Subsequently, we used the miRcode 
database to predict the miRNA targets of the 1,178 
differentially expressed lncRNAs. The analysis detected 
207 lncRNA-related target miRNAs, which were visualized 
using Cytoscape (Figure 2C).

Differentially expressed ferroptosis-related mRNAs in 
HIBD

To investigate if the alterations in the expression of 
lncRNAs and miRNAs affect ferroptosis in HIBD, we 
screened the differential mRNAs in the GSE112137 
dataset downloaded from the GEO database using the 
limma package. The differential gene judgment criteria 
were P<0.05 and |LogFC| >1. Up to 647 differential 
mRNAs were screened, including 264 up-regulated and 

GSE121178

Diff lncRNA

Target miRNA Target miRNA

ceRNA network
Association between hub 

genes and immune infiltration

Functional annotation:
1. GSEA analysis
2. Correlation analysis
3. Motif enrichment
4. Drug predication

1. Immune barplot
2. Immune correlation
3. Immune comparison

mRNA array of HIBD

GSE112137

LncRNA-miRNA 
interactions

miRNA-mRNA 
interactions

Diff mRNA 
(Ferroptosis)

Immune infiltration
(Deconvolution)

miRDB
miRTarBase
TargetScan

miRcode

LncRNA array of 
HIBD

Figure 1 Experimental flowchart of this study. lncRNA, long non-coding RNA; HIBD, hypoxic-ischemic brain damage; Diff, different; 
miRNA, microRNA; mRNA, messenger RNA; ceRNA, competing endogenous RNA; GSEA, gene set enrichment analysis.
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383 down-regulated genes (Figure 3A,3B). Subsequently, 
we intersected these 647 differential mRNAs with FRGs 
and found 11 intersection genes (Figure 3C). We further 
conducted a GSEA for the 11 differential ferroptosis 
mRNAs via Metascape, which indicated that the main 

enrichment pathways of the differential iron death-related 
genes include ferroptosis, negative regulation of cell 
activation, epithelial cell proliferation, and regulation of 
cytoskeleton organization (Figure 4). These data indicated 
that the 11 FRGs might be involved in the development of 
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Figure 2 Differentially expressed lncRNAs and target miRNAs detected in samples of HIBD patients. (A) Volcanic plot of lncRNAs with 
differential expression between HIBD patients and healthy controls (the pink dots represent up-regulated genes, the blue dots represent 
down-regulated genes, and the black dots represent genes that are not significantly different). (B) Cluster analysis of the differentially 
expressed lncRNAs (blue represents the control group, red represents the disease group, yellow represents the up-regulated gene, and green 
represents the down-regulated gene). (C) The predicted target miRNAs of the differentially expressed lncRNAs in (A,B). FC, fold change; 
lncRNA, long non-coding RNA; miRNA, microRNA; HIBD, hypoxic-ischemic brain damage.
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Figure 3 Differentially expressed mRNA and differentially expressed iron death genes in HIBD patient samples. (A) Volcano plot of 
differentially expressed mRNA (the pink dots represent up-regulated genes, the blue dots represent down-regulated genes, and the black 
dots represent genes that are not significantly different). (B) Cluster analysis of mRNA expression (blue represents the control group, red 
represents the disease group, yellow represents the up-regulated gene, and green represents the down-regulated gene). (C) The figure shows 
that there are 11 intersecting genes between differential mRNA and ferroptosis-related genes. FC, fold change; Diff, different; mRNA, 
messenger RNA; HIBD, hypoxic-ischemic brain damage.

HIBD, possibly by regulating ferroptosis via the enriched 
pathways.

Establishment of ceRNA network associated with 
ferroptosis and identification of key genes

We used the miRwalk, miRDB, and miRTarBase databases 
to predict the target mRNAs of the 207 miRNAs identified 
above and identified 8,612 mRNAs in the GSE121178 
dataset. Finally, the intersection of 8,612 predicted mRNAs 
and 11 differential FRGs yielded four mRNAs (Figure 5A).  
The ceRNA network was successfully constructed and 
visualized via Cytoscape (Figure 5B). In addition, we 
downloaded the GSE112137 dataset from the GEO 

database as an external dataset for subsequent analysis. The 
results indicated that three mRNAs, including HMOX1, 
MYCN, and QSOX1, were differentially expressed in HIBD 
samples compared to the normal controls (Figure 5C).  
Therefore, HMOX1, MYCN, and QSOX1 were selected as 
the key genes for subsequent analysis.

Validation of key genes in an animal model

To further verify the expression levels of the three key 
genes in HIBD, we constructed an animal model of the 
disease and collected brain tissue samples from the HIBD 
rats 24 hours after hypoxia treatment. The mRNA levels 
of the three genes (HMOX1, MYCN, and QSOX1) in these 



Lu et al. Molecular mechanism of HIBD iron death related ceRNA network126

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2024;13(1):119-136 | https://dx.doi.org/10.21037/tp-23-596

0 1 2 3 4 5 6
−Log10(P)

hsa04216: Ferroptosis

GO:0050866: Negative regulation of cell activation

GO:0050673: Epithelial cell proliferation

GO:0051493: Regulation of cytoskeleton organization

hsa04216: Ferroptosis

GO:0050866: Negative regulation of cell activation

GO:0050673: Epithelial cell proliferation

GO:0051493: Regulation of cytoskeleton organization

Figure 4 GSEA analysis of DE-FRGs. GO, Gene Ontology; GSEA, gene set enrichment analysis; DE-FRGs, differentially expressed 
ferroptosis-related genes. 

samples were tested using qRT-PCR and compared with 
those in the brain tissues of the control rats. The results 
showed that the levels of HMOX1 and QSOX1 in HIBD rats 
were significantly higher than those in control rats, whereas 
the expression of MYCN in HIBD rats was significantly 
reduced compared to that in controls. These results were 
consistent with findings obtained in the above bioinformatic 
analysis (Figure 6A-6C).

The three key genes correlate with the infiltration of 
multiple immune cells 

The immune microenvironment is mainly composed 
of immune cells, extracellular matrix (ECM), growth 
factors, and inflammatory factors, which affect the 
prognosis and the sensitivity of the disease therapy. 
Based on the association of key genes and immune 
infiltration, we further explored key genes’ potential 
molecular mechanisms in affecting the progression of 
neonatal hypoxic encephalopathy. The distribution of the 
infiltrating immune cells and their correlations are shown in  
Figure 7A,7B. Significant differences were observed 
regarding the infiltration of the memory B cells, monocytes, 
and resting mast cells between the disease and control 

groups (Figure 7C). Subsequently, the association of key 
genes and immune cells was analyzed, and it was found that 
the three key genes were closely related to several immune 
cells. HMOX1 was significantly positively related to gamma 
delta T cells and negatively related to resting mast cells and 
memory B cells (Figure 7D). MYCN was positively related 
to activated NK cells and resting mast cells and negatively 
correlated with monocytes (Figure 7E). QSOX1 was 
positively correlated with monocytes and negatively related 
to resting mast cells (Figure 7F). In addition, we obtained 
the association between these key genes and immune 
factors from the TISIDB (http://cis.hku.hk/TISIDB/), 
including immunosuppressors, immunostimulators, and 
receptors (Figure 8). These analyses suggest that key genes 
are significantly associated with the level of immune cell 
infiltration and play a key role in the immune environment 
in HIBD.

The key genes regulate multiple signaling pathways

The three key genes may be involved in the development 
of HIBD by regulating some signaling pathways. Thus, we 
performed GSEA to analyze the specific signaling pathways 
that may be regulated by HMOX1, MYCN, and QSOX1 and 
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Figure 5 Establishment of ceRNA network associated with ferroptosis and the identification of key regulatory mRNAs in HIBD. (A) 
Venn diagram showing 4 intersecting genes between mRNA and 11 differential ferroptosis genes. (B) The established ceRNA network, in 
which mRNAs and miRNAs were marked in red and yellow colors, respectively. (C) The differential expression levels of HMOX1, MYCN, 
and QSOX1 were validated in an external dataset. **, P<0.01; ***, P<0.001. Diff, different; ceRNA, competing endogenous RNA; mRNA, 
messenger RNA; miRNA, microRNA; HIBD, hypoxic-ischemic brain damage.

explored the potential molecular mechanisms of the key 
genes affecting the progression of HIBD. The results of 
GSEA showed that HMOX1 is enriched in several pathways, 
such as the NOD-like receptor signaling pathway and 
oxidative phosphorylation (Figure 9A). MYCN could enrich 
alanine aspartate and glutamate metabolism, cell adhesion 
molecules, and other signaling pathways (Figure 9B).  
QSOX1 enriched several signaling pathways, such as type 
II diabetes mellitus and ubiquitin-mediated proteolysis  
(Figure 9C). These data suggest that the three key genes 
may influence disease progression through multiple 

signaling pathways.

Analysis of transcriptional regulation of the key genes

We applied these three key genes to the gene set used in 
this study; we found that they are regulated by common 
mechanisms such as multiple TFs. Therefore, the TFs 
involved in the modulation of the three key genes were 
enriched by cumulative recovery curves. The results of 
motif-TF annotation indicated that the motif with the 
highest standardized enrichment score (NES: 4.88) was 
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cisbp_M0451. All the enriched motifs and relevant TF 
results are displayed in Figure 10.

Analysis of the correlation between key genes and disease-
regulating genes

To investigate the possible relationship between the key 
genes and the HBID-regulating genes, we obtained the 
disease-regulating genes from the GeneCards database 
(https://www.genecards.org/). We then analyzed the 
expression levels of the top 20 genes with the highest 
relevance score in different groups and found that the 
expressions of SCN1A, PCDH19, CPT2, INS, GCK, CASR, 
and SCTAN1 were different between cases and controls 
(Figure 11A). As a result, it can be concluded that the 
expression levels of the three essential genes were closely 
related to those of several disease-related genes (Figure 11B).  
QSOX1  and CPT2  were positively correlated with 
significance (r=0.976), whereas a significant negative 
correlation between HMOX1 and GCK was observed 
(r=−0.993). These data demonstrated that the key genes had 
significant correlations to HBID-regulating genes. 

Potential drug prediction

Based on the above analysis, we attempted to predict the 
effectiveness of drugs for HBID treatment. The top 150 up-
regulated mRNAs and the top 150 down-regulated mRNAs 
in HBID were used for drug prediction through the CMap 
database. The results showed that perturbations of gene 
expression induced by the drugs, including cephaeline, 

mestranol, and sulmazole, were inversely related mainly to 
those triggered by the disease (Figure 12), suggesting that 
these drugs could alleviate the disease. 

Discussion

The current treatment of HIBD is poorly effective, and 
great efforts are needed to improve its efficacy for this 
significant threat to newborn life (18). The current state 
of the art is mainly due to the unclear and incomplete 
understanding of the disease pathogenesis. A recent study 
has revealed that the development of HIBD is associated 
with ferroptosis, a unique form of cell death depending 
on iron and lipotoxicity (19). Studies have also shown 
that inhibiting ferroptosis can improve HIBD in neonates 
(20,21). It has been reported that ferroptosis is regulated 
by many cellular metabolic events, such as REDOX 
homeostasis, iron processing, mitochondrial activity, 
metabolism of lipids, sugars, and many disease-associated 
pathways (22). Increasing evidence demonstrates that 
ferroptosis is associated with cell damage in a variety of 
diseases, such as cancer, ischemia-reperfusion injury, stroke, 
neurodegeneration, myocardial infarction, acute kidney 
injury, and liver injury (23-26). However, the mechanism of 
ferroptosis in HIBD has not been deeply studied. 

Our research seeks to identify ferroptosis-related 
biomarkers affecting neonatal HIBD, establish ceRNA 
networks, and explore their roles in HIBD immune cell 
infiltration. We screened 647 differentially expressed 
mRNAs through the GSE112137 dataset intersected 
them with FRGs, and identified 11 DEGs. Enrichment 
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analysis showed that the main enrichment pathways of 
these 11 genes were ferroptosis, negative regulation of cell 
activation, cytoskeletal tissue regulation, and epithelial 
cell proliferation. Moreover, we successfully constructed 
the ceRNA network through the GSE121178 dataset 
and intermixed the predicted mRNA with 11 differential 
ferroptosis genes to obtain four mRNAs. Through external 
verification, three key genes showed significant differences. 
Compared with the control group, the expression of 

HMOX1 and QSOX1 was higher in the HIBD group, 
whereas the expression of MYCN in the HIBD group was 
lower than that in the control group. We constructed an 
animal model of HIBD in which these three key molecules 
were validated using qRT-PCR, and the results were 
consistent with those of microarray analysis.

HMOX1, also known as heat shock protein 32, is an 
enzyme involved in the catabolism of heme induced by 
various pro-oxidation and inflammatory stimuli (27). 
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It is protective in anti-oxidation, anti-apoptosis, anti-
inflammation, and vascular relaxation (28). The expression 
of HMOX1 contributes to mediating the resolution of 
inflammation, including neuroinflammation (29). In our 
study, the enrichment analysis revealed that HMOX1 may 
be involved in various signaling pathways that influence 
the development of HIBD, such as the NOD-like 
receptor signaling pathway and oxidative phosphorylation. 
Notably, the most studied NOD-like receptor, NLRP3, 
has significantly higher activity in hypoxic-ischemic 
encephalopathy (HIE) rats (30). Using drugs to inhibit the 
inflammasome activity can significantly inhibit HIE-related 
brain damage (31). Thus, whether HMOX1 can affect 
HIBD via regulating NOD-like receptors such as NLPR3 
deserves further study. 

MYCN is a TF of the MYC proto-oncogene family. It 
is involved in the basic process of controlling embryonic 
development (32). MYCN promotes cell proliferation, 

growth, and apoptosis (33-35). A previous study has 
shown that MYCN is over-expressed in various pediatric 
cancers, including neuroblastoma, rhabdomyosarcoma, 
medulloblastoma, nephroblastoma, and retinoblastoma (36). 
However, until now, no study has described the relationship 
between this gene and HIBD. QSOX1 is an enzyme that 
oxidizes mercaptan during protein folding, reducing 
molecular oxygen to hydrogen peroxide (37). Similarly, no 
study has shown its role in HIBD. The roles and relative 
contributions of MYCN and QSOX1 in HIBD need further 
clarification in future studies. Our study also analyzed the 
upstream regulation and found that HMOX1, MYCN, and 
QSOX1 are regulated by common mechanisms such as 
multiple TFs. Hence, we conducted an enrichment analysis 
to research these TFs and found that GFI1 is the primary 
regulator of these three molecules.

Accumulating evidence shows that immune cells are 
closely related to the pathogenesis of HIBD (38). By using 
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Figure 10 Analysis of transcriptional regulation of HMOX1, MYCN, and QSOX1. SD, standard deviation.

the CIBERSORT, we identified 22 immune cell types 
infiltrating the brains of HIBD patients. The proportion of 
monocytes in the HIBD group was high, whereas that of 
memory B cells and resting mast cells was low. Monocytes 
belong to the mononuclear phagocyte system and are 
involved in the immune responses following tissue injury 
and infection. A study has shown that monocytes promote 
acute inflammatory response, and monocyte infiltration 
has significant plasticity, pathological function, and lasting 
harmful effects in neonatal brain injury (39). At the 
same time, we verified the association between the three 
core genes (HMOX1, MYCN, QSOX1) and immune cell 
infiltration. Our results show that these three core genes 
correlate with immune cell infiltration and are closely 
related to gamma delta T cells, resting mast cells, memory 
B cells, and activated NK cells. These results further 
demonstrate the key function of the core genes and immune 
infiltration in the HIBD. Moreover, GSEA also revealed 
the specific signaling pathways of three core genes that 
may be involved in the HIBD process; this finding may be 

considered highly beneficial for a deeper understanding of 
the pathogenesis of HIBD.

This study identified regulatory genes associated 
with HIBD through the Genecard database. Seven 
genes (SCN1A, PCDH19, CPT2, INS, GCK, CASR, and 
SCTAN1) differed between the two groups. CASR, a 
G-protein-coupled receptor cloned initially from the 
bovine parathyroid gland, maintains calcium homeostasis 
by regulating the secretion of parathyroid hormone 
(40,41). The results of Pak et al. showed that selective and 
persistent astrocyte-induced CaSR expression is a common 
feature of ischemic injury, suggesting a role of CaSR in 
ischemia-induced astrocyte response (42). We analyzed the 
correlation between three core genes and HIBD regulatory 
genes and revealed the close relationships between the 
genes. The mechanism of the three core genes and HIBD 
regulatory genes in HIBD is still unclear and needs further 
exploration. 

The CMap database was used for drug prediction, 
and the results showed that the expression profiles of 
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drug disturbances in cephaeline, emetine, mestranol, and 
sulmazole were negatively related to the expression result 
of disease disturbances, suggesting that these drugs could 
alleviate the disease state. These findings provide new 
boosts for developing innovative, more effective drugs to 
treat HIBD.

As described above, our study provides new insights 
for further investigation of the molecular mechanisms of 
HIBD, even though the study has some limitations. Firstly, 
although we identified numerous lncRNAs and miRNAs, 

their expression and the established ceRNA network in 
HIBD should be confirmed by further studies. Secondly, 
there is a lack of data about the related clinical features 
and prognostic data in HIBD patients; clinical relevance 
studies, prognostic analyses of the ceRNA network, and the 
key genes should be conducted in future studies. Thirdly, 
the number of patients in the database used in this study 
is relatively small, and thus, the results need to be further 
validated in a study involving a larger sample of HIBD 
patients. Despite these limitations, our findings contribute 
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A B

C D

Figure 12 The predicted drugs associated with ferroptosis in HIBD. (A) Cephaeline; (B) emetine; (C) mestranol; (D) sulmazole. HIBD, 
hypoxic-ischemic brain damage.

to elucidating the function and mechanism of ferroptosis  
in HIBD.

Conclusions

In this study, after screening out 11 differential FRGs in 
HIBD, bioinformatics analysis identified three key genes 
associated with ferroptosis and the development of HIBD, 
including HMOX1, MYCN, and QSOX1. The study also 
established a ceRNA network in HIBD, which might 
promote further mechanistic studies of this disease. The 
potential molecular mechanism of key genes affecting the 
progression of HIBD was further explored and yielded some 
new ideas regarding the diagnosis and treatment of HIBD.
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