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Background: Ginseng, officially known as Panax ginseng Meyer, has been traditionally used as a medicinal
herb, particularly in Asia. Ginseng is propagated from seeds; however, seed germination is challenging,
especially in its natural environment on farms. The seeds typically exhibit morphophysiological
dormancy and require release from both morphological and physiological dormancy before germination.
Although some studies have proposed methods for increasing seed germination rates, the underlying
mechanisms of its dormancy release process remain unclear. Here, we investigated metabolic alterations
during dehiscence in P. ginseng to determine their potential roles in dormancy release.
Methods: We compared the ginseng seed metabolome before and after dehiscence and the ginsenoside
and phytosterol compositions of the seeds in both periods in the presence of related enzymes.
Results: After seed dehiscence, the sugar, amino acid, and squalene concentrations were significantly
altered, phytosterols associated with the stigmasterol biosynthesis pathway were increased, while gin-
senoside and brassinosteroid levels were not significantly altered. In addition, squalene epoxidase,
cycloartenol synthase, 24-methylenesterol C-methyltransferase, and the stigmasterol biosynthesis
pathway were activated.
Conclusion: Overall, our findings suggest that morphological activities that facilitate ginseng seed growth
are the primary phenomena occurring during the dehiscence process. This study improves the under-
standing of P. ginseng germination processes and promotes further research of its germination and
cultivation.
© 2021 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Ginseng (Panax ginseng Meyer) is one of the most widely used
medicinal herbs. Particularly, ginseng root has been reported to
exert various therapeutic effects, such as anti-cancer potential,
immune response enhancement, blood glucose level improvement,
and insulin regulation [1—8]. Ginseng is propagated from seeds,
which exhibit morphophysiological dormancy according to Bas-
kin's classification theory [9]. Freshly harvested seeds have very
thick and hard seed coats in addition to underdeveloped embryos
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with physiological dormancy. Consequently, a two-step dormancy
release process, consisting of warm and cold stratification, is
essential for seed germination. Generally, immediately after har-
vest, the seeds are stored in sand layers at 15—20°C for 3 months to
allow warm stratification, followed by storage at 4°C for 3 months
for cold stratification [10]. During warm stratification, the embryo
begins to grow and the seed coat dehisces [11]. Therefore, the
success of warm stratification can be confirmed by seed coat
dehiscence. Dehiscence is splitting that occurs at maturity along a
built-in line of weakness in a plant structure to release its contents.
Although the morphological alterations that occur under dehis-
cence are known, their underlying molecular mechanisms or
associated pathways remain unclear [12]. Investigating the under-
lying molecular activities during dehiscence may facilitate
P. ginseng farming activities.
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Metabolomics is an “omics” approach that aims to characterize
all metabolites in a biological system. It can provide snapshots of an
organism at a specific time point, which reflects the metabolic
status [13,14]. Therefore, metabolomics is an appropriate method
for investigating metabolic phenotypes. Untargeted metabolomics
is applied in numerous fields, such as biomarker discovery, disease
diagnosis and prognosis, and geographical discrimination of plants
[15—20]. Among the most extensively applied metabolomics
techniques, GC-MS is essential in plant metabolome research. GC-
MS-based metabolomics can analyze volatile and non-volatile
metabolites, particularly primary metabolic products. In addition,
the retention indices and mass spectra are highly reproducible, and
available mass spectra libraries can facilitate the putative identifi-
cation of GC-MS spectral peaks with high confidence [21]. Most
metabolomic and transcriptomic studies of ginseng have focused
on the roots [22—24], whereas the seeds, which are essential for
propagating this species, have not been widely examined.

In this study, we investigated the metabolic alterations during
P. ginseng seed dehiscence and warm stratification. We identified
and validated differentially expressed metabolites and predicted
the pathways associated with dehiscence. We also investigated the
phytosterol content and differential gene expression before and
after dehiscence. Our results improve the understanding of the
underlying mechanisms of dormancy release in P. ginseng and may
lead to strategies for improving P. ginseng seed germination and
cultivation.

2. Materials and methods
2.1. Plant materials

The P. ginseng seeds, harvested in July 2016, were provided by
Gyeonggi Eastern Ginseng Nonghyup (Incheon, Korea). Seeds were
stored at 14°C for 16 weeks for seed coat dehiscence. The seeds
were checked every week, and wholly dehisced seeds were stored
at —80°C until analyses.

2.2. Chemical reagents

Chloroform, methanol, water, methylene chloride, and methyl
tert-butyl ether were purchased from JT Baker (Philipsburg, NJ,
USA). Campesterol, §-sitosterol, clerosterol, A’>-avenasterol, lupeol,
and 24-methylenecycloartanol were obtained from ChemFaces
Biochemical Co., Ltd. (Wuhan, Hubei, China). Benzoic acid (d5) was
purchased from Cambridge Isotope Laboratory (Andover, MA, USA).
All other chemical reagents were obtained from Sigma Aldrich (St.
Louis, MO, USA).

2.3. Untargeted metabolomics

Seed coats were removed to prevent potential contamination,
after which the embryos and endosperms were ground in liquid
nitrogen by a mortar and pestle and lyophilized. Next, 1 mL of
chloroform:methanol:water (2:5:2) was added to each sample (35
mg). Samples were spiked with benzoic acid (d5) as an internal
standard. The samples were vortexed and ultra-sonicated (Sonics &
Material, Inc., Newtown, CT, USA) for 30 min at 40°C, followed by
centrifugation at 16,000 x g for 5 min. The supernatants (600 pL)
were removed for further analyses, and the remaining 300 pL of
supernatants were used as quality control (QC) samples. The sam-
ples were dried under a nitrogen purge at 50°C, followed by the
addition of anhydrous toluene (100 pL). The samples were then
dried again under a nitrogen purge to eliminate all solvents, fol-
lowed by derivatization. 100 pL of methoxyamine hydrochloride in
pyridine (20 mg/mL) was added, and samples were incubated for
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90 min at 30°C. Further, N,0-Bis(trimethylsilyl)trifluoroacetamide
(100 pL) and trimethylchlorosilane (1%) were added and the sam-
ples were incubated again for 15 min at 70°C. The final 200-uL
samples were analyzed by GC-MS.

The extracted samples were analyzed using a GC-mass spec-
trometer (Shimadzu-QP2010, Kyoto, Japan) with a DB-5MS column
(30 m x 0.25 mm, 0.25 pm; Agilent Technologies, Santa Clara, CA,
USA) to profile the ginseng seed metabolites. An injection with
volume 1 pL and split mode with a 5:1 ratio was used. The injection
temperature was 300°C. Helium was used as a carrier gas with a
flow rate of 1 mL/min. The initial oven temperature was maintained
at 70°C, then increased to 150°C at a rate of 5°C/min, 250°C at a rate
of 8°C/min, 300°C at a rate of 5°C/min, and finally, held at 300°C for
10 min. The electron impact ionization method was used as a MS
detector with 70 eV of electron energy, and mass data were
collected using a scan mode of 30—600 m/z.

2.4. Phytosterol content analysis

Qil extraction and preparation of unsaponifiable fractions were
performed according to previously described methods [25]. Briefly,
5 g of ginseng seed powder was boiled thrice under reflux in 50 mL
of methylene chloride for 2 h. After filtering, the extract was
concentrated by rotary vacuum evaporation. One gram of the ob-
tained oil was added to 20 mL of 1 M KOH in methanol, and 1 mL of
0.1% (w/v) 5a-cholestane in methyl tert-butyl ether was added as an
internal standard and stirred overnight. Subsequently, the mixture
was diluted with 40 mL of distilled water and then extracted thrice
with 30 mL methyl tert-butyl ether. Thereafter, 15 mL of 0.5 M KOH
in methanol was added to the collected organic extract, and the
solution was washed with 30 mL of distilled water until its pH
became equivalent to the pH of the water, followed by a final wash
with 15 mL of saturated sodium chloride solution. The solvent was
eliminated by rotary vacuum evaporation.

Approximately 15 mg of the unsaponifiable fraction was sub-
jected to the above derivatization step and analyzed with the same
GC-MS instrument. The initial oven temperature was held at 190°C
for 2 min, increased to 260°C at a rate of 5°C/min, 275°C at a rate of
5°C/min, 300°C at a rate of 5°C/min, and held at 300°C for 10 min.
The other conditions were similar to those described above.

2.5. RNA extraction and real-time PCR analysis

Total RNA was extracted from ginseng seeds using an RNeasy
RNA Plant Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer's instructions. To eliminate genomic DNA, the sam-
ples were treated with RNase-Free DNase (Qiagen) before the final
washing step. The quality and quantity of extracted RNA were
measured using a NanoDrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). For real-time PCR analysis,
cDNA was synthesized from 1 ug of extracted RNA using M-MLV
reverse transcriptase (Invitrogen, Carlsbad, CA, USA). The expres-
sion levels of different genes were determined using an AB 7300
Real-time PCR system (Applied Biosystems, Foster City, CA, USA)
with PowerUp SYBR green master mix (Applied Biosystems) as the
fluorescence reporter dye. The primer sequences of the target genes
were SE (sense 5-TCCTTTTTGGGTITCCTGCTC-3', anti-sense 5'-
GTATAAGCAAGAGCAGAGCCAGC-3'), cycloartenol synthase (CAS,
sense 5'-GGGGAGTCTGCTTCACC-3', anti-sense 5-CTCCCCAACCAC-
CAGAAG-3'), f(-amyrin synthase ((-AS, sense 5'-TATCCTGGA-
CACCGAAAGAAGG-3/, anti-sense 5'-
GTAGTATGTCTTTCCAGCTGCCG-3'), dammarenediol synthase (DDS,
sense 5'-GCATACCGCCGTTGAGATTA-3’, anti-sense 5-TAGTGT-
CAATCGTTCCGCTG-3'), 24-methylenesterol C-methyltransferase
(SMT2, sense 5'-CTCTGCGAGGTGGTTCG-3', anti-sense 5'-
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GTCACCCACTCGTACGATAC-3'), 9-cis-epoxycarotenoid dioxygenase
(sense 5'-CTTGTATGACTCCAGCGGAC-3', anti-sense 5'-TATTCAC-
CATCCCTGCCTCT-3'), and glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH, sense 5'-GTGGCCAGAGTGGCTTTG-3’, anti-sense 5'-
GACCGTGACTGGCTTCTCAC-3').

2.6. Data preprocessing and compound identification

Raw data were first converted to *.cdf files using GC-MS PostRun
v.4.11 (Shimadzu, Kyoto, Japan). The *.cdf files were then converted
into *.abf format files using the Reifycs Analysis Base File converter
(Reifycs, Inc., Tokyo, Japan). Next, the files were processed using
MS-DIAL v.2.82 [26]. The data collection parameters were as fol-
lows: retention start time of 5 min, retention end time of 48.50 min,
mass range start of 30 Da, and mass range end of 600 Da. For peak
detection, a linear weighted moving average with a level of 2 scans
was applied for peak smoothing, average peak width was 5 scans,
and the minimum peak height was 2000 amplitude. For deconvo-
lution parameters, the sigma window value and electron ionization
were 0.5 and 10 amplitudes, respectively. Peak alignment was
processed using one QC file as a reference file, and other parameters
were set as to their defaults.

The deconvoluted spectra were imported into MS Search
(version 2.2) coupled with the NIST14 library for compound iden-
tification. Primarily, a match score of 700 was utilized as the
threshold for putative identification. The retention index, peak
patterns in the spectrum, and reverse match score were also
considered during the annotation process. The identities of differ-
entially expressed metabolites, when applicable, were further
confirmed by comparison with authentic commercial standards.

2.7. Exploration of data analysis and visualization

All metabolomics-related analyses were completed in Metab-
oAnalyst 4.0 [27]. Processed spectral data were log-transformed
and scaled using the Pareto scaling method before actual ana-
lyses. Principal component analysis (PCA) and heatmap analysis
were applied for data exploration and visualization. In addition, k-
means clustering was used to obtain a first impression of the po-
tential groupings of ginseng seeds before and after dehiscence.

2.8. Statistical analysis

In univariate analysis, t-test was used to detect differentially
expressed metabolites between the non-dehisced and dehisced
seed groups. In multivariate analysis, partial least squares
discriminant analysis (PLS-DA) with cross-validation was con-
ducted to develop a descriptive model of the separation between
the two groups. All metabolites that differed significantly between
the two groups in the t-test and had a variable importance in
projection score of 1.2, were selected to develop a bio-signature of
dehiscence.

Other statistical analyses were performed using SPSS Statistics
25 software (SPSS, Inc., Chicago, IL, USA). Continuous variables are
presented as the mean =+ standard deviation. A strict cut-off of
adjusted P-value, false discovery rate of 0.001, was utilized as the
significance level for metabolomics experiments. The false discov-
ery rate was adopted by considering multiple comparisons, which
is a characteristic of high-dimensional analyses. The discriminant
capacity of the bio-signature was validated using an independent
set of samples based on receiver operating characteristic curve
analysis using the PLS-DA algorithm. A P-value of 0.05 was applied
for all other analyses, unless otherwise stated.
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2.9. Functional enrichment analysis

Pathway enrichment analysis of the differentially expressed
metabolites was performed in MBRole version 2.0. Functional data
for the compounds were obtained from the Kyoto Encyclopedia of
Genes and Genomes database [28].

3. Results

3.1. Differentially expressed metabolites before and after seed
dehiscence

Overlaid chromatograms revealed clear patterns in the peaks
from different samples. However, the intensities of some peaks
were quite distinct between the two groups. PCA was performed to
visualize the metabolite profiles of samples and differences be-
tween the two groups before and after dehiscence (Fig. 1a). All 20
samples and seven quality control samples were separated on the
PCA plot. Well-clustered QC samples and their low deviation values
indicated the reliability of these experimental results. In addition,
according to the results of heatmap analysis, the metabolite
expression patterns significantly differed between the two groups
(Fig. 1c). The K-means clustering results also demonstrated that the
two groups of samples were effectively categorized (Additional file
1: Fig. S2).

t-Test and PLS-DA were performed on the same datasets; ac-
cording to the t-test results, 72 metabolites exhibited significant
changes after seed dehiscence, with 29 metabolites showing in-
creases and 43 metabolites showing decreases (false discovery
rate < 0.001). The descriptive model based on PLS-DA also effec-
tively classified the two seed groups. Accuracy, R?, and Q? were
close to the optimal values, suggesting a distinction between the
two groups (Fig. 1b). Twenty-three metabolites showed variable
importance in projection scores greater than 1.2; 15 metabolites
were identified as biomarkers of before and after seed dehiscence,
which were amino acids, sugars, and their derivatives (Table 1).

To validate the metabolites as biomarkers of seed dehiscence,
receiver operating characteristic curve analysis was performed on
another set of experimental results using new samples and based
on the same sample treatment and study design. This curve anal-
ysis based on the new dataset and 15 predicted biomarkers
confirmed that the two seed groups were well-differentiated
(Fig. 2a), and the area under the curve results indicated that they
were suitable biomarkers for ginseng dehiscence (Fig. 2b). The
heatmap derived from hierarchical clustering analysis also revealed
that the two groups had distinct metabolite profiles (Fig. 2c).

3.2. Pathway enrichment analysis suggests squalene is crucial in
ginseng seed dehiscence

The 15 metabolites identified as potential biomarkers were
subject to pathway enrichment analysis to predict the potential
metabolic pathways associated with seed dehiscence. Metabolic
pathways associated with only 9 metabolites were identified
(Table 2). These 9 metabolites are potentially involved in various
metabolic pathways. For example, L-valine, L-leucine, and L-isoleu-
cine were associated with seven different pathways, whereas
squalene and myo-inositol were only associated with “biosynthesis
of secondary metabolites” and “metabolic pathways.” In particular,
squalene is a precursor of ginsenosides, the primary pharmaco-
logical ingredient in ginseng and a plant steroid essential for plant
growth. Squalene dynamics may facilitate our understanding of the
underlying molecular mechanisms of seed dehiscence.
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Fig. 1. Score plot of principal component analysis (PCA) (a), score plot of partial least squares discriminant analysis (PLS-DA) (b), and heatmap visualization (c) of before and after
seed dehiscence. Red represents after dehiscence, green represents before dehiscence, and blue represents quality control (QC) samples. In the heatmap, “Cn” denotes the detected
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Table 1
Differentially expressed metabolites before and after ginseng seed dehiscence.

Journal of Ginseng Research 46 (2022) 225—234

Compound name Compound number Retention time (min) Changes after dehiscence VIP Score Assign method
L-Valine-TMS c3 6.66 Increase 135 Standard
2-Aminobutyric acid Cc8 8.55 Increase 1.23 Standard
L-Valine-2TMS C11 9.62 Increase 1.34 Standard
L-Leucine C14 11.07 Increase 1.36 Standard
L-Isoleucine C16 11.6 Increase 1.31 Standard
L-Serine C21 13.37 Increase 1.67 Standard
L-Threonine C23 13.97 Increase 1.75 Standard
Glutaric acid 24 14.58 Decrease 1.44 Standard
L-5-Oxoproline C32 17.3 Increase 1.34 Library
L-Asparagine-2TMS C39 18.91 Increase 1.27 Standard
L-Phenylalanine C41 19.32 Increase 1.73 Standard
L-Asparagine-3TMS C42 20.14 Increase 1.42 Standard
Tyrosine C50 23.42 Increase 1.38 Standard
D-Trehalose C75 33.33 Decrease 1.81 Library
p-myo-Inositol Cc77 33.94 Decrease 1.48 Library
Squalene C78 34.39 Decrease 1.26 Standard
Galactinol C84 36.18 Increase 1.87 Library

3.3. Comparison of plant steroid composition

Plant steroids, including phytosterols and brassinosteroids
(BRs), are synthesized from squalene. Thus, a decrease in squalene
after seed dehiscence may influence the composition of the seed
oil. Therefore, the unsaponifiable fraction in the seed oil before and
after ginseng seed dehiscence was compared using GC-MS (Fig. 3)
and 12 phytosterols were identified using a combination of the
retention order and mass fragmentation data or authentic stan-
dards based on references [29,30] (Table 3).

The retention order and mass fragmentation patterns were
compared with those determined in a similar previous study that
analyzed American ginseng seed oil [25], revealing that peaks 8, 10,
11, and 12 were assigned tentatively as A>2425)-stigmasterol, A7-
avenasterol, 24-methylenecycloartanol, and citrostadienol,
respectively. Peaks 1—7 and 9 were confirmed as squalene, 2,3-
oxidosqualene, campesterol, stigmasterol, clerosterol, §-sitosterol,
A3-avenasterol, and lupeol, respectively, by comparing the reten-
tion times and mass spectra of their authentic standards. The 8
phytosterols identified using standards were analyzed quantita-
tively, and 2,3-oxidosqualene was found to be a major component
of ginseng seed oil, followed by squalene and A>-avenasterol. Based
on the comparison of the pre- and post-dehiscence groups, 2,3-
oxidosqualene, A>-avenasterol, and stigmasterol increased signifi-
cantly after dehiscence, whereas squalene and lupeol decreased
after dehiscence; however, campesterol, clerosterol, and (-sitos-
terol exhibited no significant differences (Table 4).

Because the amounts of Brassinolide (BL) in plants are often very
low, it was analyzed in the unsaponifiable fraction of ginseng seed
oil as a derivative of bismethaneboronate using GC-MS-selective
ion monitoring. Bismethaneboronate BL (BL-BMB) ions were
observed at m/z 528, and their mass fragmentation is shown in
Additional file 1: Fig. S3. Please consider using the following
summarized alternative that I have provided below:

“We analyzed fragment ions of BL-BMB in ginseng seeds at m/z
155, 177, and 374, based on a previous study which identified
abundant fragment ions at these three values BL-BMB using GC-
electrospray ionization-MS [31]. The peak areas of BL-BMB did
not vary between non-dehisced and dehisced seeds, suggesting BL
was not altered during dehiscence.

Analysis of the plant steroid composition revealed that phy-
tosterols showing increases following seed dehiscence belong to
the stigmasterol biosynthesis pathway (Fig. 4), also indicating that
stigmasterol biosynthesis is activated during warm stratification.
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3.4. Differential expression of enzymes based on real-time PCR

To confirm that the stigmasterol biosynthesis pathway is acti-
vated mainly during warm stratification, SE, CAS, (6-AS, DDS, and
SMT2 were compared between pre- and post-dehiscence seeds.
According to Qi et al [32], 9-cis-epoxycarotenoid dioxygenase
increased significantly after warm stratification and is a positive
control for seed dehiscence. According to the results of real-time
PCR, SE, CAS, and SMT2 expression increased significantly after
seed dehiscence, whereas (-AS expression was not altered. In
addition, DDS was undetectable both before and after seed dehis-
cence (Fig. 5).

4. Discussion

Panax ginseng seeds typically exhibit morphophysiological
dormancy, indicating that they require both morphological and
physiological dormancy release before germination can occur.
These releases take place in the form of warm stratification, known
as dehiscence, followed by cold stratification. The dehiscence pro-
cess is crucial for the cultivation of ginseng because it can take more
than 18 months to germinate ginseng seeds if the dehiscence
process does not occur appropriately after seeds are stored in the
sand for 3 months at 15—20°C [11,33]. Therefore, various studies
have attempted to develop strategies for increasing ginseng seed
dehiscence rates. For instance, Yang et al [34] reported that treat-
ment with gibberellin enhances seed dehiscence rates compared to
warm stratification exclusively. In addition, increasing gibberellic
acid (GAs) concentrations can increase seed dehiscence rates
[35,36]. Furthermore, treatment of ginseng seeds with kinetin in
combination with GA3 can increase dehiscence rates to 96.2%,
compared with a rate of 90.6% in seeds exposed to warm stratifi-
cation alone [12]. In a previous study of American ginseng (Panax
quinquefolius L.) seeds, 25,190 genes were compared by tran-
scriptomic analysis based on Kyoto Encyclopedia of Genes and
Genomes pathway annotation in digital gene expression libraries.
Enrichment pathway analysis revealed pathways potentially asso-
ciated with seed dormancy releases, such as steroid biosynthesis,
flavonoid biosynthesis, flavone and flavonol biosynthesis, and
starch and sucrose metabolism [32]. Transcriptomic analysis on
Panax notoginseng (Burk) F.H. Chen seeds revealed 78 differentially
expressed genes associated with seed dormancy; of these, 15 genes
were involved in the abscisic acid and GA3 pathways [37].

In the current study, by comparing the metabolome of P. ginseng
seeds before and after dehiscence, we found that amino acids and
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revealed a distinction before and after seed dehiscence.

Table 2
Metabolic pathways® involving identified Metabolites predicted as dehiscence biomarkers.
t-Valine  i-Leucine  i-Isoleucine  1-Serine  1-Threonine 1-Asparagine Tyrosine  myo-Inositol  Squalene

Aminoacyl-tRNA biosynthesis [0} (o} 0] [0} [0} 0 0] - -
Valine, leucine, and isoleucine biosynthesis O (e] 0] - (e] - - - -
ABC transporters (¢] (¢] 0] [0} [0} - - - -
Biosynthesis of secondary metabolites [0} [0} 0] [0} [0} 0] 0] (0] [0}
Glucosinolate biosynthesis (¢] (¢] 0] - - - 0 - -
Valine, leucine, and isoleucine degradation O (e} (0] - - - - - -
Cyanoamino acid metabolism - - - [0} - (0] - - -
Metabolic pathways [0} [0} 0] [0} [0} o 0] 0] [0}

@ Pathway related to 2-aminobutyric acid, glutaric acid, .-5-oxoproline, .-phenylalanine, p-trehalose, and galactinol was not identified. O: compounds in the pathway.
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Identified peaks are listed in Table 3.

Table 3
Fragmentation ions for identification of phytosterols in Panax ginseng

Peak Compound Fragmentation ions, m/z (RI)?

M+ M- M- M- M- others
15 90 105 129
1 Squalene 410 367[1],341[2],231[1],203[2],189[2], 149 [11], 137 [18], 136 [20], 123 [14], 121 [19], 109 [13], 107 [12], 95
0] [27],93 [16], 82 [11], 81 (93), 69°
2 2,3-Oxidosqualene 426 357 [1],231 [1], 203 [3], 191 [2], 149 [9], 135 [22], 133 [7], 123 [14], 121 [17], 109 [18], 107 [19], 95 [28], 93
[1] [25], 81 (90), 71 [50], 69°
3 Campesterol 472 457 382 367 343 315]3], 255 [14], 145 [31], 129"
[19] [5] [47] [23] [47]
4 Stigmasterol 484 469 394 379 355 343 [4], 255 [26], 213 [8], 145 [19], 133 [21], 129 [53], 97 [20], 95 [19], 83"
[20] [3] [23] [8] [8]
5  Clerosterol 484 469 394 379 355 386 (6], 379 [11], 355 [16], 296 [11], 255 [13], 213 [13], 139 [30], 129 (88), 119 [38], 107 [35], 81 [48], 55"
[33] [8] [25] [11] [16]
6  (-Sitosterol 486 471 396 381 357 394 [25],255[15], 213 [9], 145 [29], 129°, 95 [40], 73 [50]
[25] [7] [52] [20] [47]
7 AS-Avenasterol 484 469 394 379 355 386 (79), 296 (68), 281 [45], 257 [24], 255 [14], 129°, 95 [47], 55 (94)
[61 51 31 [5] 5]
8  A>*5)._stigmasterol 484 469 394 379 355 386 [43], 343 [9], 296 [39], 281 [26], 257 [14], 255 [11], 253 [17], 129 (73), 121 [26], 119 [40], 107 [32], 105
[111 [5]1 [6] [7] [4] [29], 97 (68),95[37], 93 [31], 81 [40], 75 [42], 73 (72), 69 (67), 55"
9  Lupeol 498 483 408 393 369 279 [12],218[31],203 [41], 190 [53], 189 (75), 136 [45], 135 (64), 123 [45], 121 (64), 109 (94), 107 (65), 95
[16] [71 [11] [13] [13] (92), 93 (61), 81 (71), 75 (75), 73"
10  A7-Avenasterol 484 469 394 379 386 [41], 371 [6], 343", 296 [7], 281 [9], 253 [27], 145 [18], 119 [17]
[2] (6] [1] [4]
11 24- 512 497 422 407 379 [54], 353 [15], 300 [9], 147 [41], 135 (61), 121 [55], 109 (60), 107 (62), 105 [44], 95 (83), 81 [58], 73"
Methylenecycloartanol [1] [3] [40] [38]
12 Citrostadienol 498 483 408 393 400 [51], 357, 267 [27], 145 [21], 133 [22]
2] [4] [2] 6]

@ Relative intensity compared to base peak (percent).
b Base peak (relative intensity = 100 %).

sugars were significantly altered. Freshly harvested ginseng seeds
have an undeveloped embryo [33]. Therefore, during warm strati-
fication, changes in amino acid and sugar concentrations as well as
composition may be associated with embryogenesis of the ginseng
seed. Indeed, similar physiological phenomena, which are strongly
associated with starch and protein accumulation, have been re-
ported in Arabidopsis thaliana and Theobroma cacao L. seeds [38,39].
Furthermore, numerous enzymes associated with the biosynthesis
of plant steroids in ginseng have been reported [40,41]. As illus-
trated in Fig. 4, squalene epoxidase converts squalene into 2,3-
oxidosqualene. The 2,3-oxidosqualene is converted into three sig-
nificant compounds, cycloartenol, f-amyrin, and dammarenediol
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by CAS, (-AS, and DDS, respectively. Cycloartenol is one of the
precursors of phytosterols. Oleanane-type triterpene saponins
originate from $-amyrin. In addition, dammarenediol is an essential
precursor of dammarane-type triterpene saponins. Following
activation of the biosynthetic pathway by CAS, a large amount of
intermediate 24-methylenelophenol is formed. The biosynthetic
pathway can induce divergence in phytosterol synthesis. When C4-
demethylase is activated, it becomes episterol, which is the pre-
cursor of BL. Additionally, 24-ethylidenelophenol, the precursor of
stigmasterol, is formed via methylation of 24-methylenelophenol
through activation by SMT2 [42,43]. The squalene concentrations
were notably decreased following seed dehiscence in the present
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Table 4
Phytosterol contents before and after Panax ginseng seed dehiscence
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study. In the triterpene biosynthetic pathway in ginseng, squalene
is converted into 2,3-oxidosqualene by SE, and 2,3-oxidosqualene is
a precursor of two different types of ginsenosides, dammarene-

Peak Compound Contents (mg per 100 g of seed oil,
n=3) type and oleanane type, in addition to phytosterols including BRs
Before dehiscence After dehiscence [44,45].
1 Squalenc® 166.05 = 11.15 12019 + 21.08 Glnsen05{des.are some of the most pharcheutlcally active
2 2,3-Oxidosqualene* 362.75 + 32.92 616.45 + 47.45 compounds in ginseng, and some studies have aimed to increase
3 Campesterol 1.85 + 0.70 2.05+ 033 their concentrations in P. ginseng roots, with a primary focus on
4 Stigmasterol* 25.58 +4.00 48.91 + 0.64 squalene. Overexpression of the squalene synthase gene increases
5 Clerosterol 1.37 + 040 1.29 + 042 the levels of downstream enzymes, including SE, CAS, §-AS, and
6 B-Sitosterol 5522 +2.25 58.72 + 6.36 DDS hich i h . id d ph I
7 AS-Avenasterol* 13852 + 6.68 17071 + 7.98 DS, which increase t e ginsenoside and p ytostero concent.ra—
8 AS2425)_stigmasterol _ R tions [46]. In addition, Sivakumar et al [47] reported that exposing
9 Lupeol* 14.86 + 0.12 8.71 + 0.64 P. ginseng roots to exogenous squalene increased phytosterol as
7 . . . .
10 A ‘A"efr‘laslte“’l l L - well as ginsenoside concentrations. Therefore, the alteration of the
E girliita dﬁ'eir:)elcyc oartanol 926 = 1.02 10.20 +0.92 squalene concentrations in the present study suggests shifts in the
ginsenoside or phytosterol concentrations. Ginsenosides were not
* P < 0.05.
7
! o+~ Famesyl-PP
~?
4 \\
I' 0.y Presqualene-PP
\
N
- Squalene
24-Ethylidene
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(:) Undetected O Detected, Unchanged. O Detected, Decreased. O Detected, Increased. D Enzyme

Fig. 4. Trends observed in phytosterol biosynthesis pathways. Red phytosterols increased, while blue phytosterols decreased after seed dehiscence.
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Fig. 5. Relative levels of expression of genes involved in the phytosterol and ginsenoside biosynthetic pathways. Asterisks indicate that the change in the gene after dehiscence was
significant (P-value < 0.005). NCED1 was used as positive control for ginseng seed dehiscence.
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observed before or after ginseng seed dehiscence using HPLC-UV-
visible spectroscopy (data not shown). However, one of the end-
products of phytosterol biosynthesis, stigmasterol, was increased
significantly after ginseng seed dehiscence; in contrast, the con-
centrations of other end-products, campesterol and BL, were not
altered. BL is the most biologically active brassinosteroid, is syn-
thesized from campesterol [48]. Therefore, the presence of cam-
pesterol implies the presence of BL in ginseng seeds. Phytosterols
are primary components of the cell membrane and facilitate cell
fluidity and permeability, similar to other sterols. Phytosterol syn-
thesis is increased during seed germination to meet the demands
for new membranes and, with seed maturity, the rate of increase
declines gradually. The roles of phytosterols in cellular proliferation
and differentiation have also been determined. Although choles-
terol alone restores growth by only 40—50% compared to that in the
control, with stigmasterol alone, it is possible to achieve full growth
[49,50].

Phytosterols can also regulate membrane-bound enzymes. For
example, stigmasterol stimulates proton pumps in cellular mem-
branes; therefore, it participates in some signal transduction ac-
tivities associated with seed development [49—52]. Phytosterols
are also precursors of several plant hormones, particularly BRs. It
has been reported that BRs regulate cell elongation and differen-
tiation. Consequently, BRs control seed germination, development,
and tolerance to numerous stress factors [53—55]. BRs perform
“cross-talk” with the key growth-regulating hormones GAs and
abscisic acid (ABA). BR binding to BRI1 (BRASSINOSTEROID
INSENSITIVE 1) leads to heterodimerization with BAK1 (BRASSI-
NOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1), and
the dimer prohibits the ability of BIN2 (BRASSINOSTEROID
INSENSITIVE 2) to phosphorylate BZR1/BES1 (BRASSINAZOLE
RESISTANT 1/BRI1-EMS-SUPPRESSOR 1) [56]. Activated BZR1/BES1
can promote GA3 biosynthesis and GA3; degradation of DELLA pro-
teins which then promote the repression of BZR1/BES1 activity. It
has also been reported that BR and ABA negatively regulate each
other [57]. Increased ABA levels upregulate BIN2, one of the pri-
mary negative regulators of BR signaling, and BR inhibits ABA ac-
tivity through PP2C (protein phosphatase 2C) [58]. In a previous
study, ABA levels increased during the dehiscence period in
P. ginseng seeds and decreased discernably after dehiscence; GA3
levels were not altered during dehiscence and increased after seed
dehiscence [59]. The increased ABA levels may regulate BR levels
during the seed dehiscence period, leading to no change in BR after
seed dehiscence.

Our results demonstrate that metabolites are important factors
in morphological growth changes during P. ginseng seed dehis-
cence. The results suggest that seed growth is the primary activity
occurring under warm stratification, whereas other physiological
changes, such as hormonal changes, may take place later. For
germination in P. ginseng seeds, warm stratification followed by
cold stratification is required. Therefore, to further enhance our
understanding of the mechanisms of P. ginseng seed germination,
additional in-depth investigations are warranted to determine the
metabolic activities and alterations occurring during cold
stratification.

5. Conclusions

The metabolite profiles of ginseng seeds before and after
dehiscence were analyzed using gas GC-MS and compared to
identify differentially expressed metabolites between the two
groups. Sugar, amino acid profiles, and particularly squalene con-
centrations were altered after seed dehiscence. Phytosterols, which
are precursor metabolites of squalene associated with seed growth,
were increased after seed dehiscence. In addition, enzymes
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associated with phytosterol biosynthesis, SE, CAS, and SMT2,
increased after seed dehiscence. Nevertheless, other secondary
metabolites such as ginsenosides and BRs were potentially not
associated with dehiscence. Overall, our results suggest that during
P. ginseng seed dehiscence, morphological activities, particularly
growth, are dominant.
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