
Complete Genome Sequences of Two Listeria Phages of the
Genus Pecentumvirus

Tracey L. Peters,a Lauren K. Hudson,a Yaxiong Song,a Thomas G. Denesa

aDepartment of Food Science, University of Tennessee, Knoxville, Tennessee, USA

ABSTRACT Bacteriophages isolated from environmental sources can be used as a
biocontrol against the foodborne pathogen Listeria monocytogenes. Here, we present
the complete genomes of LP-039 and LP-066, two Pecentumvirus bacteriophages
that infect L. monocytogenes. The genome sizes of LP-039 and LP-066 are 136.2 kb
and 139.0 kb, respectively.

Listeria monocytogenes has caused 1,151 infections in the United States between
2010 and 2018, with a 17% mortality rate (1), and was mainly associated with

contaminated dairy or fruit products (2). Lytic Listeria phages, such as Pecentumvirus
P100, are used to control L. monocytogenes in the food industry (3–7). Phages LP-039
and LP-066 are from a collection of Listeria phages previously isolated from silage
samples obtained from New York dairy farms using L. monocytogenes strain MACK as
previously described (8). These phages are of interest because they exhibit activity
against two phage-resistant L. monocytogenes strains (9).

Phage DNA was isolated using a phenol-chloroform method (10), and libraries were
prepared using Nextera XT kits. Samples were sequenced with an Illumina MiSeq v3
instrument (300-bp paired-end read chemistry; 275 cycles). Total read numbers of 55,642
and 160,826 were obtained for LP-039 and LP-066, respectively. The average read
length was 251 bp. Reads were preprocessed with Trimmomatic v0.35 (ILLUMINACLIP:
NexteraPE-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36) (11)
and FastQC v0.11.7 (12). Single contigs were assembled using SPAdes v3.12.0 with the
careful option (13). The redundant terminal region of A511 (14) mapped to the contigs
at internal loci with higher read coverage (�2� greater) than the rest of the contig. The
contigs were reoriented so that these redundant terminal regions were correctly
located at both ends. This was confirmed by mapping reads to the reoriented contigs
to ensure that coverage across the redundant terminal regions and the newly formed
contig junctions (where original contig ends were joined) was consistent with the rest
of the assembly. Assembly statistics were determined using QUAST v4.6.3 (15), BBMap
v38.88 (16), and SAMtools v0.1.8 (17). The genomes were annotated with RASTtk
(customized pipeline, “annotate-proteins-phage” moved above “annotate-proteins-
kmer-v2”) (18), and annotations of the redundant terminal regions were manually
added. Relatedness to Pecentumvirus phages (ICTV Master Species List 2018b.v2
[https://talk.ictvonline.org/files/master-species-lists/m/msl/8266]) was determined
with the JSpeciesWS average nucleotide identity MUMmer (ANIm) method (19). Variant
analysis was performed with McCortex v0.0.3 (20) (k � 101; breakpoint caller;
JOINT_CALLING�yes; USE_LINKS�yes) and SnpEff v4.3t (21).

LP-039 and LP-066 have terminally redundant linear genomes with large invariable,
noncohesive ends. LP-039 had a total genome assembly length of 136,234 bp (includ-
ing the 3,208-bp terminal redundancy) with 88� average coverage and 35.9% G�C
content. LP-066 had a total genome assembly length of 138,918 bp (including the
3,128-bp terminal redundancy) with 272� average coverage and 35.8% G�C content.
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Both genomes contained 193 to 198 coding sequences (each contained 9 duplicate
coding sequences due to the terminal redundancy) and 17 tRNAs. LP-039 is closely
related to LP-048 (Table 1). Variant analysis of LP-039 compared to LP-048 showed one
mutation (a 3-nucleotide deletion) in LP048_062 (hypothetical protein) with potential
upstream effects in tRNA genes. LP-066 is closely related to LP-083-2 (Table 1). Variant
analysis of LP-066 compared to LP-083-2 showed four mutations. LP083-2_021 and
LP083-2_130 (hypothetical proteins) each had one synonymous mutation with minimal
predicted effects. One conservative nonsynonymous mutation (G � T) was found at
position 1871 in gene LP083-2_152 (DNA polymerase I), producing a valine rather than
a glycine. A 15-nucleotide in-frame insertion was found in gene LP083-2_101 (hypo-
thetical protein) near genes involved in recombination. This mutation resulted in the
duplication of the amino acid sequence K-E-E-P-K.

LP-039 and LP-066 were independently isolated from similar environmental sources
as Listeria phages LP-048 and LP-083-2 (22) and are likely examples of recent evolu-
tionary genetic divergence from a common ancestor under natural conditions.
Genomic characterization of closely related phages such as the ones presented here
will provide valuable information on genetic variation between wild phage strains and
may help identify candidate phages for biocontrol applications.

Data availability. These phages are located under BioProject number PRJNA544516
(BioSample numbers SAMN12053438 and SAMN12053439). The raw reads have been
deposited in the SRA (accession numbers SRR9597082 and SRR9597083), and the
annotated genomes in GenBank (accession numbers MN172529 and MN128594).
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