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Abstract

Influence maximisation, or how to affect the intrinsic opinion dynamics of a social group, is
relevant for many applications, such as information campaigns, political competition, or mar-
keting. Previous literature on influence maximisation has mostly explored discrete alloca-
tions of influence, i.e. optimally choosing a finite fixed number of nodes to target. Here, we
study the generalised problem of continuous influence maximisation where nodes can be
targeted with flexible intensity. We focus on optimal influence allocations against a passive
opponent and compare the structure of the solutions in the continuous and discrete regimes.
We find that, whereas hub allocations play a central role in explaining optimal allocations in
the discrete regime, their explanatory power is strongly reduced in the continuous regime.
Instead, we find that optimal continuous strategies are very well described by two other pat-
terns: (i) targeting the same nodes as the opponent (shadowing) and (ii) targeting direct
neighbours of the opponent (shielding). Finally, we investigate the game-theoretic scenario
of two active opponents and show that the unique pure Nash equilibrium is to target all
nodes equally. These results expose fundamental differences in the solutions to discrete
and continuous regimes and provide novel effective heuristics for continuous influence
maximisation.

Introduction

Due to the unprecedented interconnectedness achieved in current societies [1, 2], the study of
opinion dynamics has been a topic that has found much attention in recent years. The abun-
dance and immediacy of virtual communication have allowed an almost instantaneous spread
of information, leading to new phenomena of much interest for both researchers and the
broader public, such as echo chambers [3], viral posts [4, 5], and opinion polarisation [6]. One
important problem in this field is influence maximisation, which is relevant because of its links
to social policies [7, 8], politics [9], or advertising [10]. Influence maximisation (IM) focuses
on how external forces can exploit the opinion dynamics of a social group to maximise the
spread of the desired opinion [10, 11]. Researchers in the field chiefly address the question of
which individuals should be influenced—under a budget constraint—to achieve maximum
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spread. Studies on IM allow us to better understand different aspects of influencing attempts,
such as under which conditions one can effectively introduce the desired opinion in a popula-
tion [12, 13], how influencing strategies interact when competition for influence takes place
[14, 15], or what the effect of external influence is on reaching consensus in a population [16].

Modelling the spread of opinions has found much attention in the past and many different
models have been proposed to capture various aspects of opinion dynamics [17, 18]. Static
models (also known as progressive models) have an established tradition in the IM literature
[11, 19], particularly featuring the independent cascade [20] or threshold [21] models. Models
in this class only allow opinion changes in one direction and typically model the spread of a
novel opinion brought into a social group by a small group of individuals. However, this
modelling assumption only applies to short timescales and is not suitable for changing envi-
ronments [22], so a significant amount of IM literature has instead employed dynamic models
[23-26] which attempt to describe the stochastic fluctuations of opinions over time.

Among dynamic models, the voter model [27, 28] stands out for its long tradition in the
field and its mathematical tractability. In the voter model, opinion dynamics are driven by
individuals copying the opinions of peers they interact with. Despite the simplicity of this
update rule, the model has been found to match very well with real data at the aggregate level
[29, 30]. Although in the voter model opinions flicker back and forth, homogeneous popula-
tions eventually often arrive at a consensus in timescales that depend on the network topology
[31]. However, this situation changes in the presence of agents with fixed opinions, commonly
known as zealots [22, 32, 33], stubborn agents [23, 24, 34], or frozen nodes [35, 36], which drive
the population to a dynamic equilibrium with both opinions present [32]. Due to the impor-
tant role that zealots play in the composition of opinions in equilibrium, some works conceive
IM in the voter model as the optimal placement of zealots in the network [23, 24]. This
approach assumes that nodes can be readily transformed into zealots of the desired opinions
without considering the costs and effort of conversion, which is too strong an assumption. In
contrast, other approaches more related to network control, model IM via external zealots that
choose how to exert influence on a limited set of nodes in the social network [26, 33].

Previous research on IM —both on static and dynamic models— has mainly employed a
discrete approach, i.e. identifying a set of K individuals whose control maximises the share of
the desired opinion [7, 8, 10, 11, 22, 23, 26, 33, 37-41]. However, the discretisation of influence
targeting is artificially constraining if campaigners wish to allocate different amounts of
resources to different groups. The latter strategy can be better captured by a continuous
approach where the external controller can tailor the intensity of influence to individual target
nodes [42-44].

Importantly, there are significant differences in optimal strategies in the discrete and con-
tinuous allocation regimes regarding the structure of optimal solutions. For instance, targeting
hub nodes or nodes with high centrality are common heuristics that have been shown to per-
form well in the discrete allocation regime [22, 33, 37-40, 45, 46]. While other studies have
demonstrated that taking into account the full topology performs better than such heuristics,
they mainly provide algorithmic approximations to optimal solutions without examining
details of the topology of resultant optimal influence allocations [8, 11, 41]. In contrast, the
focus of the present paper is on providing analytical solutions and explaining optimal alloca-
tions. In the continuous allocation regime, previous work of us for the voter model points to
an absence of preference towards hub nodes, while highlighting instead the dependence on the
strategy of an opponent for choosing optimal allocations [43, 44, 47]. We presented two simple
heuristics that are effective for IM: a direct response to the nodes targeted by the opponent
(termed shadowing) and an indirect response that focuses on the neighbours of the nodes tar-
geted by the opponent (termed shielding). We introduced them through numerical examples
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and provided a deeper analysis on star and K-regular graphs, but analytical results and analysis
on general complex network topologies is still outstanding and will be presented in this paper.

Here, we combine and extend our previous work to achieve a complete characterisation of
the structure of optimal allocation strategies. We achieve this by providing four main contribu-
tions. First, we develop a more general framework for understanding continuous IM for the
voter model on complex networks. By combining analytical results and numerical techniques,
we analyse the structure of optimal solutions and establish that they tend to be spread across
large parts of the network. Second, by comparing the structure of optimal solutions in the dis-
crete and continuous allocation regimes, we provide a deeper understanding of continuous
optimal allocation and explain it through various heuristics. More specifically, we explore to
what extent optimal solutions in the continuous and discrete regimes can be explained by hub
targeting, shadowing, or shielding. Our results demonstrate that whereas hub preferences are
very important in the discrete setting, shadowing and shielding heuristics are the predominant
factors explaining maximal influence in the continuous case. Third, we quantify the degree to
which an opponent strategy can be exploited by an active controller. Our result shows that
strategies are the more exploitable, the more their allocations to low-degree nodes deviate
from optimality. Fourth, we analyse the game-theoretical scenario where both external con-
trollers actively adapt their strategy and provide empirical understanding of the Nash equilib-
rium.

Model of opinion dynamics and framework for IM

In the following, we consider a group of N agents represented by the nodes of a social network.
Social connections are given by positively weighted links of strength w;;. Agents are assumed
to hold one of two possible binary opinions (A or B) and opinion diffusion follows the classical
voter model [27, 28], with nodes copying the opinions of neighbours with a probability pro-
portional to the weight of the link connecting them. Further to the standard model, external
influence is introduced via zealots as external controllers [26, 33, 48]. We assume there are two
external controllers respectively holding either of the two opinions. These controllers exert
influence on the network via unidirectional links with weights w,; (w,,;) that are also taken into
account in the updating dynamics of opinions. In the continuous regime, controllers can freely
decide which nodes they target, with positive continuous strengths w,,, w,, € R" and subject
to a budget constraint, B > > w,.(w,,). The discrete regime is a sub-case of the continuous
regime which only allows two possible weights, w,;, wy,; € {0, g}, where g is a fixed gain. The
number K of nodes thus targeted is related to the budget via K = | B/g].

The behaviour of the opinion dynamics can be studied by considering the evolution of
probabilities x;() € [0, 1] that a node holds opinion A [32, 33, 40]. From this perspective, the
dynamics of a node can be described by the rate equation

By (g gy 2t s 2L ) W
dt YdAwytw, T dFw,tw,

: (1)

where d; is the weighted degree of a node, d; = %; w;;.

We focus on IM in the steady-state, i.e. when the system has arrived at its unique attractor
x*, given by (L + W, + W,)x* = w,[33], where L is the weighted Laplacian of the network, W,
(W) is a diagonal matrix whose diagonal entries correspond to w,; (ws;), and bold symbols are
column vectors. The total vote share of nodes holding opinion A at the equilibrium is obtained
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1 1.,. 1 _
X:Nin:NITx :NlT(L—&— W, +Ww,) Wi, (2)

For the IM problem, without loss of generality, we assume that the controller favouring A is
active, i.e. she seeks to find the best way to distribute her link weights, w,, with an aim to maxi-
mise her vote share, X. We generally assume that the opposing controller (favouring B) is pas-
sive, with fixed links w;, known by the active controller, and that controllers have full
information about the network structure. Formally,

a

1., ;
max X, st X=2 1L+ W, + W) ' W,1, Zwa,. <B, w,>0. (3)

The continuous modelling of IM brings a methodological benefit: the assumption of continu-
ous strengths allows for better mathematical treatment of the problem since local search tech-
niques can be applied for finding an optimum, as opposed to the combinatorial optimisation
that is required in the discrete IM problem. Moreover, as the IM problem defined in our
framework is concave (for the proof, see Section 12 in S1 Appendix), convex optimisation
techniques such as gradient ascent are guaranteed to obtain arbitrarily accurate solutions.

Results

Our results are structured as follows. We first perform an initial exploration of the structure of
optimal allocation strategies in the continuous allocation regime. Second, we investigate in
more depth the three heuristics that can be used for better understanding optimal allocations
in the continuous regime: shadowing, shielding, and hub preferences. For this purpose, we
provide an analytical approximation to optimal allocations that explains shadowing for arbi-
trary network topologies and further quantify the extent to which shadowing and shielding
can account for optimal influence configurations. Third, we perform a similar analysis on opti-
mal solutions in the discrete regime and directly compare the contribution of shadowing,
shielding, and hub targeting heuristics in either regime. Last, we look at the game-theoretical
scenario and characterise the Nash equilibrium of two active opponents.

For illustration, the experiments shown in the manuscript are performed on the real-world
email interaction network from [49] of size N = 1133, as an example of a typical topology
found in social networks. Details about the network can be found in Section 1 in S1 Appendix
and the network data can be found in S1 Dataset. However, the results shown here also apply
to more general classes of complex networks, as it is demonstrated in Section 11 in S1 Appen-
dix. Optimal continuous and discrete allocations are numerically determined via gradient
ascent and stochastic hill climbing for the continuous and discrete regimes, respectively. See
the Methods section for more details.

Structure of optimal allocations in the continuous regime

We first qualitatively explore the shape of optimal allocations in the continuous regime. The
continuous regime allows for richer allocation decisions as controllers can reach all nodes in
the network and modulate the strength of the allocation given to each node. If linked to practi-
cal examples, this would correspond to campaign managers using diverse modes of campaign-
ing, potentially mixing a soft campaign directed to all individuals in a population with
stronger campaigning directed at specific groups. Here, we address the question, if campaign
managers would benefit from using such diverse modes of campaigning. For an initial
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Fig 1. Preliminary exploration of the optimal influence profile in the continuous regime. a Distribution of optimal influence allocations sorted in
descending order when the passive controller discretely targets K = 16 randomly chosen nodes and both controllers hold the same budget, B = N{(d) /60.
Allocations are coloured by the allocation group they belong to. b Entropy of optimal allocation distributions in response to passive controllers with
discrete allocations that are more or less widely spread (as measured by the number of nodes K that they target) and different budget ratios. The entropy of
discrete allocations of the passive controller is also depicted (dashed line). ¢ Percentage enhancement of control by optimal continuous allocations over
optimal discrete allocations for varying K and budget ratios. Error bars represent standard errors over 15 experiment samples and the total budget of both
controllers sums up to 5, + B, = N{(d)/30.

https://doi.org/10.1371/journal.pone.0252515.g001

exploration, we set the passive controller to target K random nodes in the network with equal
strength. We then numerically compute optimal allocations for the active controller via gradi-
ent ascent for continuous allocations and hill-climbing for discrete allocations (see the Meth-
ods section for more details).

In Fig 1a, we present optimal control allocations sorted in descending order and obtained
via gradient ascent. Results shown in the figure have been obtained from a numerical experi-
ment where the passive controller targets K = 16 nodes and both controllers have equal bud-
gets. To facilitate the analysis and description of the optimal allocation profile, we have divided
allocations into disjoint groups by targeting strength w,; with respect to the mean allocation
(W,). We have thus distinguished four disjoint groups G = {H, A, V, Z} of nodes with high allo-
cations H = {i|w,; > 8(w,,)}, above-average allocations A = {i|8(w,) > w,; > (w,)}, below-aver-
age allocations V = {i|(w,) > w,; > 0}, and zero allocations Z = {i|w,; = 0}. Note that we have
chosen this particular partitioning to characterise the four distinct groups that can be observed
in the optimal allocation profile from Fig 1a and that this grouping is mainly employed for
illustrative purposes.

If a controller targeted K nodes in a discrete fashion (and K < N/8), allocations to the K tar-
geted nodes would belong to the high-allocation group H while all remaining allocations
would belong to the zero-allocation group Z. In contrast, we consider that a controller makes
use of the continuous flexibility if allocations are spread across the network (with few nodes
belonging to Z) and cover a wide range of strengths. Fig 1a illustrates that even though there is
a focus of heavy targeting on some selected nodes (|H| + |A| = 111) and some nodes remain
untargeted (|Z| = 9), the allocation profile of the remaining nodes (|V| = 1013) is mostly flat,
with little variation of allocations around their mean, std(w!)/(w?) = 0.11. From these
results, we see that the active controller is making use of the continuous flexibility, as alloca-
tions are widely spread across the network (only |Z| = 7 nodes did not receive allocation at all)
and across strengths (ranging from w,; = 10" to w,,; = 5). Optimal allocations for other values
of K can be seen in Fig 2 in S1 Appendix.

To extend the analysis of the allocation profile to other scenarios, we use the entropy of the
allocation distribution as a characterisation of the spread of optimal allocations,

H(w,) = —log(N) >_w,/B,log (w,/B,). Note that this entropy is normalised to the interval
[0, 1], which is achieved by the pre-factor log(N). Controllers that make use of the targeting
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flexibility of the continuous regime will tend to spread their allocations across the network,
resulting in higher entropies. Fig 1b shows that, almost independent of K and budget ratios,
distributions of continuous allocations have considerably larger entropy than those of their
discrete counterparts. We further note that the degree of spread is affected by the sparseness of
the passive controller: the larger K and thus the more widely spread the strategy of the passive
controller is, the more wide-spread optimal allocations are as well. In contrast, relative budgets
ratios do not have a major effect on the entropy of the allocation distribution.

We next evaluate possible improvements obtainable by campaigning with continuous influ-
ence allocations, as measured by the relative improvement in vote shares gained by optimal
continuous allocations over optimal discrete allocations, (X“" — D G 10 Gl Fig 1c, we see
that relative improvements are generally in the range of 5-10% against passive controllers with
K < 100, while relative improvements drop below 5% against wide-spread passive controllers
with K > 100. Note that, although the improvements can be small, they may be of significant
importance in winner—takes—-all scenarios, such as political elections or referendums. Exten-
sions to other network topologies of experiments from Fig la and 1c can be seen in Fig 10 in
S1 Appendix, showing similar results.

To summarise, we have seen that spreading allocations over the whole network brings a big-
ger benefit to an optimal controller than when concentrating them on a few nodes, even if
these are hubs. We also see that spreading allocations widely is optimal regardless of how
many nodes are targeted by the opponent or the budget ratio between controllers. However,
we also note that in optimal configurations some nodes are targeted much more strongly than
others, with a particular focus on fairly few selected nodes |[H| + |A| = 111, which comprise
around 10% of the network. We next explore how these nodes are chosen, i.e. if they can be
related to any of the shadowing, shielding, or hub preference heuristics.

Shadowing, shielding, and hub preferences in the continuous regime

To proceed, we investigate the explanatory power of shadowing, shielding, and node degree
heuristics for determining optimal above-average allocations in the continuous regime. While
node degree is related to the hub-targeting heuristics commonly found in the discrete regime,
here we extend earlier work of us [43, 44] and propose shadowing and shielding as effective
heuristics for influence maximisation. We first note that the shadowing and shielding heuris-
tics can be classified by an order, given by the distance of node targeting from nodes targeted
by the opponent. In this sense, shadowing can be considered a first-order strategy, as it directly
affects nodes targeted by the opponent. In contrast, shielding constitutes a second-order heu-
ristic, as it concerns nodes in the direct environment of nodes targeted by the opponent. Fur-
ther-order shielding is also possible, although not explored in depth here due to its higher
complexity and lower effect.

First-order optimal responses: Shadowing or avoidance. In this subsection, we aim to
develop analytical intuition behind the shadowing behaviour for general network topologies.
Due to the analytical intractability of the IM problem on complex networks, we use a heteroge-
neous mean-field (HMF) approximation to the opinion dynamics. In this approximation, we
assume that, independent of the details of individual neighbourhoods, every node is coupled
to a mean-field. The expression for the vote share obtained in this approximation is given by

—1

T W

XHMF — bi
<Z d +Wm+wbx> (Z d +Wﬂ1+wbz> (Z d + Wm + Wbt) +

]‘ Wai
PN Tt

(4)
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(Refer to the Methods section for more details about the approximation and the derivation of
Eq (4).) Eq (4) is non-linear in w,;, so finding analytical expressions for optima is extremely
challenging. Therefore, we focus on the limiting cases of small and large external allocations
with respect to the connectivity of the network to get analytical solutions. We thus perform
series expansions in the limits of (w,; + wy;) < d; and (w,; + wy,;) > d;, which allow obtaining
closed-form solutions for optimal strategies. (Refer to Sections 2 and 3 in S1 Appendix for
details about their derivations).

We start with the low allocations limit (w,; + w},;) < d;, for which we obtain optimal alloca-
tions w', as

B,+B, 1(B
L _Za !l ™b a
Ya = TN +2<

d;
gb—l) Wbi+ﬁ Bh_zwbj ) (5)

il .
ﬁWW>U j FW%>0

where the sums over ), . _, are an effect of the positivity constraint w,; > 0. From Eq (5), we
g

can observe that optimal allocations w, depend linearly on allocations of the opponent w;,; and
node degree d;, both terms multiplied by a common coefficient whose sign depends on the
ratio of budgets: ¢ = (B,/B, — 1). If B, > B,, i.e. if the active controller is in advantage of
resources, the coefficient c is positive and the active controller allocates more influence to the
nodes that are strongly targeted by the opponent, which corresponds to the shadowing strategy
as discussed above. On the contrary, if B, < 5,, the coefficient ¢ is negative and the active con-
troller allocates more influence to the nodes that receive the least allocation by the opponent,
corresponding to avoidance behaviour. Note that, when the positivity constraints are not
active (W, > 0, Vi), there is no dependence of optimal allocations w*, on node degree d,, as
B,-> g0 w,;) = 0. In such cases, optimal allocations only depend on the allocations of the

opponent wp, and the budgets B, and 5,. Since the allocations of the opponent cannot be nega-
tive either, the positivity constraints of the active controller can only be activated when
B, < B,.1If positivity constraints are activated, optimal allocations also depend linearly on
node degree d; with a negative coefficient ¢, giving more allocations to nodes with low degree.
Hence, there is no scenario in which this analytical solution favours high-degree nodes.

The expression of the total vote share X" for this limiting case given a passive controller
with allocations w;, and an optimal active controller is
B B, (1= wy/(w)"

L __ a

TB.1B, N2 d ! (6)
where (w,) = B,/N. We note that the vote share X" obtainable for the active controller is the
higher the more the allocations of the passive controller wj,; deviate from the mean (w;). In
other words, the passive controller is the more exploitable by an active controller the more her
passive strategy deviates from uniform targeting. Interestingly, the impact of this deviation is
the stronger the lower the degree d; of the node mis-targeted; thus controllers are the more
exploitable the less carefully they allocate resources to low-degree nodes. We confirm this
result via numerical experiments (as can be seen in Fig 3 in S1 Appendix).

In the opposite limit of large allocations with respect to node degree, (w,; + wy,;) > d;, we

have optimal allocations w as

W,.
wy = | B, + Zwbj 7bl_whi' (7)

at
Zj:wg >0 ij

oaoH
}WM>0
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Fig 2. Comparison of analytical and numerical results for optimal influence allocations on the continuous regime. Each panel show the dependence of
optimal allocations w,; on the allocations of a passive controller w;,; when the value of external allocations are generally a lower, b equal, or ¢ higher than
node degrees, as shown on the top of each panel. The active controller is in budget superiority (13,/5, = 10) and the passive controller targets continuously
with weights randomly drawn from a uniform distribution. Numerical results are given by a cloud of points resolved by classes of nodes of different
degrees, indicated by their colour, and analytical results are given by black curves that correspond to Eq (5) (solid) or Eq (7) (dashed).
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In this limit, optimal allocations are only dependent on the allocations of the opponent wy, in a
non-linear fashion and the available budget 5,. This solution does not show any dependence
on node degree d;. The expression of the vote share X' for this limiting case with an optimal
active controller against a passive controller is

X =t (V)| ®)

Again, we find that the vote share X is the higher the more individual node allocations of the
passive controller wy; deviate from the mean (w;,). In this limit we find no effect of node degree
d;, i.e. controllers are equally exploitable independent of on which nodes they misallocate their
resources.

To verify the validity of the assumptions involved in the above approximation, we compare
the analytical optimal allocations to optimal allocations obtained via numerical experiments in
different scenarios. To cover a wide range of wy,;, we set the passive controller to target nodes
with strengths wj,; randomly drawn from a uniform distribution. In Fig 2, we examine the
dependence of optimal responses w,,; on allocations of the passive controller wy,; for scenarios
in which the active controller is in budget superiority and with allocations generally being a
smaller, b similar, or ¢ larger than node degree. In the figure, results corresponding to the
HMF-approximation are given as black curves, while numerical results are given as clouds of
points.

We observe that the agreement between numerical and analytical results is very good in the
limiting cases, cf. Fig 2a and 2c. When allocations are similar in magnitude to node degree
(Fig 2b), numerical results are bounded by the analytical results for both limiting cases.
Another set of experiments where the active controller is in budget inferiority can be found in
Section 6 in S1 Appendix. Those experiments show cases where the positivity constraints are
active, so for the low-allocation limit the term that depends on d; activates. Analytical and
numerical results also match reasonably well in the budget inferiority scenario.

Second-order optimal responses: Shielding. As we have seen above, first-order responses
can explain optimal allocations against opponents who spread their influence widely across the
network. However, as the HMF does not distinguish node classes depending on the distance to
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Fig 3. Depiction of the shielding heuristic. On the y axis, numerical optimal control allocations of the active controller in the form of a letter-value plot
[50]. On the x-axis, shortest distance to a node targeted by the passive controller who targets a K = 4, b K = 32, or ¢ K = 256 random nodes in the network in
a discrete fashion. Different levels of a boxplot represent the median, quartiles, octiles, and so on, while containing points from 15 repeats of the
experiment. The total budget of both controllers sums up to B, + BB, = N(d)/30.

https://doi.org/10.1371/journal.pone.0252515.9003

the targets of the opponent, a first-order heuristic is likely to be insufficient when opponents
only target relatively few nodes in the network. In such cases, we need to resort to second-
order responses (i.e. shielding) for explaining optimal allocations. The idea behind shielding is
that nodes that are direct neighbours of the nodes targeted by the opponent should receive
higher allocations than other nodes in the network. The presence of shielding is then indicated
by a strong dependence of allocations to nodes on the distance to nodes targeted by the passive
controller, which becomes evident from the numerical experiments shown in Fig 3. We also
observe that shielding decreases in importance the more nodes K the passive controller targets,
as seen in Fig 3¢ with K = 256, where differences in allocations barely vary with the distance.
Once we have assessed that shielding is present in optimal allocations, we now turn back to
the allocation groups in Fig 1 and ask the question, to which extent shadowing and shielding
can explain the particular partitioning G. For this purpose, we define a new set of disjoint
groups related to shielding S = {T}, N, R} with nodes that are targeted by the passive controller
(Tp = {i|wy; = g}), direct neighbours of nodes targeted by the passive controller (N, = {i ¢ T}|
(3j € Ty|w;; > 0)}) and the remaining nodes (R = {i & (T, U N,)}. Fig 4a shows the overlap
between the shielding groups in S and the allocation groups in G for the case where the passive

B./By = 1.0 B./B, = 0.1
102 4 ® b . T, 102 4 ® ¢
. ‘ n ’ Nb ’
& s 10" T o N v R | 10" 4 *
= g L | e
2 w100 ¢8| g 1004 *
X = = ¥
£ £
10 4 107! 4 v
1042 T ¥ L2 | T 10_2 T T . T
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Fig 4. Analysis of the shielding heuristic on optimal influence allocations in the continuous regime. a Overlap between the allocation groups in G and
shielding groups in S for a passive controller targeting K = 16 nodes in a discrete fashion. b, ¢ Average allocations given to each group in S with respect to
the total average allocation (w,;) for different number of nodes K targeted by the passive controller and for b equal budgets or ¢ budget disadvantage. Error
bars in b, ¢ represent standard errors calculated from 15 repeats of the experiment. Points for Ny, in the interval K € [5, 35] do not appear in ¢ since their
value is (w,), = 0and the scale is logarithmic. The total budget of both controllers sums up to B, + B, = N(d)/30.

https://doi.org/10.1371/journal.pone.0252515.9004
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controller targets K = 16 random nodes in the network. We observe that nodes that receive
very high (H) or zero (Z) allocation are mainly nodes targeted by the passive controller (T}),
the nodes that receive above-average allocations (A) are mainly the neighbours of the nodes
targeted by the passive controller (N,), and the nodes that receive below-average allocations
(V) are the remaining ones (R). This result demonstrates that the different allocations given to
nodes in the network are largely explained by their distance to the node targeted by the
opponent.

We extend the analysis beyond allocation groups in G and to other values of K by exploring
average allocations (w,) given to the shielding groups in S (c.f. Fig 4b and 4c). When in budget
equality (Fig 4b), we observe that average allocations (w,) given to nodes in T;, and N, are
much larger than those given to nodes in R for K < 50, although this difference diminishes for
higher K. These results show that both shielding and shadowing have a significant presence for
low K. However, it is worth recalling from Fig 4a that allocations given to nodes in T}, receive
either high or zero allocations, so its distribution is bimodal and not well captured by the
mean value. Extensions to other network topologies of experiments from Fig 4b can be seen in
Fig 10 in S1 Appendix, pointing to analogous results. Fig 4c shows the same scenarios as in
Fig 4b but with the active controller in budget disadvantage. Here, nodes in T}, receive zero
allocation, corresponding to the avoidance behaviour discussed above. Interestingly, in this
scenario nodes in N, also receive less allocation (w,) than those in R for K > 5, so avoidance
also appears as a second-order strategy when in budget disadvantage. So direct (first-order)
avoidance of the nodes targeted by the opponent is complemented by a second-order avoid-
ance (anti-shielding) provided the budget disadvantage is large enough. The case of budget
advantage is not shown here, as it is very similar to that of budget equality, only with larger
allocations given to nodes in T,

Hub preferences and dependence on node degree. The third heuristic that we investigate
is hub-targeting or, more generally, a degree—preference heuristic. We have seen that shadow-
ing and shielding can explain much of optimal influence strategies in the continuous regime.
However, we note that the effects of shielding and node degree are related, as nodes with high
degree are more likely to be neighbours of nodes targeted by the opponent and hence should
also receive higher allocations due to shielding. Can a degree-preference heuristic explain
optimal allocations more accurately than shielding or is the degree—preference just a heuristic
that approximates the effect of shielding?

To test whether the shielding and degree—preference strategies are related, we compare the
conditional probabilities of a node belonging to the above-average optimal allocation group A
given node degree P(i € A|d;), with the conditional probabilities of a node being neighbour of
a node targeted by the opponent given node degree P(i € N,|d;), as shown in Fig 5a. We find
that the probability profiles are very similar between the two groups, so it is very likely that one
of these two heuristics is an artefact of the other one and thus can be superseded.

In the following, by measuring Kendall rank correlation coefficients 7 [51] between target-
ing strengths w,; and node degree d;, we extend the above analysis to scenarios with other K. A
preference towards hubs would be indicated by correlations close to 7 = 1. Fig 5b and 5¢ com-
pare correlations 7 between the optimal strategy (squares) and a strategy purely based on
shielding (circles), i.e. equally dividing all the resources among nodes in Ny, In Fig 5b, we
observe that both the optimal and shielding strategies show considerable correlations with
node degree for K > 30, where correlations are generally above 7 > 0.5. The lack of correla-
tions with node degree for low K and the similarities in correlations of the optimal and shield-
ing strategies indicates that a degree—preference heuristic is ineffective unless shielding is
correlated to node degree. To further illustrate this point, we perform another set of experi-
ments in which we ensure that shielding and node degree are not positively correlated. We
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Fig 5. Correlations between optimal influence allocations and node degree. a Probability of optimal allocations belonging to A given node degree d;
(solid) and probability of nodes belonging to N, given node degree d; (dashed), with a passive controller targeting K = 16 random nodes in a discrete
fashion. b, ¢ Kendall rank correlation coefficients 7 between allocation strength w,; and node degree d; for different K when the active controller targets
nodes optimally (squares) or following a shielding strategy (circles). In a and b the passive controller targets random nodes in the network. In ¢, the passive
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experiments. Correlations in ¢ correspond to a single instance of the experiment, as the strategy of the passive controller is deterministic. The total budget
of both controllers sums up to B, + B, = N{(d)/30.
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achieve this by having the passive controller only targeting nodes whose neighbours have the
smallest possible degree in the network, thus effectively displacing the targets of shielding to
nodes with low degree. Indeed, as shown in Fig 5c, the correlations of optimal allocations with
node degree vanish in these scenarios, with values below |7|<0.25, while correlations of the
shielding strategy remain negative with values down to 7~ —0.5. Extensions to other network
topologies of experiments from Fig 5b can be seen in Fig 10 in S1 Appendix, showing similar
results. Also, a plot directly comparing node degrees d; and optimal allocations w,; can be
found in Fig 5 in S1 Appendix.

In conclusion, we note a mild preference towards hubs in the continuous regime, as high-
degree nodes have higher probabilities of receiving higher allocations than other nodes. How-
ever, we also argued that these correlations with node degree are related to the shielding heu-
ristics since nodes with a high degree have higher chances of being neighbours of nodes
targeted by the opponent. When we investigate scenarios with low K or with the passive con-
troller targeting peripheral nodes whose neighbours have a low degree, we observe that the
correlation with node degree vanishes, while being similar to that obtained by a shielding strat-
egy. Therefore, we conclude that the correlations with node degree seen here are an artefact of
the shielding strategy. Optimal allocations can be explained almost perfectly by the shielding
heuristics without the need for additional assumptions about degree preference.

Comparison of heuristics for optimal configurations in the continuous and

discrete regimes

In the previous sections, we have obtained optimal allocation strategies via numerical methods
and have analysed the structure of these solutions while comparing them with some reference
strategies. From these analyses, we have evaluated the importance of the three proposed
explanatory factors (degree preference, shadowing, and shielding) in the continuous IM by
studying their presence in optimal allocations. In this subsection, we complement the above
results with an inverse approach: we build a set of heuristics based on the three factors and
measure the gap in vote share AX relative to optimal results. The smaller the gap AX of a heu-
ristic to the numerically determined optimum, the stronger its contribution to optimal
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Fig 6. Comparison of various heuristics to optimal allocations. Bars represent the gap in vote share AX of the heuristics with respect to optimal
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allocations. Additionally, we also extend the current study to the discrete regime and compare
how the three proposed heuristics perform when the active controller is constrained to discrete
allocations. A more detailed investigation on the role of the three heuristics in optimal alloca-
tions for the discrete regime can be found in Section 8 in S1 Appendix.

Fig 6 illustrates results of the vote share gap for experiments run for three budget scenarios
(advantage, equality, and disadvantage) and against a discrete passive controller who targets
K =16 random nodes in the network. Note that we make a clear separation between the dis-
crete (purple) and continuous (orange) regimes and that their vote shares are compared to the
discrete or continuous optimal strategies, respectively. The details of the implementation of
each heuristic can be found in the Methods section below.

From Fig 6, we make the following observations about the three budget scenarios. First,
when in budget advantage (Fig 6a), we see that shadowing is the best-performing discrete heu-
ristics with a gap of AX = 1.58 - 102, closely followed by the degree-based heuristic with
AX=241-10"% Among the continuous heuristics, the uniform (AX =2.14 - 107%) and degree-
based (AX = 2.09 - 10™2) heuristics perform clearly worse than shadowing (AX = 2.55 - 1073)
and shadowing-plus-shielding (AX = 1.89 - 107%). We can conclude that when in budget
advantage, shadowing is an important driver in both the discrete and continuous regimes. Sec-
ond, for budget equality (Fig 6b), the degree-based heuristic performs the closest to the opti-
mal discrete strategy (AX = 8.99 - 10~°). Among the continuous heuristics, shadowing-plus-
shielding is again most effective (AX = 2.97 - 10°), with the other three heuristics within the
range AX € [5.5-107%, 7.0 - 10°]. We see that when in budget equality, node degree is a very
important factor in the discrete regime, while shadowing-plus-shielding is most effective in
the continuous regime. Last, when in budget disadvantage (Fig 6¢), the discrete degree-based
heuristic (AX = 2.12 - 10~°) again proves superior to the other heuristics, which perform simi-
lar to random allocations. Among the continuous heuristics, shadowing-plus-shielding is
again performing best (AX = 7.28 - 10~*), with the other three performing in the range AX €
[2.33-107%, 4.44 - 107°]. In this scenario, the degree-based heuristic is again a very important
factor in the discrete regime, while shadowing-plus-shielding is predominant in the continu-
ous regime. An alternative assessment of the heuristics based on computational efforts is
shown in Fig 14 in S1 Appendix.

In summary, in the discrete regime node degree is consistently found to be the main driver
for optimal allocations, which is only slightly surpassed by shadowing when in budget

PLOS ONE | https://doi.org/10.1371/journal.pone.0252515  June 18, 2021

12/21


https://doi.org/10.1371/journal.pone.0252515.g006
https://doi.org/10.1371/journal.pone.0252515

PLOS ONE

Effective heuristics for continuous influence maximisation in the voting dynamics

advantage. In contrast, in the continuous regime shadowing and shielding have a considerably
stronger effect than node degree across all scenarios. This effect is particularly pronounced
when the active controller is in budget advantage (where shadowing is very effective) or in
budget disadvantage (where shielding is dominant). Extensions to other network topologies of
experiments from Fig 6 can be found in Figs 12 and 13 in S1 Appendix, showing similar
results.

Nash equilibrium on a game with two active controllers

Up to this point, we have regarded the opponent as passive, i.e. with a fixed strategy that is
known by the active controller. In this subsection, we investigate the case where both control-
lers actively optimise their strategy. We assume that they simultaneously choose their strategy
without having any information about the opponent. Since optimal strategies are subject to the
opponent’s decisions, we are interested here in finding the pair of strategies that are simulta-
neously optimal for both controllers —the pure-strategy Nash equilibrium [52]—, so neither of
them is willing to deviate from it.

Due to the concavity of our problem with respect to either controller’s strategy, it can be
proven that there is a unique pure-strategy Nash equilibrium (for the proof, see Section 12 in
S1 Appendix). We can numerically arrive at the Nash equilibrium by employing gradient-
ascent to iteratively eliminate dominated strategies until convergence to the pure-strategy
Nash Equilibrium. We find that in the Nash Equilibrium, independent of the network type
and budgets, both controllers uniformly target all nodes equally. In the numerical results, this
is seen by the convergence of the normalised standard deviation of control allocations, which
(up to numerical precision) converges to zero (Fig 7 in S1 Appendix illustrates such behaviour
for two different budget ratios).

Uniform targeting at the Nash equilibrium can also be interpreted from the perspective of
the shadowing and shielding heuristics. On the one hand, we can also find the Nash equilib-
rium analytically from the first-order approximations derived above. Based on Eqs (5) and (7)
and exploiting the symmetry in exchanging the A and B controllers, we can find mutually opti-
mal responses as w,; = B, /N, w,; = B, /N, i.e. uniform targeting. On the other hand, the
shielding heuristics gains more advantage when opponents concentrate their influence on a
few nodes, as shown in Fig 4, so spreading allocations across the network avoids being
exploited by shielding.

Discussion

In this paper, we have investigated how continuous and discrete allocation regimes affect the
structure of optimal allocations in influence maximisation for the voter dynamics. Our focus is
on scenarios with two opposing controllers, one passive and one actively optimising, for which
we have defined the continuous influence maximisation problem. As an initial result, we have
seen that the continuous regime adds some improvement in the objective function, which can
be linked to the benefits of spreading control allocations across the whole network. Regarding
the structure of optimal allocations, we have pointed to three important heuristics that can be
used for its characterisation: shadowing, shielding, and degree dependence. Despite the three
heuristics playing a role in explaining optimal allocations in both the continuous and discrete
regimes, their relative contributions vary. While optimal allocations in the discrete regime are
mainly driven by node degree, the shielding and shadowing heuristics are predominant
explanatory factors in the continuous regime. In the game-theoretical scenario where both
controllers simultaneously optimise their influence allocations, the pure-strategy Nash equilib-
rium in the continuous regime is assumed when both controllers uniformly target all nodes in
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the network —regardless of details of the network topology. Our results mainly apply to the
scenario in which a controller reacts against a passive opponent. However, note that this
framework can be mapped to the scenario in which a single controller attempts to influence a
population that manifests some resistance to the external influence, as shown in [26]. In partic-
ular, such resistance to external control is equivalent to a passive opponent who targets nodes
with a strength proportional to the degree of the node, so a degree—dependent strategy
becomes much more predominant when only one external controller is featured.

This paper contributes to the general understanding of controlling dynamical processes on
networks [53] in three ways. First, it provides three explanatory factors as tools that can be
employed to characterise any solution to a control problem: degree dependence, shadowing,
and shielding. Second, it shows that, in the particular case of the voter model with external
controllers, the degree-dependence factor is the main driver of controlling solutions in the dis-
crete regime, while the shadowing-plus-shielding combination is the main explanatory factor
behind solutions in the continuous regime. These results can be used for guidelines as to what
to expect in other scenarios. Lastly, the proposed factors can be employed as heuristics in cases
where optimal solutions cannot easily be obtained numerically, or alternatively as benchmarks
for testing approximately optimal solutions.

Some of our results relate to other findings from previous literature. Most works refer to a
preference towards hubs when linking optimal solutions to a degree dependence. However, we
have shown that correlations with node degree can also be negative (i.e. targeting peripheral
nodes), particularly when the controller is in budget disadvantage). Brede, Restocci and Stein
[26, 48, 54] also show that the preference towards hub nodes shifts to a preference towards
periphery nodes in the discrete regime, although under other conditions; namely when opti-
mising for short time horizons [54] or in the presence of noise in the opinion dynamics [26,
48]. They also suggest that for short time horizons the optimal strategy is also opponent-
dependent, shadowing nodes with initially opposing opinions if they are few and avoiding
them when they are many [54]. Our results have pointed to a lack of degree dependence in the
continuous case. This independence is not fully reflected in the studies on the continuous IM
on the Ising model with noise by Lynn and Lee [25, 41]. Unlike in our results, they find that
optimal targets are also related to node degree in the continuous regime, as periphery nodes
should be targeted when temperatures are high and hub nodes for intermediate temperatures.
However, when the temperature of the system is very low (i.e. nodes are very susceptible to the
external influence), a uniform allocation of influence is the best strategy against an also uni-
form opponent, and hence there is no correlation with node degree in the absence of noise
[25]. In light of this result, studying the inclusion of noise would be a natural extension to this
work, as it could also generate a degree dependence in the continuous IM for the voter
dynamics.

There are many other ways in which this work can be extended. As mentioned above, we
have mainly focused on the differences in optimal strategies between the continuous and dis-
crete regimes in the voter model. The current analysis can also be extended to other models of
opinion dynamics that allow for continuous allocations, such as the Ising model [55], or the
epidemic-related SIR [56]. Likewise, we use in our experiments a heterogeneous network that
is generally well mixed (without strong communities) and has very little degree assortativity
(i.e. correlations in node degree across links). It would be of interest to study the impact of
shadowing and shielding in these other settings. A further limitation of our work is that we
have only considered strategies that do not vary over time. However, campaigners in more
realistic settings might vary their allocation at different stages of the dynamics. For an exten-
sion to influence maximisation with dynamic allocations, see [54, 57].

PLOS ONE | https://doi.org/10.1371/journal.pone.0252515  June 18, 2021 14/21


https://doi.org/10.1371/journal.pone.0252515

PLOS ONE

Effective heuristics for continuous influence maximisation in the voting dynamics

In conclusion, we have highlighted the impact that having a continuous or discrete regime
may have on both the quality and structure of optimal solutions to network control. Further-
more, we have proposed three factors that characterise solutions to control diffusion problems
where opposing external controls influence the network: shadowing, shielding, and degree
dependence. The application of this framework to other contexts may facilitate comparisons
across different modelling decisions and problems.

Methods
Solving the IM problem in the continuous regime

A first step towards solving the continuous IM optimisation problem is finding the critical
points where the gradient of vote share X with respect to control allocations w,, is zero,

v, X= % 17 (L+ W, +W,) '[I - diag(x))]]' =0, (9)

where diag(x}) is a diagonal matrix whose diagonal elements correspond to the probability
vector at the steady state x* = (L + W, + W)™ W, 1.

Since V,, X = 0 is generally nonlinear in w,—and analytically intractable for the general
case—we propose two different approaches to finding a solution: analytically studying a het-
erogeneous mean-field approximation, which simplifies the calculations under some assump-
tions, and a numerical solution via gradient ascent for the general case.

Heterogeneous mean-field approximation

The heterogeneous mean-field (HMF) approximation assumes that, independent of the details of
individual neighbourhoods, every node is coupled to a mean-field where the probability of hav-
ing a node as a neighbour is proportional to their degree [34, 48, 58, 59]. This approximation is
not always valid but tends to perform well for not overly sparse networks in the absence of partic-
ular degree correlations. The HMF approximation assumes random connections between nodes
and ignores higher-order correlations that might be present in real-world networks.

Under this approximation, the expected behaviour of a neighbour (x) is presumed to be the
same for every node in the network and equal to

1 d,
(x) :NZ@;@ , (10)
Note that high-degree nodes are more likely to be found as neighbours and hence the product
by di/(d). We thus obtain probabilities of adopting A in the steady state as
. di <'x*> + Wui
: _di+wai+wbi.

(11)

But Eq (11) can be re-inserted into Eq (10), arriving at a self-consistency equation and leading
to the form-closed expression of the vote share as

~1
1 d, w.+w
XHMF — i 1 ai ai bi
N (Z d!.+wm.—|—whi> < d+w, +wb> (Zd +w, + wb>

Wui
+NZd,-+wa,-+wb,- |

(12)
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Gradient ascent algorithm

Due to the concavity of our IM problem in the strategy space (for the proof, see Section 12 in
S1 Appendix), local-search techniques are guaranteed to arrive at the global optimum [60]. We
employ here gradient ascent as a local-search method (Algorithm 1), which has previously
been used in IM [44, 61]. This technique is ensured to reach an e-approximation to the exact
solution in O(1/e¢) iterations of the algorithm [60]. Solutions must meet the budget and positiv-
ity constraints, so after every iteration they are projected back to the regular N-simplex that ful-
fils > w,; = B,, w,; > 0.
Algorithm 1: e-approximation to optimal allocation of influence via gradient ascent

input: B,, L, Wy, u, €

output: approximation for w, at the global maximum, X"

1 w*=8B,/N; X=°=0;

2 repeat

3V, X =(9);

4 W, =w+uv, X

5 W, = Projection of w, onto the N-simplex constraint;
6 X" = (2);

7 until X" - X" < ¢

The parameter y (line 4 of Algorithm 1) regulates the step size of the gradient ascent
method. Big steps will generally speed up the process but may risk its convergence. To prevent
divergence, backtracking is employed after each iteration; i.e. the new solution is rejected and
the step size halved if the vote share is lower in the new iteration than in the previous one. The
projection to the N-simplex is done following the algorithm developed in [62]. Note that every
step requires a N x N matrix inversion, so the time complexity to reach an e-approximate solu-
tion scales with N and € as O(N°/e).

For our experiments, we have used y = 50, e = 10'°. All solutions converged in less than
10° iterations.

Solving IM in the discrete regime: Hill-climbing algorithm

Solving IM in the discrete regime requires combinatorial optimisation, as the problem is
reduced to finding the subset of K nodes that maximises the vote share in the equilibrium [11].
Due to our relatively large problem size (N = 1133), searching for the exact maximum would
be highly costly even for subset sizes as small as K < 5. We hence resort to a local-search tech-
nique, the stochastic hill-climbing, which has been previously used for solving discrete IM in
the voter model [26, 33, 48]. The hill-climbing algorithm departs from a random subset of K
nodes and iteratively swaps one of them with a random node in the network. The modified
subset is preserved after each iteration if it performs better than the previous subset; otherwise,
the change is reversed. The algorithm typically runs for a given number of iterations or until
there has been a specific number of iterations without improvement. This algorithm is only
guaranteed to reach the global optimum in convex problems, so in non-convex problems a few
runs from different initial positions are desirable. Note that the expected number of iterations
needed to find the last optimal node is K(N — K), i.e. K iterations to pick the last non-optimal
node from the subset times (N — K) iterations to swap it to its optimal position.

For all experiments in this paper, hill-climbing is performed for 20N iterations or until no
change is made in the last 10N iterations, whichever occurs last.

Heuristics

Next, we explain in more detail how each of the heuristics from Fig 6 is implemented.
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Table 1. Information required by each heuristic.

Discrete heuristics
random

degree-based
shadowing

shielding

Continuous heuristics
uniform

degree-based
shadowing

shadowing plus shielding
https://doi.org/10.1371/journal.pone.0252515.t001

rand (discrete), random: Random targeting of K nodes in the network with equal strength.

deg (discrete), degree-based strategy: This discrete heuristics targets the K nodes that have either
the highest or the lowest degree in the network, whichever results in the highest vote share.

shadw (discrete), shadowing: Discrete shadowing targets exactly the same nodes as the passive
controller.

shield (discrete), shielding: Discrete shielding targets direct neighbours of the nodes targeted
by the passive controller, giving preference to nodes that are neighbours of more than one
node. If K is larger than the size of the neighbourhood |N,|, the remaining targets are
directed to random nodes not targeted by the passive controller.

unif (continuous), uniform: Targeting all nodes in the network with equal strength w,, = 55, /N.

deg (continuous), degree-based strategy: Targeting nodes proportional to their degree. The
proportionality constant is found numerically via binary search. Note that unif is a sub-case
of this heuristic in which the proportionality constant is equal to zero, so this heuristic will
always perform equal or better than unif.

shadw (continuous), shadowing: Continuous shadowing where nodes are targeted with two
possible intensities, one for the nodes targeted by the passive controller and another one for
the remaining nodes. The values of these intensities are determined numerically via binary
search. Note that unif is a sub-case of this heuristic in which both intensities are equal, so
this heuristic will always perform equal or better than unif.

shadw shield (continuous), shadowing plus shielding: Combination of shadowing and shield-
ing where nodes are targeted with three possible intensities depending on whether they are i)
targeted by the passive controller (T}), ii) their neighbours (Ny), or iii) the remaining nodes
(R). The values of these intensities are determined numerically via binary search. Note that
shadw (continuous) is a sub-case of this heuristic in which the allocations to nodes in N, and
R are equal, so this heuristic will always perform equal or better than shadw (continuous)
(and consequently than unif).

Note that the proposed heuristics require different amounts of information for their imple-

mentation. Some require the details of the network structure and/or knowledge about the
opponent’s strategy. Others have free parameters and their implementation requires an explo-
ration of the parameter space, with computations of expected vote shares for evaluating each
value of the parameters. Table 1 summarises what information is required for each of the

heuristics.
Network structure Opponent’s strategy Parameter Tuning
X - X
- X -
X X -
X - X
- X X
X X X
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