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MYCN, a member of MYC proto-oncogene family, encodes a basic helix-loop-helix
transcription factor N-MYC. Abnormal expression of N-MYC is correlated with high-risk
cancers and poor prognosis. Initially identified as an amplified oncogene in neuroblastoma
in 1983, the oncogenic effect of N-MYC is expanded to multiple neuronal and nonneuronal
tumors. Direct targeting N-MYC remains challenge due to its “undruggable” features.
Therefore, alternative therapeutic approaches for targeting MYCN-driven tumors have
been focused on the disruption of transcription, translation, protein stability as well as
synthetic lethality of MYCN. In this review, we summarize the latest advances in
understanding the molecular mechanisms of MYCN dysregulation in cancers.
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INTRODUCTION

N-MYC is a transcription factor of the MYC oncogene family. This gene family of humans consists
of three members, namely, MYCC, MYCN, MYCL, which encodes C-MYC, N-MYC, and L-MYC
protein respectively (“MYC” was used to indicate all three genes in this review). The first identified
MYC gene was MYCC as a homolog of an avian retroviral gene v-myc, then MYCN in
neuroblastoma and MYCL in lung cancer (1–3). These proteins show similar structure with the
highest homology in five short stretches called MYC boxes 1 to 4 at the N terminus and in the basic
helix-loop-helix-leucine-zipper (bHLH-LZ) domain at the C terminus (Figure 1A) (6–9). The
former enables MYC to interact with different effector proteins including TRRAP and P400 which
mediate chromatin remodeling and modification (10, 11), the latter allows MYC to form a
heterodimer with partner proteins that also contain a bHLH-LZ domain, such as MAX. MYC/
MAX heterodimer bind to the target motif called E-box with the consensus sequence of CAC(G/A)
TG to regulate the expression of targeted genes (Figure 1B). In addition, MYC can also bind to
targeted sequences that show deviation from or no similarity to the E-box, suggesting the
association of MYC to chromatin can be instructed by other factors (12, 13). For example, MYC
can invade promoter regions of active genes and cause global transcriptional amplification (Figure
1C) (4, 14, 15). The two different action modes of MYC seem conflicting, i.e., gene-specific
regulation model versus global gene activation model. The third model, gene-specific affinity model,
in which the affinity of promoters for MYC is different and relies on the MYC levels and the
interaction of MYC with core promoter-binding factors, such as WDR5 (Figure 1D), has been
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proposed to reconcile the action modes of MYC (5, 16). MYC
proteins affect transcription of a large number of genes and thus
regulate fundamental cellular processes, including proliferation,
metabolism, apoptosis, differentiation, and immune surveillance
(17–21).

With evolutionarily conserved domains, the three MYC
proteins share certain extent of functional redundancy. For
instance, when N-MYC is expressed from the MYCC locus, it
can rescue development, cellular growth, and differentiation in
MYCC deficient mice (22). On the other hand, C-MYC, N-MYC,
and L-MYC have their own unique features. Enhanced
expression of different MYC paralogs induces tumors with
different biological characteristics in medulloblastoma (23, 24),
prostate cancer (25), and lung cancer (26). Furthermore, the
amplification ofMYC genes is mutually exclusive, and the switch
of gene expression among the members is associated with cell
lineage shift, tumor progression, and treatment resistance (27,
28). Different collaborative proteins of MYC paralogs help to
demarcate a unique subset of responsive genes, which could
partially explain the distinct biological functions among MYC
members. For example, N-MYC interacts with TWIST1 at
enhancers to activate developmental genes important to
neuroblastoma tumorigenesis, while TCF3 (E2A) is selectively
required for progression of C-MYC driven myeloma (15). In this
mini-review, we focus on N-MYC-driven tumors. Since
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discovered in 1983 in neuroblastoma (1, 3), the oncogenic
effect of N-MYC has been demonstrated both in various
neuronal [e.g., glioblastoma (29), medulloblastoma (30),
astrocytoma (31)], and nonneuronal [e.g., prostate cancers
(32), breast cancers (33), hematologic malignancies (34),
pancreatic tumors (35), Wilms tumors (36), hepatocellular
carcinoma (37), rhabdomyosarcoma (38), ovarian cancers (39)]
tumors. Specifically, this mini-review summarizes the latest
advances in the regulation network of N-MYC expression
(Figure 2) and the related therapeutic targets for MYCN-
driven tumors.
MOLECULAR MECHANISMS OF MYCN
DYSREGULATION AND THE
THERAPEUTIC TARGETS

The tissue specificity and strength of MYC gene expression are
under tight control in normal circumstances. Studies of mice
show that the expression of MYCN is high during early
developmental stages and in specific tissues including
forebrain, hindbrain, and kidney of newborn mice, while
MYCC is broadly expressed throughout the tissues and the
developmental stages analyzed. Clinical observation of MYCN
A

B

D

C

FIGURE 1 | Models of transcriptional regulation of target genes by MYC proteins. (A) Schematic diagram of N-MYC protein structure. Five highly conserved
stretched called MYC boxes 1 to 4 (MB) and the basic helix-loop-helix-leucine-zipper (bHLH-LZ) domain at the C terminus are shown. The recurrent somatic
mutation P44L and the putative N-MYC phosphodegron are shown in cyanine and yellow respectively. (B) Gene-specific regulation model: MYC/Max dimer binds
and regulates a subset of genes with E-boxes in their promoters. (C) Global gene activation model: MYC accumulates in the promoter regions of active genes
independent of E-box and leads to transcriptional amplification in cancer cells with high level of MYC proteins (4). (D) Gene-specific affinity model: high-affinity
binding sites, such as those with E-boxes and WDR5 (WD-repeat protein 5) binding, are already fully occupied by MYC at physiological MYC protein level (medium
level) in proliferating cells; low-affinity (low aff.) binding sites can be occupied by MYC at oncogenic MYC protein level (high level) in cancer cells (5).
February 2021 | Volume 10 | Article 625332

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Mechanisms of N-MYC Dysregulation
amplification in human neuroblastoma firstly pointed out the
potential association betweenMYCN gene and tumorigenesis (1,
3). Although amplified DNAs encompassing MYCN are more
than 100 kb and can include adjacent co-amplified genes,MYCN
has emerged as the only consistently amplified gene (40). Using
transgenic animal models, multiple studies establish that N-
MYC overexpression is a driver of cancers. For example,
targeted expression of human N-MYC causes neuroblastoma
in transgenic mice and zebrafish (41, 42). Neuroblastomas with
Frontiers in Oncology | www.frontiersin.org 3
enhanced expression of N-MYC without MYCN amplification
are known to be similarly high-risk and poor prognosis (43).
Recent studies show that high N-MYC protein and RNA levels
could be better biomarkers than MYCN gene amplification in
predicting the prognosis of neuroblastoma patients (44, 45),
underscoring the importance of aberrant expression of N-MYC
in tumor progression. Here, we discuss mechanisms of MYCN
dysregulation at DNA, mRNA and protein levels, and
corresponding therapeutic targets.
FIGURE 2 | The expression of MYCN is activated or repressed at DNA, mRNA and protein levels by different factors, including secondary DNA structure,
enhancers, transcription factors, miRNAs, ubiquitination-dependent proteasome degradation machinery and its cis-antisense gene NCYM. Filled red and brown
boxes indicate translated regions of MYCN and NCYM respectively, while the blank counterparts represent untranslated regions. CRC core regulatory circuitry,
CDK9 cyclin-dependent kinase 9, CDK7 cyclin-dependent kinase 7, BRD4 bromodomain-containing 4, PLAGL2 pleiomorphic adenoma gene-like 2, SP1 specific
protein 1, GSK3b glycogen synthase kinase 3b, PI3K phosphoinositide 3-kinase, FBXW7 F-box and WD repeat domain-containing 7, PP2A protein phosphatase 2A,
PLK1 polo-like kinase 1, USP7 ubiquitin-specific protease 7, MDM2 murine double minute 2.
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GENE AMPLIFICATION OF MYCN

Gene amplification is a frequent mechanism that can cause
proto-oncogene overexpression. It is a process that involves
unscheduled DNA replication, recombination and/or
formation of extrachromosomal DNA, leading to a selective
increase of gene copy number up to several hundred (40). The
occurrence of proto-oncogene amplification can be detected by
the presence of “double minutes” or “homogeneously staining
chromosomal regions”.MYCN was the first discovered paradigm
of proto-oncogene amplification and is an important bio-marker
to stratify clinical risk. It was initially detected in about 20% to
25% of neuroblastoma, then at a much lower incidence in small
cell lung cancer, retinoblastoma, hepatocellular carcinoma,
malignant gliomas, and peripheral neuroectodermal tumors
(46, 47). Amplification of MYCN has been recognized as a
consequence of genomic instability and occurs sporadically
(48). Overexpression of N-MYC initiates tumorigenesis by
preventing the normal physiological process of neural crest cell
death in TH-MYCN transgenic mice in which human MYCN is
under the control of a tyrosine hydroxylase (TH) promoter, and
the formation of neuroblastoma involves further changes of the
persisting embryonal neural crest cells, including MYCN
amplification (49). In addition, MYCN amplification is
associated with advanced neuroblastomas, suggesting that the
amplification is a late event during the tumorigenesis (49–51)

Although multiple replication-based mechanisms, such as
double rolling-circle replication, have been proposed to explain
gene amplification, the important factors that induce and
regulate MYCN amplification remain to be completely
investigated (52–55). Proto-oncoprotein c-MYB transcription
factor is implicated in the regulation of cell growth and
proliferation of neuroblastoma (56). The functional ortholog of
Drosophila melanogaster, Dm-Myb, is directly implicated in the
site-specific DNA replication, leading to amplification of the
chromosomal loci with the chorion gene cluster (57). Aygun and
Altungoz showed that c-MYB is involved in the control of
MYCN amplification in MYCN-amplified neuroblastoma cell
lines (58). Specifically, the MYCN gene dosage is increased
upon knockdown of c-MYB expression, which may be
associated with the elevated expression of geminin protein that
causes a shift from genomic DNA replication to MYCN
amplification (58–60). Recent sequencing studies indicate that
the structure of extrachromosomalMYCN amplicons are shaped
by enhancer sequences (61, 62). Specifically, Helmsauer et al.
reported two distinct classes of extrachromosomal circular
MYCN amplicons: the first class co-amplifies a local core
regulatory circuitry (CRC)-driven enhancer; the second class
shows a complex chimeric structure with a distal CRC-driven
enhancer instead of the local enhancer (Figure 2) (61). Long
inverted repeats and microhomology are significantly associated
with boundary regions of the MYCN amplicon units, and thus
might also be involved in the initiation or regulation of MYCN
amplification (55, 58). Elucidating the mechanisms of MYCN
amplification may bring about new therapeutic strategies
targeting MYCN amplification to treat MYCN-driven tumors.
Frontiers in Oncology | www.frontiersin.org 4
Although the amplified genes tend to overexpress, gene
amplification not necessarily leads to high level of gene
expression. In fact, there is inconsistency between MYCN
gene dosage, mRNA and protein levels, and clinical outcomes
(44, 63). For example, low DNA dosage but high RNA level is
detected in some neuroblastoma samples, while high DNA dosage
but low RNA level in some other samples (45). AdditionalMYCN
gene copies may also suppress their own expression (58).
Genome-wide analysis in humans and some model organisms
revealed that genes in copy number variation regions are expressed
at lower and more variable levels than genes mapped elsewhere
(64). Alternatively, as in plants, repeated genes may suffer from
homology-dependent gene silencing that involves DNA
methylation or histone modification (65, 66). Consistently, only
a weak positive correlation of MYCN expression with copy
number is detected in Wilms tumor, while a strong negative
correlation of MYCN expression with DNA methylation level at
specific loci is observed (67). Importantly, transcriptional and
posttranscriptional regulation determines the final level of N-
MYC protein in both MYCN amplified and non-amplified
tumors. For instance, enhancer hijacking that repositions a
super enhancer close to the affected genes through chromosomal
translocation accounts for the high level of C-MYC or N-MYC
expression in some neuroblastoma cells without MYCC
amplification or without a high MYCN copy number,
respectively (68, 69).
REGULATION OF MYCN TRANSCRIPTION

Super Enhancer and Transcription Factors
A general feature ofMYC genes is their transcriptional regulation
by upstream super enhancers (SEs) (70). SE regions are occupied
by abundant transcription factors, cofactors, and chromatin
regulators, thereby promoting transcription of MYC genes
(71). Specifically, H3K27 acetylation (H3K27ac), a marker of
active enhancers and promoters, is enriched in the SE regions
and recognized by BRD4 of bromodomain and extra-terminal
domain (BET) protein family that recruits positive transcription
elongation factor b (P-TEFb) to the promoters to phosphorylate
RNA polymerase II, and thus facilitates transcriptional initiation,
pause release and elongation (72–74). BET inhibitors, such as
JQ1 and OTX015, can displace the BRD4 oncoprotein from
chromatin (75), which potently repressesMYCN transcription in
neuroblastoma cell lines and effectively reduces neuroblastoma
cell viability in vitro and in vivo (76, 77). It has been reported that
the toxic effects of BET inhibitors depend on p53 (78). The
combination of MDM2 (an E3-ubiquitin ligase involved in
proteasomal degradation of p53) inhibitor (CGM097) and
OTX015 results in p53 activation and decreased expression of
MYC proteins, which synergistically promotes neuroblastoma
cell death (79). A recent study shows that triple-negative breast
cancer (TNBC) cells with high expression of MYCN are also
sensitive to BET inhibitors (80). Furthermore, combined BET
and MEK inhibition synergistically represses the growth of
MYCN-expressing patient-derived xenograft TNBC tumors (80).
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Besides BET proteins, transcriptional cyclin-dependent kinases
(CDKs) are recruited to SEs, especially CDK7, a catalytic subunit of
the transcription factor IIH complex (TFIIH), and CDK9, a kinase
subunit of P-TEFb (81, 82). These CDKs regulate the transcriptional
cycle of RNA polymerase II via phosphorylating the C-terminal
domain of the polymerase, which enhances expression of SE-
associated oncogenes, such as MYCN (83–85). A covalent
inhibitor of CDK7, THZ1, selectively targets MYCN-amplified
neuroblastoma cells, leading to global suppression of MYCN-
dependent transcriptional amplification and sustained growth
inhibition of tumors in a mouse model of neuroblastoma (85).
CYC065 (fadraciclib), a clinical inhibitor of CDK9 and CDK2 (a
major regulator of apoptotic cell death), selectively targets MYCN-
amplified neuroblastoma through a loss ofMYCN transcription and
growth arrest, followed by sensitizing cells for apoptosis as a result of
CDK2 inhibition (86). Furthermore, the combined use of CYC065
with temozolomide (a reference therapy for relapsed
neuroblastoma), leads to long-term repression of neuroblastoma
growth in vivo (86).

Recent studies reveal that several super-enhancer harboring
transcription factors including HAND2, ISL1, PHOX2B, GATA3,
and TBX2 constitute a CRC that is essential for the MYCN
expression and the survival of MYCN-amplified neuroblastoma
cells (61, 87). BRD4 and CDK7 inhibitors synergistically repress
the expression of all the CRC transcription factors and N-MYC,
which inhibits neuroblastoma cell growth (87). Knockdown of each
CRC transcription factors also suppresses the expression ofMYCN
(87). Interestingly, the CRC-driven enhancers (local or distal) are
associated with extrachromosomal circular MYCN amplicons
(Figure 2) (61), underscoring the role of the CRC transcription
factors in the regulation of MYCN expression.

Other transcription factors, such as specific protein 1 (SP1) (88),
E2F (89), and pleiomorphic adenoma gene-like 2 (PLAGL2) (90),
participate in the regulation of MYCN expression. The three
transcription factors directly bind to the cognate binding sites in
theMYCN promoter, contributing to MYCN activation. Moreover,
N-MYC regulates PLAGL2 transcription through five N-MYC-
binding E-boxes in the PLAGL2 promoter region, forming a
positively regulatory loop between the two transcription factors,
which is crucial for expression of each other in neuroblastoma
tumors (90). Lipid desaturation-associated endoplasmic reticulum
(ER) stress inhibits MYCN expression via upregulating the
transcriptional repressor ATF3 in hepatocellular carcinoma cells
(91). Since these transcription factors including SP1, E2F2, and
PLAGL2 are involved in the regulation of MYCN expression, they
mediate the effects of metabolic change and pharmacological
treatment on MYCN expression and MYCN-driven tumors (92).
Aldehyde dehydrogenase family 18 member A1 (ALDH18A1) is a
key enzyme for the synthesis of proline from glutamate and plays
important role in the proliferation, self-renewal, and tumorigenicity
of neuroblastoma cells (93). ALDH18A1 promotes the transcription
of MYCN via the miR-29b/SP1 regulatory loop. ALDH18A1-
specific inhibitor, YG1702, inhibits MYCN expression and
attenuates the growth of human neuroblastoma (93). All-trans
retinoic acids have been used for neuroblastoma therapy for
decades by inhibiting the expression of MYCN and inducing the
Frontiers in Oncology | www.frontiersin.org 5
neuronal differentiation of neuroblastoma cells (94–96). Loss of E2F
binding or suppression of PLAGL2 expression mediates the
negative regulation of MYCN expression by retinoic acid (89, 90).
Acyclic retinoid dampens MYCN gene expression and suppresses
cell proliferation ofMYCN-overexpressed hepatocellular carcinoma
cells, at least in part by ER stress-induced ATF3 signaling
pathway (91).

G-Quadruplex
Another feature of MYC genes is their transcriptional regulation
by non-B DNA structures including single-stranded bubbles,
Z-DNA, and G-quadruplexes (97). G-quadruplexes are four-
stranded DNA secondary structures and consist of stacked G-
quartets that formed by the assembly of four Hoogsteen
hydrogen-bonded guanines in guanine-rich regions of DNA. A
G-quadruplex forming sequence lies in the promoter of MYCC
gene (98) and in intron 1 of MYCN gene (99) respectively. This
sequence exists in equilibrium between transcriptionally active
forms (double helical and single stranded) and a silenced form
(G-quadruplex), which controls up to 90% of MYCC
transcription (100). Thus, targeting MYC expression through
G-quadruplex stabilization becomes an attractive candidate for
the treatment of MYC-driven tumors. Cationic porphyrin
TMPyP4 is a small molecule able to stabilize G-quadruplex
structure and efficiently repress MYCC transcription, which
establishes the principle that MYC transcription can be
controlled by ligand-mediated G-quadruplex stabilization (98).
A cell penetrating thiazole peptide, TH3, shows improved
targeting specificity to MYCC G-quadruplex over other tested
G-quadruplexes (100). This peptide down-regulates MYCC
expression in cancer cells and reduces proliferative activities by
inducing S phase cell cycle arrest and apoptosis (100). Nucleolin
is a protein involved in the folding the G-quadruplex (101).
Quarfloxin (CX-3543), a fluoroquinolone-based antitumor
agent, can inhibit MYCC expression by redistribution of
nucleolin from the nucleolus to the nucleoplasm to bind to
MYCC G-quadruplex (102). Treating neuroblastoma cells with
quarfloxin represses N-MYC expression and causes G2-cell cycle
arrest and apoptosis (103). The most profound anti-tumor effects
of quarfloxin are associated with MYCN amplification (103),
implying the above drugs that target MYCC G-quadruplex can
also be used to target MYCN G-quadruplex for treatment of
MYCN-driven tumors.
POSTTRANSCRIPTIONAL REGULATION
OF MYCN MRNA

Along with transcription factors, noncoding RNAs including long
noncoding RNA (lncRNAs) and microRNAs (miRNAs) are
involved in the regulatory network of MYCN expression. miR-
506-3p is a potent differentiation inducer and a strong repressor of
MYCN expression in neuroblastoma cells by targeting PLAGL2
transcription factor (90, 104). miR-204 directly binds MYCN
mRNA, represses MYCN expression, and inhibits a subnetwork of
oncogenes that strongly correlate with MYCN-amplified
February 2021 | Volume 10 | Article 62533
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neuroblastoma and poor patient outcome (105). miR-193b targets
several important oncogenes including MYCN and is expressed at
low levels in neuroblastoma cell lines (106). MYCN mRNA is a
direct target of miR-520c-3p in cholangiocarcinoma, and
transcription factor SP1-induced lncRNA HOXD-AS1 enhances
MYCN expression through competitively binding to miR-520c-3p,
which associates with lymph node invasion, advanced TNM stage
and poor prognosis (107). A miRNA network, consisting of miR-
29b, miR-29a, and miR-193b, mediates posttranscriptional
regulation of the MYCN expression by ALDH18A1 (93, 108).
miRNA let-7 is a strong negative regulator of MYCN expression
and can inhibit proliferation and clonogenic growth of MYCN-
amplified neuroblastoma cells (108). LIN28B, an RNA-binding
protein and a suppressor of microRNA biogenesis, selectively
blocks the biogenesis of let-7 miRNA, consequently leading to
increased MYCN expression in neuroblastoma cells (109). These
results indicate that MYCN is targeted by several miRNAs.
Increased expression of these miRNAs inhibits cell proliferation
and tumorigenesis (105). Furthermore, miR-506-3p has been
reported to mediate the antitumor effect of retinoic acid in
neuroblastoma cells (90). These results underscore the potential of
miRNA-based anticancer therapy. Interestingly, the E3-ubiquitin
ligase MDM2 increases theMYCN mRNA stability and translation
by binding to AU-rich elements of the 3′ UTR of MYCN mRNA
through its C-terminal RING domain (110). RNAi-mediated
knockdown of MDM2 leads to remarkable suppression of
neuroblastoma cell growth and induction of cell death through a
p53-independent pathway (110).
REGULATION OF MYCN TRANSLATION

Efficient translation guarantees the oncogenic level of N-MYC
protein. N-MYC has been shown to promote the expression of
many genes involved in ribosome biogenesis and protein synthesis
(111), suggesting N-MYC contributes to its own overexpression by
enhancing the capacity of translation. The N-MYC protein level is
decreased as a result of ribosome biogenesis inhibition (103).
Mammalian target of rapamycin (mTOR) is a serine/threonine
protein kinase that controls initiation of protein translation (112).
mTOR directly phosphorylates and inactivates eukaryotic
translation initiation factor 4E (eIF4E)-binding protein 1 (4E-
BP1), which leads to activation of eIF4E and thus promotes cap-
dependent translation of mRNAs including MYC family (112).
Pharmacological inhibition of the AKT/mTOR pathway reduces N-
MYC level and exhibits therapeutic efficacy in MYCN-amplified
neuroblastoma (113, 114).
REGULATION OF N-MYC STABILITY

After translation, the stability and activity of N-MYC protein are
tightly controlled by ubiquitination-dependent proteasome
degradation that is a brake in the MYCN-driven cancers. The
degradation of the N-MYC proto-oncoprotein in neural stem/
progenitor cells is required for the arrest of proliferation and the
Frontiers in Oncology | www.frontiersin.org 6
start of differentiation. Two E3 ubiquitin ligases FBXW7 and
HUWE1 ubiquitinate N-MYC through Lys 48-mediated linkages
and target it for destruction by the proteasome (115, 116). The
recognition of N-MYC by FBXW7 involves several sequential
reactions, i.e., phosphorylation on Ser62 by CDK1 (117),
phosphorylation on Thr58 by glycogen synthase kinase 3b
(GSK3b), dephosphorylation of Ser62 by protein phosphatase
2A (PP2A) (118), which facilitates the Thr58 phosphorylated N-
MYC binding with FBXW7 (116).

Dysregulation of the degradation process will cause the
accumulation of N-MYC protein to the oncogenic level.
Aurora-A, a member of the Aurora kinase family, is identified
in an shRNA screen of genes that are highly expressed inMYCN-
amplified neuroblastoma cells and contributes to the
stabilization of N-MYC (119). Mechanistically, the catalytic
domain of Aurora-A interacts directly with N-MYC through
binding sites that flank either side of MYC box 1 which contains
the phosphodegron (Thr58) recognized by FBXW7, thereby
preventing the binding of FBXW7 with N-MYC substrate
(120). Furthermore, the expression of Aurora-A is increased in
theMYCN-amplified neuroblastoma, suggesting a potential feed-
forward loop that improves the stability of both proteins (121).
Two Aurora-A kinase activity inhibitors, MLN8054 and
MLN8237, disrupt the Aurora-A/N-MYC complex and
promote FBXW7-mediated degradation of N-MYC, which
correlates with tumor regression and prolonged survival in a
mouse model of MYCN-driven neuroblastoma (122, 123).
MLN8237 destabilizes N-MYC and synergizes with BCL2/
BCLxL inhibitor (venetoclax or navitoclax) to kill MYCN-
amplified tumor cells including neuroblastoma and
rhabdomyosarcoma (124, 125). Since the degradation of N-
MYC is regulated in part by a kinase-independent function of
Aurora-A, CD532, a conformation-disrupting inhibitor of
Aurora-A, acts as a more potent N-MYC inhibitor than the
kinase activity inhibitor MLN8237 in neuroblastoma (126).

Polo-like kinase 1 (PLK1), a serine/threonine kinase that
promotes G2/M-phase transformation, has an elevated
expression level in high-risk neuroblastoma and is associated
with poor prognosis of patients (127). PLK1 interacts with and
phosphorylates FBXW7, promoting auto polyubiquitination and
proteasomal degradation of FBXW7, which counteracts FBXW7-
mediated degradation of N-MYC (128). In turn, stabilized N-
MYC directly enhances the transcription of PLK1, forming a
positive feedforward regulatory loop that reinforces the progress
ofMYCN-driven cancers. Inhibitors of PLK1, such as BI6727 and
BI2356, preferentially trigger apoptosis of MYCN-amplified
neuroblastoma and small cell lung cancer, and this therapeutic
efficacy is synergistically enhanced by combined use with
antagonists of anti-apoptotic B cell lymphoma 2 (BCL2) (128).
UME103 and 9b, two novel dual PLK1 and BRD4 inhibitors,
show better antitumor activity by inhibiting the transcription of
MYCN gene and promoting the degradation of N-MYC protein
(129, 130).

Ubiquitin-specific protease 7 (USP7) regulates the stability
and activity of N-MYC in neuroblastoma (131). USP7 directly
binds to N-MYC, deubiquitinates it, which preventing
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degradation of N-MYC by the 26S proteasome. The expression
of USP7 is enhanced in patients of neuroblastoma with poorer
prognosis. A small molecular inhibitor of USP’s deubiquitinase
activity, P22077, destabilizes N-MYC, thereby markedly
repress ing the growth of MYCN-ampl ified human
neuroblastoma cell lines in xenograft mouse models (131).
Novel, selective inhibitors of USP7, USP7-055, and USP7-797,
have been developed recently for tumor therapy including
MYCN-amplified neuroblastoma (132).
NCYM, A CIS-ANTISENSE GENE OF
MYCN

An interesting feature of MYCN gene is its cis-antisense transcript
calledNCYM. NCYMwas initially recognized as a large non-coding
RNA (133, 134), while recent studies indicate it encodes a de novo
evolved protein that promotes tumor progression (135). The
transcription of NCYM begins from intron 1 of the MYCN gene
in the opposite direction to that of theMYCN, ultimately generating
NCYM protein with 109 amino acids (Figure 2) (135). As a cis-
antisense gene of MYCN, NCYM is always co-amplified with
MYCN (136). Both coding and noncoding transcripts of NCYM
contribute to higher N-MYC expression. NCYM stabilizes N-MYC
protein by inhibiting the activity of GSK3b, thereby preventing
phosphodegron-mediated N-MYC degradation (135). Noncoding
transcript variants of NCYM may reinforce MYCN translation via
expelling exon 1b through alternative splicing or promoter shift
(136). MYCN stimulates transcription of both NCYM and MYCN,
forming a positive regulatory loop and leading to high expression of
both genes (137).

NVP-BEZ235, a dual inhibitor of both phosphoinositide 3-
kinase (PI3K) and mTOR, promotes the degradation of N-MYC
by GSK3b activation and effectively decreases tumor burden in
the MYCN transgenic mouse. In contrast, NVP-BEZ235 cannot
prolong the survival of the MYCN/NCYM double transgenic
mice (135). This might be related to the N-MYC-independent
functions of NCYM, e.g., NCYM-mediated inhibition of GSK3b
also lead to the stabilization of b-catenin, which promotes
bladder cancer progression (138); NCYM promotes generation
of MYC-nicks, cytoplasmic cleavage products of N-MYC and C-
MYC, which inhibits apoptosis and enhances cancer cell
migration (139). TAp63, an isoform of p63 protein and a p53
family protein, suppresses MYCN/NCYM bidirectional
transcription, repressing neuroblastoma growth (140). Thus,
the implication of NCYM gene in MYCN-driven tumors
increases complexity and contributes to treatment resistance.
SOMATIC MUTATION OF MYCN

In addition to deregulated expression of N-MYC due to gene
amplification or dysregulation at mRNA and protein levels, a
recurrent somatic mutation, proline 44 to leucine (P44L) (Figure
1A), is identified in various tumors (141), including, glioma
(142), neoplastic cysts of the pancreas (143), medulloblastoma
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(144), neuroblastoma (145), Wilms tumor (67), skin basal cell
carcinoma (146), T-lineage acute lymphoblastic leukemia (147),
NUT midline carcinoma (148), Ovarian mesonephric-like
adenocarcinoma (149). Notably, P44L mutation of N-MYC has
occurred in 1.7% of high-risk neuroblastoma without MYCN
amplification (145). Since the frequent occurrence of P44L
switch in different cancers, this mutation has long been
assumed as an activating one, but it has not been functionally
or biochemically characterized until recently (28). KE
Mengwasser compared the function of P44L mutant with the
wild type N-MYC in terms of promoting proliferation, and they
found that P44L N-MYC mutant displayed 2- and 4.5-fold
higher log2-fold-change in pancreas cells and breast cells,
respectively (150). Similarly, Liu et al. observed a modest but
significantly shorter latency for the induction of highly penetrant
T-lineage leukemia in P44L N-MYC expressing cells than that of
wild-type N-MYC expressing cells (147). These evidences solidly
confirm that P44L N-MYC is indeed an activating mutation.

Mechanistically, as P44L mutation site locates adjacent to the
conserved phosphor-degron sites recognized by E3 ubiquitin ligases
FBXW7 and HUWE1 (Figure 1A), a hypothesis was proposed in
which P44L mutation could perturb the interaction between these
ligases and N-MYC substrate, therefore, prevented N-MYC
degradation and enhanced oncogenicity (147). Consistently, Liu
et al. show that the degradation of the N-MYC protein is
significantly delayed in the P44L mutated type than that of the
wild type after the cells are treated with cycloheximide to block
protein translation (147). However, Bonilla et al. display that the
interacting with FBXW7 is not affected by the P44L mutation,
instead, the autoubiquitination of FBXW7 is increased in the
presence of P44L mutation, suggesting a different mechanism for
the enhanced stability of P44L N-MYC (146). Furthermore, the
P44L mutation is associated with increased mRNA levels ofMYCN
in neuroblastoma (145). A previous study shows that MYCN can be
directly recruited to the intron1 region of its own gene which
contains two putative E-box sites and thus promotes its own
transcription in neuroblastoma cells (151). Considering this
positive auto-regulatory loop, it is possible that P44L mutation
enhances MYCN mRNA level through the auto-activating
mechanism with the more stable form of N-MYC protein.
SYNTHETIC LETHAL INTERACTION WITH
DEREGULATED MYCN

The concept of synthetic lethality means targeting specific targets
including proteins and metabolites that are essential for the
viability of tumor cells with specific physiology, such as N-
MYC overexpression. This strategy can kill cancer cells only
while spares normal counterpart. For instance, checkpoint kinase
1 (CHK1) is a key player in the DNA damage checkpoint control,
and inhibition of CHK1 sensitizes cells to additional genomic
instability (152). Overexpression of N-MYC causes replication
stress and DNA damage by the ectopic replication-fork firing,
which results in remarkably higher sensitivity of N-MYC
overexpressing tumors to CHK1 inhibition, and thereby CKH1
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inhibition is synthetic lethal with N-MYC overexpression (153,
154). Similarly, we demonstrate that N-MYC sensitizes
neuroblastoma cells to apoptosis induced by various death
ligand or DNA-damaging drugs (155, 156). These results
indicate targeting DNA repair system or drugs causing DNA
damage could be synthetic lethal in MYCN-driven tumors.
Recent studies reveal various strategies based on N-MYC-
mediated synthetic lethality, including glutaminase inhibition
or glutamine deprivation (157), BCL2 inhibition (125),
eliminating SKP2 complexes (158), kinesin spindle protein
(KSP) inhibition (159), G9a inhibition (160), poly (ADP-
ribose) polymerase (PARP) inhibition (161, 162).
CONCLUSION AND PERSPECTIVES

Here we describe the regulatory network of MYCN expression
(Figure 2). Multiple mechanisms can cause abnormal level of N-
MYC, including gene amplification, enhanced transcription,
translation and protein stability. Various therapeutic targets
have been found to address N-MYC overexpression based on
knowledge of these regulatory mechanisms. However, strategies
that globally inhibiting gene expression (such as inhibiting
CDK7 and BDR4) has not yet convincingly demonstrated that
these inhibitors specifically target tumors with high N-MYC
level, nor have these inhibitors reached advanced stages in
clinical trials (16). Although directly and specifically targeting
N-MYC has not yet been available, promise remains in
developing new approaches to effectively treat MYCN-driven
Frontiers in Oncology | www.frontiersin.org 8
tumors. For examples, short interfering RNA (siRNA)-mediated
silence ofMYCN induces neurogenesis and inhibits proliferation
in neuroblastoma models resistant to retinoic acid (163). Clinical
applications of siRNA are developing and the first siRNA-based
drug Patisiran (Onpattro) was approved for clinical use to treat
transthyretin amyloidosis by the U.S. Food and Drug
Administration (FDA) in 2018 (164). In addition, Yoda et al.
identify a pyrrole-imidazole polyamide, MYCN-A3, able to
directly target MYCN amplicons, which specifically reduces
copy number and suppresses gene expression of MYCN (165).
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