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Abstract
Objectives: Laser surgery requires efficient tissue classification to reduce the
probability of undesirable or unwanted tissue damage. This study aimed to in-
vestigate acoustic shock waves (ASWs) as a means of classifying sciatic nerve
tissue.
Materials and Methods: In this study, we classified sciatic nerve tissue against
other tissue types—hard bone, soft bone, fat, muscle, and skin extracted from two
proximal and distal fresh porcine femurs—using the ASWs generated by a laser
during ablation. A nanosecond frequency‐doubled Nd:YAG laser at 532 nm was
used to create 10 craters on each tissue type's surface. We used a fiber‐coupled
Fabry–Pérot sensor to measure the ASWs. The spectrum's amplitude from each
ASW frequency band measured was used as input for principal component
analysis (PCA). PCA was combined with an artificial neural network to classify
the tissue types. A confusion matrix and receiver operating characteristic (ROC)
analysis was used to calculate the accuracy of the testing‐data‐based scores from
the sciatic nerve and the area under the ROC curve (AUC) with a 95%
confidence‐level interval.
Results: Based on the confusion matrix and ROC analysis of the model's tissue
classification results (leave‐one‐out cross‐validation), nerve tissue could be clas-
sified with an average accuracy rate and AUC result of 95.78 ± 1.3% and
99.58 ± 0.6%, respectively.
Conclusion: This study demonstrates the potential of using ASWs for remote
classification of nerve and other tissue types. The technique can serve as the basis
of a feedback control system to detect and preserve sciatic nerves in endoscopic
laser surgery.

KEYWORDS
acoustic shock signal, artificial network machine, laser ablation, principal component analysis, sciatic
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INTRODUCTION

Laser surgery offers numerous advantages to both pa-
tients and surgeons, such as ablating organic tissues with
high precision and achieving a functional cutting geo-
metry with minimal trauma. Additionally, contact‐free
ablation of the laser allows an advanced level of sterility

compared to the use of mechanical tools in surgery.1,2

Combining laser osteotomy with endoscopy (minimally
invasive surgery) will additionally push the restrictions of
possible applications for the benefits of the patient—in
the field of maxillo‐facial‐, neuro‐, and orthopedic sur-
gery.3 However, these advantages are somewhat dimin-
ished by a lack of information on ablated tissue type and
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depth. During laser ablation, it is crucial to preserve vital
tissues, such as the sciatic nerve to preserve collateral
damage. Preservation is particularly challenging when
operating on body parts with complex tissue types, such
as a femur, including hard and soft bone, muscle, fat and
skin, and most importantly, the sciatic nerve.4,5

The sciatic nerve is the largest in the human body,
measuring up to 2 cm in diameter. Originating from the
lumbar and sacral spine, the sciatic nerve travels through
the greater sciatic foramen below the piriformis muscle.
Surrounded by a fatty sheath, it follows the upper thigh's
back, from the pelvis to the knee. At the popliteal fossa,
which serves as a conduit for blood vessels and nerves in
the leg, the sciatic nerve divides into the common per-
oneal nerve and the tibial nerve. Both are responsible for
motor and sensory function in the lower leg and foot.6,7

Nerves are embedded in various other tissues, making it
challenging for surgeons to discriminate between them,
mostly smaller diameter nerves. Damaging the sciatic
nerve's anatomical structure or the subsequent common
peroneal and tibial nerves can drastically affect sensation
over the sole, the back of the femur, part of the lower
femur and the knee.8–10 Fractional damage to the nerve
can cause weakness of foot movements, weakness of knee
flexion (bending), trouble bending the foot down (plantar
flexion), or bending the foot inward (inversion).11

Different approaches have already been proposed in the
literature to detect nerves during laser ablation. For ex-
ample, electrical stimulation, diffuse reflectance spectro-
scopy, optical spectroscopy, and mass spectroscopy have
been proposed to detect the nerve tissue during laser
ablation or surgery; however, no one has investigated it
in a minimally invasive setting.4,12

Depending on the laser's parameters (i.e., pulse
duration, wavelength, and output energy), superficial or
deep ablation can occur with minimal temperature dis-
sipation. In other words, when using lasers at a wave-
length of 2940 nm, deep ablation can occur; this is not
the case at 532 nm, where only superficial ablation is
possible. To achieve deep ablation, different lasers have
been compared and the results suggest that microsecond
2.94‐µm Er:YAG (erbium‐doped yttrium aluminum
garnet) lasers can provide high ablation rate with high
efficiency,13,14 mainly because the operation wavelength
of the Er:YAG laser corresponds to the highest absorp-
tion peak of water and hydroxyapatite, the main com-
ponent of bone.15,16 In contrast to the Er:YAG, the
Nd:YAG (neodymium‐doped yttrium aluminum garnet)
laser source operating at 532 nm is transparent in water
and seems well suited for tissue ablation in a liquid en-
vironment, such as knee arthroscopy.15,17 Additionally,
by using a nanosecond (ns) pulsed laser at 532 nm, we
fulfill the thermal confinement condition in biological
tissues. Therefore, a ns‐pulsed Nd:YAG laser at 532 nm
could be alternatively used to avoid thermal damage,
producing superficial ablation.17–19 Moreover, since the
ablation rate is less than that of Er:YAG lasers, the risk

of ablating more than one tissue at the same time is also
less, leading to an in increase the possibility of preserving
vital tissues.

Furthermore, when ns‐pulsed lasers interact with
biological tissues, acoustic shock waves (ASWs) from
plasma‐induced ablation are generated and can propa-
gate through the air.20 The propagated ASW can be
measured using piezoelectric transducers, air‐coupled
transducers (microphones), and free‐space Mach–
Zehnder interferometer sensors, which convert the
spherical wavefront into electrical signals.21–24 ASW
signal parameters mainly depend on the type of tissue
ablated.21 Therefore, feedback of these parameters can
be used for real‐time tissue differentiation.24,25 The pre-
viously proposed bulky sensors to measure ASWs had
limited bandwidths (typically <1MHz) and were not
suitable for minimally invasive setting.26 The need for
both a broad bandwidth and compact sensor led to new
optical sensors, with extended bandwidths and small
designs sufficient for endoscopic applications.27

Interferometric‐based methods detect variations in the
optical interference patterns generated by the ASWs.
Interference pattern variation is due to the ASW pressure
that can interact directly with the interrogating beam,
vary the resonance frequency, or cause reflector vibra-
tion. Depending on how the interferometer is configured,
interference pattern variations are triggered by changes
in the mean free path, the optical wavelength, or the
optical phase.24 The resulting variations in intensity or
frequency of the interferometer output are measured by a
photodiode and generate information about the ASW
signals.3,27

Also, according to the literature reviews, support
vector machine (SVM) and artificial neural network
(ANN) are effective and practical solutions for biome-
dical signal recognition.28–30 The ANN behavior mostly
depends on weights and transfer function. The output of
the transfer function is multiplied weights connecting the
hidden layer and the output layer to generate the net-
work output.31 Consequently, in our previous study, we
compared the performance of PCA combined with either
a quadratic and Gaussian VMs or an ANN method.32

The ANN was composed of a pattern network function
combined with the Tan‐Sigmoid activation function in
the hidden layers. The main advantage of the Hyperbolic
Tangent Function (Tanh) is that it generates a zero‐
centered output, thus strengthening the backpropagation
process. The multilayer networks can use the Tan‐
Sigmoid function and the output neurons are often used
for pattern recognition problems. Softmax activation
function which was also known as a normalized ex-
ponential function was further employed to the output
layer to predict the label.33,34 Furthermore, ANN is a
nonlinear model that is easy to use and understand
compared to statistical methods, because ANNs are
nonparametric models while most of the statistical
methods are parametric models that need higher
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background of statistics. That is why ANN with back-
propagation learning algorithm is widely used in solving
various classification and forecasting problems.35,36 In
addition, it has been found in our previous study that the
ANN showed the best performance in terms of classify-
ing all tissues during ablation.3,32 Thus, ANN was also
used for this optoacoustic data.

In this study, we used our custom‐made fiber‐coupled
Fabry–Pérot etalon system to measure ASWs during
laser ablation.27 Among the advantages of using etalon
sensors are their compactness and broad usable band-
widths (exceeding 2.5MHz). We used a frequency‐
doubled, Q‐switched Nd:YAG laser at 532 nm to pro-
duce craters on the surface of hard bone, soft bone,
muscle, fat, skin, and nerve tissue. We measured the
ASWs emitted and then assessed the measurements by
looking at the frequency band that delivered the best
accuracy and area under the curve (AUC). We used
principal component analysis (PCA) and an ANN to
reduce the dimensionality of data points and to classify
sciatic nerve from among other tissue types, respectively.

MATERIALS AND METHODS

Sample preparation

In the experiments, we used samples from two fresh
porcine proximal and distal femurs. Figures 1A–F and
1G–L show pictures of six tissue types (hard bone, soft
bone, muscle, fat, skin, and nerve) which were obtained
from porcine proximal and distal femurs, respectively.
The connective tissues were carefully separated with
scalpels. The samples were then rinsed in distilled water
before undergoing the laser experiments.

Experimental setup

We ablated the samples using a Nd:YAG laser (Q‐smart
450; Quantel) with 5 ns‐long pulses at 532 nm. The pulse
energy was 200 mJ, with a repetition frequency of 10 Hz.
The laser beam was focused at a 7.5 cm focal distance
(LA5042; Thorlabs), using an antireflection coated bi-
convex lens. A detailed explanation of the experimental
setup, including calibration steps, was reported in pre-
vious work.37 The focal point was positioned 2mm under
the sample surface to achieve deeper ablation. Using a
Gaussian distribution, whereby maximum irradiance is
reached at an amplitude of e−2, the laser spot size was
estimated to be 15.6 μm. A sequence of 180 laser pulses
was applied to the fresh porcine femur. Ten craters, each
4mm apart, were created on the surface of each sample.

In the optical sensor system, we used a single‐
frequency laser source (SFL1550S; Thorlabs) that emits
continuous coherent light at a center wavelength of
1550 nm, with an output power of 40 mW. The laser
contains a single‐mode (SM) output fiber tail (CLD1015;
Thorlabs). The output of the fiber tail is coupled into
Port 1 (P1 in Figure 2) of the single‐mode fiber‐optic
circulator (FOC) (6015‐3‐APC; Thorlabs). A single‐
mode 50:50 partial reflector fiber (P5‐ SMF28ER‐50‐1;
Thorlabs) is connected to Port 2 (P2 in Figure 2) of the
FOC to split the incident beam into two spectral bands:
one transmitted and one reflected. The reflected light
from the coated facet of the fiber is routed to Port 3 (P3).
The transmitted light is collimated at the surface of an
antireflection coated biconvex lens (67‐593; Edmund
Optics). The coated double‐convex lens with a focal
length of 9 mm is embedded in the 4 × 20mm optical
cavity to focus the collimated light onto the surface of a
flat mirror. The propagating beam in the optical cavity is

FIGURE 1 Tissue samples from a fresh porcine femur. Proximal femur: hard bone (A), soft bone (B), muscle (C), fat (D), skin (E), and nerve
(F); distal femur: hard bone (G), soft bone (H), muscle (I), fat (J), skin (K), and sciatic nerve (L)
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retroreflected by a protected gold mirror (PF1011‐M01;
Thorlabs) and coupled back into the 50:50 partial re-
flector fiber. The FOC also routes the retroreflected beam
to P3. The FOC's P3 connector is mounted to an InGaAs
detector with a fixed amplifier gain (PDA20C2; Thor-
labs) to sense the variation in light intensity.

During laser tissue ablation, the ASWs generated cause
spatiotemporal variations of the air refractive index in the
optical cavity. Thus, changes in the light intensity of
the probing laser beam in the optical cavity correspond to
the ASW pressure, which can be accurately measured by
an InGaAs detector. The custom‐made all‐fiber Fabry–
Pérot sensor is illustrated in Figure 2.

Data acquisition

During laser tissue ablation, we measured the ASWs
emitted using the custom‐made optical sensor (Figure 2).
Acoustic data acquisition was triggered by an external
CMOS trigger from the laser. The time gate window of
each measurement was 82 μs. The measured analog sig-
nals were digitized using a PCI Express x8 (M4i.44xx‐x8;
Spectrum Microelectronic GmbH), with a 16‐bit tran-
sient recorder and a sampling rate of 10MS/s.

Classification matrix

Statistical analysis and calculations were performed with
MATLAB (version R2018b). We suppressed each ASW
signal's phase shift by characterizing the amplitude spec-
trum, using the fast Fourier transform. We improved
the contrast of the visualization of each ASW using the
logarithm of the amplitude spectrum. We split the am-
plitude spectrum into six equal frequency bands (F1–6).

We normalized each frequency band value by subtracting
the mean of all frequency bands measured to enhance
classification performance. Therefore, a mean of zero was
obtained for each frequency range. Each frequency band
was used as an input for PCA, which was applied to re-
duce the dimensionality while maintaining the patterns
and trends of the ASW field.38 In other words, PCA de-
composes the data by generating orthogonal and, thus,
independent linear combinations of the variables known
as principal components (PCs) or PCA scores.

To classify tissue, we investigated the post‐processed
acoustics by looking at the spectral band in which
we achieved the best average classification accuracy and
the area under the ROC curve for nerve detection. We
combined PCA scores with an ANN to carry out the
classification (Figure 3).

We used the pattern network function combined with
the Tan‐Sigmoid activation function for hidden layers and
the SoftMax activation function for the output layer
available in MATLAB. To build the network, we used an
input, one hidden, and an output layer. The input layer
was made of three neurons for the first three PCA scores.
The single hidden layer and output layer were made of 10
neurons and 6 output neurons, respectively (Figure 4).

Only a few PCA scores are needed to describe the
large variability of the data points. Thus, by using only
three PCA scores, we were able to reduce the di-
mensionally of the frequency band while keeping most of
the variance of the selected frequency band for classifi-
cation (Figures 5 and 6A,B).

A total of 7200 ASWs were measured for each type of
tissue extracted from two femurs—each femur has a
proximal and a distal. During the classification phase, we
used a set of 3600 data points measured from 10 craters
in one proximal and distal femur as training data. During
the validation phase, 1800 data points were used from the

FIGURE 2 Illustration of the fiber‐coupled Fabry–Pérot etalon system (side view). The acoustic shock wave propagated is detected in the optical
cavity as the refractive index in the air cavity changes
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second proximal femur, and the remaining 1800 data
points from the same femur were used as testing data. We
performed a leave‐one‐out cross‐validation by using the
second femur as training data and the first one as vali-
dation and testing data. From the two confusion

matrices and the receiver operating characteristics
(ROCs), we calculated the mean accuracy of the testing‐
data‐based scores for sciatic nerve classification and the
AUC with a 95% confidence‐level interval. We evaluated
the performance of our models fairly on a single

FIGURE 3 Flow chart of the signal processing methods for tissue classification

FIGURE 4 The architecture of our artificial
neural network used to classify the first three
principal component analysis scores of each
acoustic shock wave from each tissue type

FIGURE 5 Comparison of the acoustic shock waves emitted from ablated hard muscle and fat tissues in the time and frequency domain
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computer with a specification of 2.4 GHz Intel Core i7
processor, 16GB 1867MHz DDR3 memory.

RESULTS

ASWs measured in the time and frequency domains for
each ablated tissue are shown in Figure 5. Hard tissue
(hard bone) produced higher peak amplitude values in
the time and frequency domains than did the soft tissues
(soft bone, muscle, fat, skin, and nerve). We used each
frequency band as input for the PCA (see Appendix A
for results at frequency bands, except for FR4).

The analysis of the training and testing data scores
from frequency range FR4 are shown in Figures 6A and
6B, respectively. Results from other frequency bands
are in Appendix A (Figures A1–A5 and Tables A1–A5).
The first three PCs selected for differentiation were

responsible for 87.5% of the variation around the data
point where the first contributed 85.28% (PC1) followed
by 1.89% (PC2) and 0.33% (PC3) to the cumulative var-
iance. From the confusion matrix and the ROC analysis
(Figure 4C), the average classification accuracy (with
leave‐one‐out cross‐validation) between nerve tissue and
other tissues was more than 95.78 ± 1.3% (Table 1). The
corresponding AUC was more than 99.58 ± 0.6%, for
nerve, against other tissues (Table 1). Backpropagation
was used for training with a learning rate of 2.4ms. The
computation time for testing was of the order of 0.46ms.

DISCUSSION

Based on the confusion matrix and the ROC analysis of
the model's tissue classification results, nerve tissue could
be classified with an accuracy rate and AUC results of

FIGURE 6 First three principal component (PC) scores from (A) the training data for hard and soft bone, muscle, fat, skin, and nerve
(FR4 = 1.25–1.67MHz), using the artificial neural network (ANN) models combined with the nanosecond (ns)‐Nd:YAG laser. First three PC scores
from (B) the testing data for hard and soft bone, muscle, fat, skin, and nerve (FR4 = 1.25–1.67MHz), using the ANN models combined with the ns‐
Nd:YAG laser. The receiver operating characteristic curve (C) to multiclass using the ANN models combined with the ns‐Nd:YAG laser. Note that
the curve of hard bone, skin, muscle, and nerve tissues versus other tissues overlaps
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95.78 ± 1.3% and 99.58 ± 0.6%, respectively. With an
accuracy rate and AUC of 100%, the best result was
achieved for distinguishing hard bone tissue from all
others. The main reason for this high classification rate is
that hard tissues, like hard bone, consist of 65% in-
organic elements (calcium phosphate compounds, mainly
hydroxyapatite) and 35% organic elements (collagen fi-
brils, water, proteins). In contrast, soft tissue is 79%
water, which is its main chromophore, and 20% pigment
melanin, lipids, and carbohydrates.39 In other words, the
ASWs that emanate from soft tissues are mainly gener-
ated by water, while those that originate from hard bone
are mostly based on carbonated hydroxyapatite.32,40 The
worst classification rate and AUC results were for dis-
tinguishing between soft bone and fat (Tables A1–A5).
This tendency for misclassification was already observed
in our earlier studies.24,27 Since soft bone in the femur is
mostly made of fatty tissue, it presents a similar me-
chanical structure, generating comparable ASW sig-
natures.24,27 Nevertheless, classification between tissue
types was not the main aim of this study, in which we
focused on sciatic nerve at a frequency range of
1.25–1.67MHz (FR4). The frequency bands were chosen
ad hoc, however, by further reducing the size of the
frequency band, we observed less accuracy. Therefore,
the best results were obtained by splitting the amplitude
spectrum into six equal frequency bands. In our previous
studies, we showed that the frequency band of
1.67–2.08MHz (FR5) yielded the best results in terms of
high average classification accuracy and AUCs with
cross‐validation between tissues.24,27,41 The higher values
were theoretically expected, as the ablation with the
Nd:YAG is based on plasma mediation, which increases
the pressure energy measured by the optical sensor. The
authors believe by adding nerve tissues the frequency
range that provided the best classification accuracy
shifted to 1.25–1.67MHz (FR4). The main reason could
be the important parameters (variance) of the ASWs
from nerve are in the frequency range of FR4. Ad-
ditionally, the PCA was used to reduce the data

dimensionally at each frequency range. This is because
PCs consecutively maximize variance and can be ob-
tained from the eigenvalues/eigenvectors of a covariance
matrix.42 When all variables are measured in the same
units, covariance‐based PCA may be suitable. In general,
the first PCs are dominated by the high‐variance vari-
ables and mostly represent variance of each data.
Therefore, by confining the number of eigenvalues and
eigenvectors to the first three PCs, we aim to keep the
most represented variance of each data and improve the
speed of online classifier when transferring feedback
sensor to other systems for in‐vivo measurements. In case
the online classifier produces more errors, more PCs can
be used to address this issue, however, the computational
time would increase.32

To apply this tissue classification method in a closed‐
loop system to control laser ablation in surgery, the
computational time needed to analyze the ASW spectra
must be less than the pulse repetition time. To extend the
system for a more general purpose, it would be essential to
analyze numerous types of tissue in a very short period of
time; an aim that presents both a mathematical and
computational challenge. While determining the compu-
tational time for tissue classification was not the objective
of our study, the matter must be examined further before
transferring the investigation results to a control system.
In our study, tissue classification was implemented ex
vivo. Before any clinical use of the model, however, ad-
ditional tests would be required to examine the impact of
blood flow in vivo and carbonization on the surface of
surgical lesions on ASW tissue classification.

The method still needs to be improved. It could be
improved by using deep learning to further reduce the
error rate. We can also use a filter to leave out mis-
classified data, that is, when doing line cut on top of hard
bone with laser, we detect hard bone during the last five
shots. Unexpectedly, we detect muscle in one shot fol-
lowed by the detection of soft bone. The software will
just filter out the misclassified skin and considers it as
outlier or hard bone.

TABLE 1 Confusion matrix for hard
bone, skin, muscle, fat, soft bone, and nerve
tissues (FR4 = 1.25–1.67MHz) during laser
ablation at 0.2 J pulse energy

Tissue

Classified as Average classification
accuracy with leave‐
one‐out cross‐
validation (%)

Area
under
ROC
curve (%)

Hard
bone Skin Muscle Fat

Soft
bone Nerve

Hard bone 1800 0 0 0 0 0 100 100

Skin 0 1734 0 0 0 66 99.33 99.91

Muscle 0 0 1712 7 0 81 95.11 99.83

Fat 0 0 9 1593 198 0 88.50 98.90

Soft bone 0 0 0 198 1602 0 89 98.98

Nerve 0 43 33 0 0 1724 95.78 99.58

Abbreviation: ROC, receiver operating characteristic.
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As already mentioned, the Er:YAG laser at 2940 nm
is generally used for deep ablation accompanied by a
water‐cooling system,15 while, the Nd:YAG laser at
532 nm can be used to ablate surfaces in a wet environ-
ment.20,25,43 Depending on the laser pulse parameters,
such as laser energy, pulse duration, and focusing con-
ditions,43 the ASW properties can be slightly different.20

Therefore, for more application, investigating tissue
classification using the Er:YAG at 2940 nm combined
with the Nd:YAG laser at 532 nm in vivo is an essential
next step.

CONCLUSION

The results of this study show the potential of using ASW
for remote classification of nerve and other types of tissue
(hard and soft bone, muscle, fat, and skin). The average
classification accuracy and AUC result with leave‐one‐out
cross‐validation was more than 95.78 ± 1.3% for distin-
guishing nerves from other tissues. This technology can be
used to develop a control system capable of identifying
nerve tissue during endoscopic laser surgery to prevent
sensation and motor function loss in the lower body.
Future work should focus on tissue classification and
carbonization detection with sufficiently short computa-
tional time when ablating a wide range of tissue types in
vivo, using Nd:YAG and Er:YAG at 532 and 2940 nm,
respectively.
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APPENDIX A
Tables A1–A5

Figures A1–A5

TABLE A1 Confusion matrix for hard
bone, skin, muscle, fat, soft bone, and nerve
tissues (FR1 = 0–0.42MHz) during laser
ablation at 0.2 J pulse energyTissue

Classified as Average classification
accuracy with leave‐
one‐out cross‐
validation (%)

Area
under
ROC
curve (%)

Hard
bone Skin Muscle Fat

Soft
bone Nerve

Hard bone 1798 2 0 0 0 0 99.88 100

Skin 0 1800 0 0 0 0 100 100

Muscle 0 0 1797 3 0 0 99.83 100

Fat 0 0 321 1479 0 0 82.17 98.65

Soft bone 0 0 0 259 1541 0 85.61 98.66

Nerve 0 0 0 0 0 1800 100 100

Abbreviation: ROC, receiver operating characteristic.

TABLE A2 Confusion matrix for hard
bone, skin, muscle, fat, soft bone, and nerve
tissues (FR2 = 0.42–0.83MHz) during laser
ablation at 0.2 J pulse energyTissue

Classified as Average classification
accuracy with leave‐
one‐out cross‐
validation (%)

Area
under
ROC
curve (%)

Hard
bone Skin Muscle Fat

Soft
bone Nerve

Hard bone 1799 1 0 0 0 0 99.94 100

Skin 0 1799 0 0 1 0 99.94 100

Muscle 0 0 1797 3 0 0 99.61 99.95

Fat 0 0 6 1475 185 134 81.94 97.37

Soft bone 0 0 0 214 1448 138 80.44 97.42

Nerve 0 0 14 165 192 1429 79.39 97.72

Abbreviation: ROC, receiver operating characteristic.

TABLE A3 Confusion matrix for hard
bone, skin, muscle, fat, soft bone, and nerve
tissues (FR3 = 0.83–1.25MHz) during laser
ablation at 0.2 J pulse energyTissue

Classified as Average classification
accuracy with leave‐
one‐out cross‐
validation (%)

Area
under
ROC
curve (%)

Hard
bone Skin Muscle Fat

Soft
bone Nerve

Hard bone 1800 0 0 0 0 0 100 100

Skin 1 1797 1 0 0 1 99.83 100

Muscle 0 1 1757 9 0 33 99.61 99.95

Fat 0 0 4 1582 207 7 87.89 98.68

Soft bone 0 0 0 114 1686 0 99.66 98.85

Nerve 0 0 135 7 0 1658 92.11 99.67

Abbreviation: ROC, receiver operating characteristic.
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TABLE A4 Confusion matrix for hard
bone, skin, muscle, fat, soft bone, and nerve
tissues (FR5 = 1.67–2.08MHz) during laser
ablation at 0.2 J pulse energy

Tissue

Classified as Average classification
accuracy with leave‐
one‐out cross‐
validation (%)

Area
under
ROC
curve (%)

Hard
bone Skin Muscle Fat

Soft
bone Nerve

Hard bone 1796 4 0 0 0 0 99.78 100

Skin 0 1625 0 0 0 175 90.28 99.44

Muscle 0 0 1706 7 0 87 94.78 99.80

Fat 0 0 4 1585 210 1 88.06 98.84

Soft bone 0 0 0 267 1533 0 85.17 98.92

Nerve 0 104 27 0 0 1669 92.72 98.66

Abbreviation: ROC, receiver operating characteristic.

TABLE A5 Confusion matrix for hard
bone, skin, muscle, fat, soft bone, and nerve
tissues (FR6 = 2.08–2.50MHz) during laser
ablation at 0.2 J pulse energy

Tissue

Classified as Average classification
accuracy with leave‐
one‐out cross‐
validation (%)

Area
under
ROC
curve (%)

Hard
bone Skin Muscle Fat

Soft
bone Nerve

Hard bone 1788 4 0 0 0 8 99.33 100

Skin 0 1501 0 0 0 299 83.39 99.41

Muscle 0 0 1553 0 0 247 86.40 99.16

Fat 0 0 3 1520 227 50 84 98.35

Soft bone 0 0 0 267 1515 18 84.17 98.78

Nerve 3 105 64 13 0 1615 89.72 98.53

Abbreviation: ROC, receiver operating characteristic.
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FIGURE A1 First three principal component (PC) scores from (A) the training data for hard and soft bone, muscle, fat, and skin
(FR1 = 0–0.42MHz). First three PC scores from (B) the testing data for hard and soft bone, muscle, fat, and skin (FR1 = 0–0.42MHz). Receiver
operating characteristic curve (C) to multiclass using the artificial neural network models combined with the ns‐Nd:YAG laser. Note that the curve
of hard bone, skin, muscle, and nerve tissues versus other tissues overlaps (FR1 = 0–0.42MHz)
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FIGURE A2 First three principal component (PC) scores from (A) the training data for hard and soft bone, muscle, fat, and skin
(FR2 = 0.42–0.83MHz). First three PC scores from (B) the testing data for hard and soft bone, muscle, fat, and skin
(FR2 = 0.42–0.83MHz). Receiver operating characteristic curve (C) to multiclass using the artificial neural network models combined with the ns‐
Nd:YAG laser. Note that the curve of hard bone, skin, muscle, and nerve tissues versus other tissues overlaps (FR2 = 0.42–0.83MHz)
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FIGURE A3 First three principal component (PC) scores from (A) the training data for hard and soft bone, muscle, fat, and skin
(FR3 = 0.83–1.25MHz). First three PC scores from (B) the testing data for hard and soft bone, muscle, fat, and skin
(FR3 = 0.83–1.25MHz). Receiver operating characteristic curve (C) to multiclass using the artificial neural network models combined with the ns‐
Nd:YAG laser. Note that the curve of hard bone, skin, muscle, and nerve tissues versus other tissues overlaps (FR3 = 0.83–1.25MHz)
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FIGURE A4 First three principal component (PC) scores from (A) the training data for hard bone, soft bone, muscle, fat, skin, and nerve
(FR5 = 1.67–2.08MHz). First three PC scores from (B) the testing data for hard bone, soft bone, muscle, fat, skin, and nerve
(FR5 = 1.67–2.08MHz). Receiver operating characteristic curve (C) to multiclass using the artificial neural network models combined with the ns‐
Nd:YAG laser. Note that the curve of hard bone, skin, muscle, and nerve tissues versus other tissues overlaps (FR5 = 1.67–2.08MHz)
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FIGURE A5 First three principal component (PC) scores from (A) the training data for hard bone, soft bone, muscle, fat, skin, and nerve
(FR6 = 2.08–2.50MHz). First three PC scores from (B) the testing data for hard bone, soft bone, muscle, fat, skin, and nerve
(FR6 = 2.08–2.50MHz). Receiver operating characteristic curve (C) to multiclass using the artificial neural network models combined with the ns‐
Nd:YAG laser. Note that the curve of hard bone, skin, muscle, and nerve tissues versus other tissues overlaps (FR6 = 2.08–2.50MHz)
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