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Abstract: Primary open-angle glaucoma (POAG) remains a leading cause of irreversible blindness
globally. Recent evidence further substantiates sustained oxidative stress, and compromised antiox-
idant defenses are key drivers in the onset of glaucomatous neurodegeneration. Overwhelming
oxidative injury is likely attributed to compounding mitochondrial dysfunction that worsens with
age-related processes, causing aberrant formation of free radical species. Thus, a compromised
systemic antioxidant capacity exacerbates further oxidative insult in glaucoma, leading to apoptosis,
neuroinflammation, and subsequent tissue injury. The purpose of this systematic review is to investi-
gate the neuroprotective benefits of the macular carotenoids lutein, zeaxanthin, and meso-zeaxanthin
on glaucomatous neurodegeneration for the purpose of adjunctive nutraceutical treatment in glau-
coma. A comprehensive literature search was conducted in three databases (PubMed, Cochrane
Library, and Web of Science) and 20 records were identified for screening. Lutein demonstrated
enhanced neuroprotection on retinal ganglion cell survival and preserved synaptic activity. In clinical
studies, a protective trend was seen with greater dietary consumption of carotenoids and risk of
glaucoma, while greater carotenoid levels in macular pigment were largely associated with improved
visual performance in glaucomatous eyes. The data suggest that carotenoid vitamin therapy exerts
synergic neuroprotective benefits and has the capacity to serve adjunctive therapy in the management
of glaucoma.

Keywords: carotenoids; macular pigment; macular pigment optical density; MPOD; lutein; zeaxan-
thin; meso-zeaxanthin; glaucoma; primary open-angle glaucoma; retinal neurodegeneration

1. Introduction

Glaucoma is an optic neuropathy that is characterized by progressive neurodegen-
eration of the inner retina, including the optic nerve head (ONH) and retinal nerve fiber
layer (RNFL), resulting in loss of retinal ganglion cells (RGCs) and characteristic visual
field defects [1–3]. It remains the leading cause of irreversible vision loss globally and
the projected prevalence of glaucoma is expected to reach 112 million in 2040 [3,4]. In
the United States, the National Eye Institute estimates that over 4 million adults will be
affected by 2030 and anticipates that the total will exceed 6.3 million in 2050 [5]. Similarly,
healthcare expenditures related to glaucoma in the United States have been appraised at
USD $2.5 billion annually [6]. Owing to the aging global population, the prevalence of
glaucoma is expected to continue to rise and will remain a major global health problem.

The most common form of glaucoma in the United States, and worldwide, is primary
open-angle glaucoma (POAG) [1]. Intraocular pressure (IOP) remains the only established
modifiable risk factor for the incidence and progression of glaucoma [7,8]. Non-modifiable
risk factors include age (≥60 years of age), race/ethnicity (e.g., individuals of African, His-
panic, or Latino descent), family history of glaucoma, myopia, type 2 diabetes mellitus, and
central corneal thickness [9–13]. Current therapeutic approaches are aimed at delaying the
disease’s progression by lowering the IOP through medical or surgical interventions [14,15].
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However, a significant portion of patients with POAG still incur progressive glaucomatous
vision loss despite maintenance of IOP within the normal statistical range [15].

Although the etiopathogenesis of glaucoma is not fully understood, there is a growing
and evidence-based consensus that mitochondrial dysfunction and redox imbalance are
likely involved in IOP elevation and the onset of neurodegeneration in the retina. Several
theories of IOP-induced injury, including biomechanical deformation of lamina cribrosa
and vascular dysregulation, consider overwhelming propagation of free radicals to be a key
factor in perpetuating loss of RGCs [16–18]. Thus, an important mechanism in glaucoma-
tous injury likely involves a vicious cycle of sustained oxidative stress whereby inhibition of
the endogenous antioxidant defense systems potentiates retinal neurodegeneration [19–25].
Moreover, the retina is known to be particularly vulnerable to oxidative injury and free rad-
ical formation, in part due to its extremely high metabolic activity and constant exposure
to light [26–28], wherein susceptibility increases with senescence [29–32]. Given the impor-
tance of macular pigment for optimal visual performance and maintaining retinal health,
herein we review the current evidence in the literature investigating the neuroprotective
association between macular carotenoid levels and glaucomatous neurodegeneration.

The body’s inherent defense mechanisms against oxidative damage, involving the
neutralization of free radical species, rely upon the interplay between both endogenous and
exogenous antioxidants to maintain redox homeostasis [21,33]. In particular, antioxidants
such as the macular carotenoids lutein, zeaxanthin, and meso-zeaxanthin possess significant
antioxidant and anti-inflammatory effects in the retina [34–36]. Clinical benefits in visual
performance associated with dietary carotenoid supplementation have been demonstrated
in healthy adults [37–40], as well as similar neurodegenerative retinopathies, including
age-related macular degeneration [41–43] and diabetic retinopathy [44,45]. Despite similar-
ities in pathogenesis involving sustained oxidative damage in the retina, only a limited
number of studies have investigated the relationship between dietary carotenoid intake
and pathophysiology in glaucoma.

However, experimental models of glaucomatous injury indicate that the carotenoids
lutein and zeaxanthin may play a neuroprotective role against glaucomatous injury in
the retina [46–51]. Lutein treatment in murine models of ischemia–reperfusion (I/R)
injury was found to be effective in protecting against measures of oxidative and ni-
trosative stress [46,47,49] and enhance endogenous levels of glutathione (GSH) activity
in rat retina [47]. Preliminary findings indicate that carotenoids may exert a synergic
neuroprotective effect, at least in part by improving ganglion cell survival in the inner
retina [46,48] while limiting activation of apoptotic pathways induced by glaucomatous
injury [46,48–52]. Interestingly, not only was lutein treatment found to enhance RGC
survival but also exhibited improvements against purported mechanisms contributing to
secondary neurodegeneration in glaucomatous pathology [3,51–53].

To date, a limited number of observational studies [54–59] and clinical trials [60–62]
have directly investigated the association between macular pigment optical density levels
and open-angle glaucoma. Generally, evidence from clinical studies suggests that MPOD
levels are reduced in glaucomatous eyes [56] and may be further compromised in relation to
disease severity, particularly among those with foveal involvement [57–59]. However, some
observational studies were unable to confirm that depletion of MPOD levels is associated
with the presence of glaucoma [54,55]. The difference in study findings thus mandates a
need for a consensus and a summary-generating systematic review of the literature.

2. Pathophysiology of Primary Open-Angle Glaucoma
2.1. Clinical Features of Primary Open-Angle Glaucoma

The defining features of glaucomatous damage are largely characterized by distinct
changes to the ONH and corresponding visual field defects in consequence of neurode-
generative thinning of the nerve fiber layers [1,3]. Biomechanical deformation of lamina
cribrosa in response to IOP-related injury can be identified by excavation (or “cupping”)
of the optic disc, evidenced by progressive narrowing of the neuroretinal rim, and likely
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represents the initial site of RGC injury occurring at the ONH. Furthermore, characteristic
patterns of peripapillary RNFL loss with corresponding arcuate visual field defects are
common in patients with glaucoma [3].

In open-angle glaucoma, the iridocorneal angle remains visibly open upon clinical
examination by gonioscopy, allowing for drainage of aqueous humor through the tra-
becular meshwork outflow pathway [1]. However, there is often greater resistance to or
internal blockage of the aqueous outflow through the trabecular meshwork, causing an IOP
elevation. Although IOP remains a strong primary risk factor for glaucomatous damage to
the optic nerve and visual field, increased IOP is not required for diagnosis and damage
can occur at any level of eye pressure [1,3].

2.2. Pathogenic Mechanisms of Glaucomatous Neurodegeneration

Glaucomatous pathology shares distinct features with several neurodegenerative
disorders of the central nervous system, largely driven by overwhelming propagation of
free radical species from compounding mitochondrial dysfunction with age [30,63–65] and
either a tissue perfusion insufficiency or a bioenergetic crisis caused by a disruption in
the ATP supply [23,53,66–72]. Consequently, and perhaps by definition, the magnitude of
glaucomatous damage and RGC death is likely dependent upon, and determined by, the
systemic antioxidant capacity in addition to any factors that may influence the local ocular
redox status, and not solely upon IOP-induced injury.

In this regard, proliferative oxidative stressors and inhibition of endogenous an-
tioxidant defenses have largely been considered the engine of neurodegenerative on-
set [19–23,72–74]. Thus, the mitochondrial redox balance becomes the central battleground
for cell survival and worsening mitochondrial dysfunction may further compromise RGC
viability [16,31,65]. Sustained oxidative injury likely acts as the primary mechanism of
glaucomatous tissue damage, wherein it ultimately leads to progressive loss of RGCs and
subsequent functional deterioration of the optic nerve. Glaucomatous neurodegenera-
tion occurs primarily by induction of programmed cell death, often proceeding through
either intrinsic or extrinsic apoptotic pathways that rely upon caspase-dependent activ-
ity [31,65,75]. There is evidence of significant oxidative damage in the trabecular meshwork
causing resistance to aqueous humor outflow and subsequently an IOP elevation in patients
with POAG [29,76,77]. Furthermore, the multifactorial nature of glaucomatous neurodegen-
eration strongly indicates that several interconnected mechanisms are likely to contribute
to RGC loss and subsequent visual field defects [2,3,53,78].

Emerging findings suggest that the glaucomatous retina may become an environment
hostile to RGC survival, wherein pro-oxidant and pro-inflammatory processes perpetuate
glaucomatous neurodegeneration over time. Persistent overwhelming oxidative insult can
trigger immunostimulatory activation of the innate immune system, causing a concurrent
low-grade inflammatory response in the retina involving resident immune cells [19,79,80].
For instance, immunostimulation of the inflammasome oligomerization through purinergic
signaling via P2X7 receptor activation has been shown to play a key role in contributing
to RGC toxicity and cell death [81]. Over time, the resultant parainflammatory response,
or adaptive immune response to inflammatory stimuli in order to restore homeostatic
processes [82], becomes dysregulated and advances into a state of chronic inflamma-
tion [19,79,80]. Thus, in response to further oxidative insult, the over-activated glial cells,
namely microglia, release pro-inflammatory molecules such as tumor necrosis factor alpha
(TNF-α), nitric oxide synthase (NOS), and cyclooxygenase-2 (COX-2) [79,80,83–85]. Retinal
injury due to pro-oxidant and pro-inflammatory stressors induced by glaucomatous tissue
injury may be further exacerbated by chronic activation of the innate immune system.

Glutamate neurotoxicity has been previously considered among several primary con-
tributing factors sufficient to induce the death of ganglion cells and optic nerve damage in
glaucoma. Theories regarding excitotoxicity as a causal mechanism in glaucomatous injury
are largely based on seminal findings wherein elevated intraocular levels of the excitatory
neurotransmitter were reportedly found in glaucomatous eyes [86,87]. However, there is a
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growing evidence-based consensus that is not in agreement with this hypothesis [87–91],
and there is substantial evidence that intravitreal glutamate levels are not elevated in
humans [89] or animal models of glaucoma [90,91]. Despite this, glutamate is an integral
component of the mammalian central nervous system (CNS) and dysregulated excitatory
neurotransmission can lead to proliferative excitotoxic cell death in neurons [92–94]. Given
that the axons of RGCs are direct extensions of the CNS, glutamate neurotoxicity may
still be relevant in glaucomatous pathology, likely contributing to progressive secondary
neurodegeneration in response to overwhelming oxidative injury.

Glaucomatous optic neuropathy is marked by a substantial loss of RGCs and their
axons, which suggests that progressive damage is not limited to retinal substructures
or the optic nerve. Previous reports have corroborated the structure–function relation-
ship between neurodegenerative RGC death and functional vision loss in glaucomatous
eyes [95–99]. Correspondingly, the process of transsynaptic degeneration likely exacerbates
axonal injury, in consequence of biomechanical stress or a vascular insufficiency, wherein
the neurodegenerative cascade, which results in apoptotic death of RGCs, disseminates
along the entire visual pathway [23,53,71,100–103]. There is a strong line of evidence
whereby both Wallerian (anterograde) and retrograde degeneration can be attributed to
axonal damage and loss of RGC somas in the human visual system [102]. In this regard,
one may presume that for each ganglion cell in the retina, a corresponding neuron is
present in the retinogeniculate pathway, and, therefore, a substantial loss of RGCs (i.e.,
visual field defects) may be indicative of significant neurodegenerative loss at the visual
cortex level [104]. In fact, secondary degeneration was observed in the lateral geniculate
nucleus (LGN) with corresponding damage to the ONH in primates following artificial
IOP elevation [103]. Furthermore, structural magnetic resonance imaging (MRI) studies
in patients with POAG have revealed significant neurodegenerative alterations in the
LGN and central cortical structures of the visual pathway, as evidenced by shrinkage in
the LGN height and volume after region of interest (ROI)-based analysis [105]. Similar
neuroimaging studies reported a marked reduction in axonal volume in the optic radiations
originating from the thalamus and primary visual cortex concomitant with atrophy of the
LGN [100,105]. Thus, adjunctive therapeutic strategies must be aimed at simultaneously
slowing down glaucomatous damage concomitant with exerting a neuroprotective effect
on RGCs in glaucoma.

3. Macular Pigment Optical Density in the Management of Glaucoma
3.1. Role of Macular Pigment Optical Density

The xanthophyll carotenoids lutein, zeaxanthin, and meso-zeaxanthin play a crucial
role in preserving retinal health while maintaining optimal visual acuity and central vision
mediated by the macula (Figure 1) [34,106–110]. Collectively, these carotenoids constitute
the macular pigment, wherein they are uniquely concentrated within the axons of photore-
ceptor cells and the inner plexiform layer and outer plexiform layer of the foveal center in
the macular region [106,107,109,111,112]. Obtained exclusively from dietary intake, lutein
and zeaxanthin cannot be synthesized in the body [107,113,114] and must be acquired
from foods such as leafy green vegetables, corn, and egg yolks [107,110,113,114]. Meso-
zeaxanthin is a metabolite of lutein’s transformation through RPE65 isomerase conversion
in retinal pigment epithelium (RPE) [34,107,113,115–122]. Retinal uptake, metabolism,
and transport mechanisms of xanthophyll carotenoids have been discussed in more detail
elsewhere [34,107,113,116,117,119,121–123]. Depletion of these macular pigments, namely
low macular pigment optical density (MPOD), may be associated with a significant increase
in the risk of incident retinopathy and impaired visual function.
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Dietary carotenoid supplementation may offer neuroprotection in the retina by aug-
menting the MPOD and subsequently delay the onset of glaucomatous pathology. The
macular pigments are believed to protect the retinal tissue, in particular the photoreceptor
cells located in the central region, through two primary mechanisms: (1) by acting as a
filter against blue light; and (2) by limiting oxidative stress and inflammation induced
by free radical species [107,108,110,124–127]. The peak wavelength of the MPOD absorp-
tion spectrum (~460 nm) enables macular pigment to absorb a range of visible blue light
(400–500 nm), thereby reducing the exposure of photoreceptors to blue light concomitant
with improvements in visual performance [106,126,128]. The enhancement in optical fil-
tration is particularly important because short-wavelength (blue) light is of high energy
with significant potential to exacerbate photo-oxidative injury and ROS production in the
highly susceptible layers of the outer retina [107,125–129]. Moreover, a growing body of
evidence strongly indicates that higher MPOD levels afford enhanced retinal protection
against the onset of neurodegeneration contributing to several ocular diseases, including
glaucoma [107–110].

3.2. Measuring MPOD

Currently, several techniques are used to measure MPOD; they offer unique ad-
vantages as well as clinical limitations that have been discussed more thoroughly else-
where [34,109,110,130–135]. In summary, non-invasive methods for quantifying levels
of macular pigment include heterochromatic flicker photometry (HFP), customized HFP
(cHFP), fundus reflectometry, and autofluorescence. The most commonly used are the
psychophysical techniques HFP and cHFP [34,109,110,134–138], which rely on subjective
perceptions to estimate the level of MPOD [139–141]. Conversely, the fundus reflectom-
etry [142–147] and autofluorescence imaging (AFI) [132,133,148,149] techniques rely on
physical properties of the retina in order to collect measurements such as light reflectance
and lipofuscin fluorescence, respectively [34,110,130,131,134,150,151]. It is important to
note that validated measurements of MPOD levels can serve as susceptibility/risk biomark-
ers for the screening of early glaucomatous damage involving the macula [99], which may
be clinically evident prior to central visual field loss on standard automated perimetry.
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4. Materials and Methods

This systematic review was conducted in accordance with the Preferred Reporting
Items for Systemic reviews and Meta-Analysis (PRISMA) reporting guidelines [152].

4.1. Literature Search

A comprehensive literature review was conducted to identify published articles on
the topic using database searches from PubMed, Web of Science, and the Cochrane Li-
brary indexes. We retrieved all relevant publications that reported findings on the as-
sociation between glaucoma and MPOD/carotenoids (lutein and/or zeaxanthin and/or
meso-zeaxanthin) from clinical and pre-clinical studies prior to 10 March 2021. The database
search keywords used in the query included a combination of the following and their vari-
ants: carotenoids, lutein, zeaxanthin, macular pigment, macular pigment optical density,
MPOD, antioxidants, glaucoma, open-angle glaucoma, and glaucomatous neurodegen-
eration. Initial publication results were screened for appropriate selection criteria and
reviewed further based on titles and abstracts available in English. From the eligible publi-
cations, we manually performed both backward and forward searches from the reference
lists and cited references to include all relevant literature, respectfully. Two authors (PGD
and DWL) individually screened all eligible full-text studies for the inclusion/exclusion
criteria outlined below, and any discrepancies were resolved by discussion including the
third author (DLG).

4.2. Selection Criteria

Preclinical studies that satisfied the following criteria were included in this review: (1)
evaluated the effect of carotenoid (lutein and/or zeaxanthin and/or meso-zeaxanthin) treat-
ment on retinal cell survival, oxidative stress measures, or neurodegeneration-mediated
outcomes in glaucoma-related injury, through cell culture studies of hypoxia/ischemia
or experimental animal models of ischemia–reperfusion (by artificial IOP elevation or a
cerebral artery occlusion model); (2) analyzed carotenoid treatment separately from other
treatments/antioxidants in comparison with controls; and (3) used a methodology that
was pertinent to glaucomatous-related injury in humans.

Observational clinical studies in this review were required to adhere to the follow-
ing criteria: (1) studies evaluating the association between risk of open-angle glaucoma
and carotenoid levels through dietary consumption of lutein and/or zeaxanthin or by
validated clinical measurement of macular pigment optical density (MPOD) levels; (2)
studies involving adults with confirmed presence of open-angle glaucoma or POAG; and
(3) peer-reviewed original research.

Prospective randomized clinical trials that satisfied the following criteria were in-
cluded in this review: (1) interventional studies assessing the effects of nutraceutical
carotenoid supplement, containing lutein and zeaxanthin, on clinical endpoints in glau-
coma patients; (2) studies that included human adults with the presence of open-angle
glaucoma; and (3) peer-reviewed original research.

4.3. Data Extraction and Reliability

The PRISMA reporting guidelines were followed with care as closely as possible, as
described previously [152].

5. Results
5.1. Search and Selection of Studies

In total, 426 studies were identified during the initial search from scientific databases.
After duplicate records were removed and additional records were retrieved from reference
lists, 352 studies remained for title and abstract screening. From these 352 studies, 198
records were excluded based on article type. Consequently, 118 records were excluded
due to the aforementioned inclusion criteria for preclinical and clinical studies, and 34
studies were identified to be eligible for full-text assessment. Finally, 14 records were
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excluded because of the methodology used, with a resulting 20 studies included in the
final review. Of the 20 studies analyzed, six were preclinical studies [46–51], eleven
were observational clinical studies [54–59,153–157], and three were randomized controlled
trials [60–62] (Figure 2).
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5.2. Carotenoids in the Management of Glaucoma (Preclinical Studies)

The therapeutic benefits of macular carotenoids have been documented in experimen-
tal models of glaucomatous pathology, investigating the molecular mechanisms underlying
RGC loss; in particular, the protective effects of lutein and/or zeaxanthin on the progres-
sion of neurodegeneration in glaucoma (Table 1) [46–51]. Data from these reports are
consistent with corroborating evidence that administration of the carotenoids lutein and
zeaxanthin may provide substantial neuroprotective benefits in the retina by counteract-
ing the causative factors that contribute to glaucomatous injury. Experimental models
of glaucomatous neurodegeneration in vivo can be emulated in part by inducing reti-
nal ischemia–reperfusion (I/R) via: (1) increasing IOP above systolic blood pressure by
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cannulation of the eye [46,47,158–162]; or (2) ligation of the internal carotid artery by an
intraluminal method [49,50,159,162–165]. In rat Muller glial cells (rMC-1), in vitro hy-
poxic/ischemic conditions can be induced using cobalt (II) chloride (CoCl2) to generate
ROS/oxidative stress resulting in cell death [48,50,166]. Experimental murine models of
RGC dysfunction/loss can be simulated by intravitreal injection of N-methyl-d-aspartic
acid (NMDA) to mimic the in vivo glutamate excitotoxicity, which is triggered by ligand
binding of NMDA receptors expressed by these ganglion cells in retinal neurons [51,167].

Table 1. Preclinical studies evaluating the effect of the carotenoids lutein and/or zeaxanthin on glaucomatous/RGC injury.

Author, Year Glaucoma/RGC Injury
Model Intervention Main Findings

Choi, 2006 [46] Retinal I/R injury by artificial
IOP elevation Lutein Prevented an increase in nNOS and COX-2

expression following ischemic injury

Dilsiz, 2006 [47] Retinal I/R injury by artificial
IOP elevation Lutein Reduced lipid peroxidation and activation of

caspase-3 and improved GSH levels

Fung, 2016 [48]
Retinal I/R injury by

chemically induced hypoxia
in rMC-1 cells

Lutein
Improved glial cell survival and viability

following hypoxic injury through
modulating apoptosis and autophagy

Li, 2009 [49] Retinal I/R injury by middle
cerebral artery occlusion Lutein Enhanced ganglion cell survival, viability,

and morphology following I/R injury

Li, 2012 [50]

Retinal I/R injury by middle
cerebral artery occlusion and
chemically induced hypoxia

in rMC-1 cells

Lutein Improved measures of retinal function, with
reduced gliosis and increased cell survival

Zhang, 2016 [51] RGC injury by intravitreal
NMDA injection Lutein Augmented ganglion cell viability with

improved retinal function parameters

Abbreviations: RGC, retinal ganglion cells; I/R, ischemia–reperfusion; IOP, intraocular pressure; nNOS, neuronal nitric oxide synthase;
COX-2, cyclooxygenase-2; GSH, glutathione; rMC-1, rat Muller glial cells; NMDA, N-methyl-d-aspartic acid.

Experimental models of glaucomatous neurodegeneration implicate oxidative stress
among the primary mechanisms in early ischemic retinal injury, caused by overwhelm-
ing production of pro-oxidant stressors and a compromised antioxidant capacity. It is
known that the retina is highly susceptible to free radical formation partly because of its
extremely high metabolic activity and abundance of polyunsaturated fatty acids concen-
trated in the outer segment of photoreceptor cells [26–28]. In murine models of acute I/R,
lutein’s neuroprotective effect was seen to successfully prevent against measures of both
oxidative and nitrosative stress that have been attributed to glaucomatous neurodegen-
eration [46,47,49]. Carotenoids may protect the inner retina by actively neutralizing free
radicals and concomitantly protecting against subsequent oxidative injury, such as lipid
peroxidation and oxidative DNA damage [168,169]. Indeed, treatment with lutein effec-
tively prevented increases in malondialdehyde [47] and polymeric adenosine diphosphate
ribose (PAR) [49] induced by I/R injury, respectively. Lutein has also been observed to be
neuroprotective against nitrosative stress in ischemic retina by reducing NOS activation
and thereby limiting the subsequent overexpression of nitric oxide (NO), both of which
are recognized to contribute significantly to neurodegeneration [46,49,170,171]. Evidence
from murine models seems to mirror these findings, where it was observed that lutein
can successfully diminish nitrosative injury as evidenced by reduced expression levels
of neuronal NOS [46] and nitrotyrosine [49], a footprint indicator of protein oxidation by
reactive nitrogen species [70,170,172]. The anti-oxidative capacity of macular carotenoids,
particularly in ischemic retina, is important because both vascular and biomechanical
theories of glaucoma attribute IOP-related injury to the ONH and progressive loss of RGCs
exacerbated by oxidative stress [28,78,173,174].

Thus, a retinal imbalance between the overwhelming generation of pro-oxidant stres-
sors and a compromised antioxidant capacity has been posited, among several mechanisms,
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to be an important causative agent of glaucomatous RGC loss. In humans, there is evi-
dence of an intracellular redox imbalance whereby endogenous antioxidant defenses are
compromised in consequence of uncontrolled oxidative stress [175,176]. However, there
is a paucity of preclinical research investigating the antioxidant capacity in experimental
models of glaucomatous-related injury [47]. In fact, only one study evaluated lutein treat-
ment on concentrations of the endogenous antioxidant GSH in rat retina following I/R by
artificial IOP elevation [47]. Administration of lutein was effective against depletion of GSH
induced by ischemic injury and restored GSH to levels similar to those observed in healthy
control animals. Alternatively, evidence from murine models of diabetic retinopathy
helps to corroborate the synergic neuroprotective effect of carotenoid treatment (including
lutein and/or zeaxanthin) on limiting oxidative stress while simultaneously augmenting
endogenous antioxidant defenses [177–179].

Macular carotenoids may protect against glaucomatous injury indirectly by inhibiting
pro-inflammatory pathways triggered by aberrant free radical production and oxidative
insult contributing to chronic low-grade inflammation [50,180–183]. Lutein’s potent anti-
inflammatory effects have been demonstrated to protect against post-ischemic injury via
modulating activation of the nuclear transcription factor nuclear factor kappa B (NF-kB),
a vital redox-sensitive transcriptional regulator of pro-inflammatory cytokines and sec-
ondary inflammatory markers expressed during the innate immune response [50,184–191].
Additionally, lutein treatment was also observed to suppress retinal expression of COX-
2 [46,50] and interleukin-1β [50,192]. The former is a stress response gene [190] and
the latter triggers the NF-kB canonical inflammatory response pathway upon cytokine
receptor activation [189,191,193]. Similarly, treatment with lutein produced a marked
decrease in Muller cell gliosis [50], a significant source of pro-inflammatory cytokine pro-
duction [48,80,194,195]. In ischemic retinal injury, significant attenuation of Muller cell
hypertrophy and glial fibrillary acidic protein activation were achieved following treatment
with lutein [50]. Interestingly, these findings suggest that the neuroprotective mechanism
may involve the adaptive injury response facilitated by reciprocal cell signaling between
Muller cells and microglia during post-injury inflammation; in fact, activation of microglia
and activation of macroglia (i.e., Muller cells and astrocytes) are among the initial steps in
the neurodegenerative onset that precedes RGC loss in humans [196–200]. Thus, the retinal
benefits of lutein may limit the propagation of immune response pathways to suppress
neuroinflammation and, in effect, preserve the inner retina against subsequent RGC loss
and apoptotic degeneration.

The cumulative effect of glaucoma is progressive neurodegeneration of the inner retina
and RGC loss by apoptotic mechanisms [72,201,202]. In experimental models of retinal in-
jury by artificial IOP elevation [161,203] and an intraluminal method [49,50,204], significant
cell loss was observed in the ganglion cell layer (GCL) and the inner nuclear layer (INL)
as evidenced by loosely packed cells and condensation of nuclear chromatin. Following
treatment with lutein, inner layers of mouse retina were seen to have densely packed cells
and a marked reduction in pyknotic nuclei, indicating a normal morphology following
ischemic injury [49,50]. Lutein-mediated protection of inner retinal cells may in part be
explained by improvements observed in cell viability [48–51] and cell survival [46,48] upon
glaucomatous injury. Administration of lutein was shown to increase cell survival in both
the GCL and the INL of ischemic rat retina by IOP elevation [46] and enhance the survival
of Muller glia after CoCl2-induced hypoxia [48]. Experimental findings suggest that lutein
may protect the retinal tissue by augmenting cell survival concomitant with protecting
against glaucomatous cell death induced by an apoptotic mechanism. Indeed, administra-
tion of lutein significantly reduced the presence of apoptotic nuclei in Muller glia upon a
terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay following
hypoxic injury by chemical induction [48]. Improvements were also observed in the GCL
and the INL of mouse retina following intraluminal I/R injury [49], providing supplemen-
tary evidence that lutein may successfully protect against apoptotic neurodegeneration in
the inner retina. Thus, preliminary findings indicate that the neuroprotective potential of
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lutein in maintaining the retina, an integral component of the central nervous system, is
essential to preventing irreversible neural degeneration and subsequent vision loss.

Lutein may protect the inner retina against glaucomatous neurodegeneration by
inhibiting pro-apoptotic pathways induced by hypoxic/ischemic injury. In fact, the anti-
apoptotic potential of lutein has been documented in a variety of in vivo and in vitro exper-
imental models of retinopathies characterized by neurodegeneration [48,50,52,182,205–207].
One study in Muller glia cells suggests that the possible mechanistic pathway of lutein’s
protection involves suppression of the intrinsic mitochondrial pathway after simulated
hypoxic challenge [48]. Lutein treatment effectively suppressed activation of the intrinsic
apoptosis induced by hypoxic injury [208,209], as evidenced by increased expression of
the pro-survival protein B cell lymphoma 2 (Bcl-2) and a reduced expression ratio of the
Bax/Bcl-2 proteins [48], a key determinant in apoptosis triggered by mitochondrial dys-
function [30,210–214]. Importantly, lutein successfully reduced cleavage of caspase-3 [48],
effectively limiting activation of the executioner caspase and supporting lutein-mediated
neuroprotection through caspase-associated modulation [30,210–212,214,215]. Results in
an animal model of ischemic injury mirrored these findings, where it was observed that
lutein had a significant ameliorative effect on caspase-3 activation induced by elevated
IOP in rat retina [47]. Lutein’s reducing of ischemic apoptosis is important because bi-
directional signaling between microglia and Muller cells in response to injury [196,197]
can exacerbate neurotoxic effects by enhancing oxidative stressors and further spreading
neuroinflammatory processes via cytokine signaling [216–220].

Carotenoids have also been shown to be neuroprotective in maintaining synaptic activ-
ity. One school of thought suggests that the protective mechanism of carotenoids involves
limiting trans-synaptic degeneration. That is, carotenoids limit secondary degeneration to
neurons that follows remote neuronal injury, by supplying significant synaptic activity and,
thereby, decreasing retinal apoptosis [53,71,102]. Purported mechanisms underlying cell
death in RGCs are hypothesized to involve excitotoxicity resulting from aberrant glutamate
receptor activation [221–226] or neurotrophic signaling deprivation caused by deficits in
axonal transport [227–229]. One study found that lutein treatment significantly enhanced
RGC viability in rat retina following NMDA-induced neurotoxicity [51]. In fact, a Western
blot analysis of mitochondrial apoptotic proteins mirrored these findings, indicating that
lutein rescued RGC viability by augmenting retinal expression of the pro-survival protein
Bcl-2 while inhibiting the expression of Bax, cleaved caspase-3, and cytochrome c [51].
Lutein supplementation may enhance RGC survival in part by improving the axoplasmic
flow of neurotrophins between the ganglion cell body and its distal synapse located deep in
the brain [53,230]; in fact, lutein was seen to increase retrograde transport of brain-derived
neuronal trophic factor (BDNF) in a murine model of diabetic neurodegeneration [205].
Based on observations made in experimental models, it has been hypothesized that the pri-
mary site of axonal transport dysregulation is the lamina cribrosa and it may be triggered by
biomechanical stress/damage to the ONH and RNFL [53,227,230–232]. Thus, the benefits
of lutein treatment observed in experimental models of glaucomatous neurodegeneration
may in part be explained by augmentation of RGC survival and thereby preservation of
synaptic network activity within retinogeniculate axons that relay visual information to
the visual cortex [53,69,71].

Visual dysfunction caused by retinal degeneration, measured noninvasively by elec-
troretinogram (ERG), showed an obvious reduction in the ERG response generated at the
post-receptor level of the inner retina [50,51]. In a rodent model of ischemic glaucomatous
injury, a functional impairment was indicated by a significantly smaller oscillatory potential
amplitude and b-wave/a-wave ratio [50], the latter being a sensitive prognostic measure of
ischemic injury in both animal models and humans [233–236]. Similar results were seen
in NMDA-induced RGC injury, showing a significant reduction in the amplitude of the
photopic negative response, which implied a post-receptor impairment [51]. However,
treatment with lutein successfully restored the retinal function on ERG in both models
of glaucomatous injury believed to contribute to optic neuropathy in POAG [50,51]. Ad-
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ditionally, lutein markedly enhanced visual function in vivo in excitotoxic-induced RGC
injury, as shown by significant improvements in white–black discrimination during a
visual behavior assay [51]. These findings provide further support to macular carotenoids’
nutraceutical effect in maintaining visual function against neurodegenerative insult.

However, it is worth noting that findings from in vitro studies evaluating the ef-
fect of supplementation with lutein and/or zeaxanthin using the disputed RGC-5 cell
line [237–239] have been purposefully omitted from this review [240,241]. The original
publication has since been redacted for erroneously characterizing the RGC-5 cell line to be
of rat retinal ganglion origin [237,239]. It is now known to correspond to the mouse cell
line 661W, which has been confirmed to be of cone photoreceptor origin [238,239,242–244].

While results from experimental models of glaucomatous injury indicate that the
carotenoids lutein and/or zeaxanthin are sufficiently neuroprotective against neurode-
generation in the inner retina, there are some limitations to these findings that must be
reviewed. Briefly, the absence of studies on the effects of carotenoid treatment in non-
murine models restricts the translative potential for clinical use due to species differences
between humans and rodents; specifically, the absence of the macula in these animals [245].
Further, the limited sample size may result from the complex nature of glaucoma as a mul-
tifactorial disease. This becomes clear as experimental models of glaucomatous RGC loss
induced by transient ischemia–reperfusion through artificial IOP elevation [46,47], internal
carotid artery occlusion [49,50], or chemically induced hypoxia [48,50] are incomplete
models of the etiopathogenesis of glaucoma in humans [245]. Only one study evaluated
the protective effects of lutein in a model of RGC injury induced by intravitreal NMDA
injection [51]. However, one may conclude that there is substantial evidence in support of
the anti-oxidative, anti-inflammatory, and pro-survival capacity of the carotenoids lutein
and zeaxanthin in protecting against retinal neurodegeneration.

5.3. Carotenoids in the Managament of Glaucoma (Clinical Studies)

A growing body of evidence strongly suggests that a reduction in antioxidants re-
sulting from prolonged oxidative stress is an essential driver in the initial sequence of
interconnected mechanisms that contribute to the glaucomatous pathogenesis [23–25]. In
the aqueous humor of patients with POAG, reports consistently demonstrate a significant
reduction in total antioxidant capacity when compared with age-matched healthy con-
trols [246–248]. One school of thought suggests that this response may be the longstanding
consequence of protective mechanisms in the retina involving endogenous antioxidant
defenses attempting to maintain redox homeostasis and limit oxidative injury by neutraliz-
ing pro-oxidant stressors [76,248,249]. Indeed, enhanced enzymatic activity of the potent
antioxidants glutathione peroxidase and superoxide dismutase is seen in the glaucomatous
eye [76,250,251] concomitantly with overexpressed markers of oxidation products (e.g.,
malondialdehyde) in the serum and aqueous humor [246,247,252,253]. Data from a meta-
analysis corroborate these findings, providing consistent evidence of a systemic imbalance
between oxidative stress and antioxidant levels in various types of glaucomatous injury,
including but not limited to POAG [253]. However, cross-sectional studies indicate that the
reduction in serum antioxidant status may be more profound in patients with open-angle
glaucoma in comparison with closed-angle or pseudoexfoliation types [175]. Thus, it is
clear that diminution of the endogenous antioxidant capacity, in response to persistent
oxidative stressors in glaucomatous eyes, is an important pathogenetic mechanism in the
occurrence and progression of POAG.

5.4. Dietary L/Z Intake and Risk of Glaucoma—Epidemiology Studies

To date, a number of epidemiological studies have evaluated the potential association
between dietary carotenoid consumption (i.e., lutein and zeaxanthin, L/Z) and incident
glaucoma, largely with inconsistent results [153–157]. From data collected by two large-
scale prospective cohorts totaling over 100,000 participants, pooled multivariate analyses
from the Nurses’ Health Study (NHS) and the Health Professionals Follow-up Study (HPFS)
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found that increased dietary levels of L/Z were the only serum antioxidants with material
relevance to incident glaucoma [155]. Adjusting for the putative time delay from the etiolog-
ically relevant intake/exposure until the date of clinical diagnosis (i.e., a four-year lagged
analysis), researchers found that individuals in the highest quintile of L/Z consumption
had a significantly reduced risk for prevalent POAG than those in the lowest quintile (rate
ratio (RR) = 0.68, 95% confidence interval (CI): 0.49–0.93) [155]. Conversely, a univariate
analysis of antioxidant equivalents from a population-based cohort aged 55 years and older
in the Rotterdam Study found no protective association between L/Z consumption and risk
for open-angle glaucoma [157]. Despite this, an updated report from the NHS and HPFS
found a 20% reduction in POAG incidence among individuals with higher daily servings
of food groups rich in L/Z content (RR = 0.82, 95% CI: 0.69–0.97), more specifically green
leafy vegetables such as kale, lettuce, and cooked/raw spinach [156,254,255]. However,
these findings were suggested to largely be attributed to the greater intake of dietary
nitrates derived from vegetable consumption [156,256,257]. After adjusting for dietary
carotenoids and additional nutrients, a similar inverse association was seen between di-
etary nitrate consumption and risk of POAG (RR = 0.67, 95% CI: 0.52–0.85), which retained
statistical significance [156]. Nonetheless, it remains unclear whether these effects are truly
independent of the strongly associated nutrient content of lutein and zeaxanthin obtained
simultaneously from these leafy green vegetable food groups.

Despite the preliminary evidence from large-scale cohort studies being inconsistent in
substantiating a relationship between dietary carotenoids and glaucoma, evidence from
other groups seems to corroborate a protective association with greater consumption of food
groups rich in L/Z content [153,154]. One school of thought suggests that higher intake
of L/Z may serve to improve the retinal vasculature’s caliber and protect against signs of
vascular dysregulation [258]. Established risk factors of cardiovascular disease are strongly
associated with glaucomatous RNFL atrophy and POAG incidence [256,259–261]. A cross-
sectional analysis from one report in the Study of Osteoporotic Fractures found a significant
protective association among women aged 65 and older who consumed ≥1 serving of
collard greens and kale per month (odds ratio (OR) = 0.31, 95% CI: 0.11–0.91) [153]. Several
common leafy green vegetables, including kale and collard greens, from the cabbage
species Brassica oleracea are major dietary sources of L/Z [123,254,262,263]. More recently, a
cross-sectional analysis from a cohort of African-American women included in the Study of
Osteoporotic Fractures found a more significant protective trend against incident glaucoma
among women consuming more collard greens/kale on a weekly basis (≥1 serving per
week; OR = 0.43, 95% CI: 0.21–0.85) [154]. In fact, after adjusting for potential confounders,
researchers found that African-American women in the highest quartile of daily L/Z
intake (≥4000 µg/day) were strongly associated with a significant reduction in the odds of
glaucoma (OR = 0.43, 95% CI: 0.21–0.88) [154]. Moreover, these results may be attributable,
at least in part, to an increase in daily servings of L/Z, which seem to reflect a protective
trend in retinal vasculature against glaucomatous etiology.

The evidence from epidemiological studies investigating the association between
dietary L/Z intake and risk of incident glaucoma is promising, but not without certain lim-
itations [153–157]. An inherent challenge in studying glaucoma prevalence in large-scale
nutritional epidemiology remains the insidious nature of this neurodegenerative optic
neuropathy [78,153,154,264]. Hence, the etiologically relevant time period/exposure likely
involves dietary behaviors that occurred several years prior to the date of diagnosis in
consequence of clinical signs becoming apparent only after substantial damage is incurred
to the ONH [78,264]. Variation among the inclusion criteria for the presence of glaucoma
in large-cohort studies, relying largely on self-reported cases, may limit the interpretability
of these results for the general population [155–157]. Meanwhile, cross-sectional cohorts
were ascertained by optic nerve imaging and VF assessment during a clinical eye examina-
tion [153,154]. None of the aforementioned epidemiology studies directly investigated the
association between serum levels of carotenoids and risk of POAG. However, the protective
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trends demonstrated herein provide support to greater dietary intake of the carotenoids
L/Z among older individuals and those at risk of ocular diseases, including glaucoma.

5.5. Macular Pigment Optical Density and Primary Open-Angle Glaucoma

The neuroprotective potential of macular pigment concentrations of L/Z in the patho-
genesis of glaucomatous optic neuropathy have been explored in a limited number of
studies. To date, there have been six clinical studies that explicitly measured MPOD levels
in glaucomatous eyes to determine the relationship between macular pigment status and
the presence of POAG [54–59]. Although some discrepancies exist among reports, the evi-
dence generally suggests that MPOD levels are significantly reduced in glaucomatous eyes
and may be further compromised with greater disease severity [56–59]. Similarly, there
is a need to substantiate the structure–function relationship between macular ganglion
cell thinning and the extent of functional visual loss associated with glaucoma [265–267].
A summary of clinical studies in relation to the putative association between MPOD and
clinical parameters of POAG is given in Table 2.

Table 2. Clinical studies evaluating macular pigment optical density (MPOD) in open-angle glaucoma.

Author (Year) Participants MPOD Measurement
Technique Exposure Variable Main Findings

Bruns (2020) [54] 33 POAG cases
43 healthy controls Dual-wavelength AFI 0.51◦, 1.02◦, and 1.99◦ No evidence of lower MPOD

in glaucomatous eyes

Daga (2018) [55] 85 POAG cases
22 healthy controls Dual-wavelength AFI MP volume over 7◦

MP volume was comparable
between glaucomatous eyes

and controls

Igras (2013) [56] 36 POAG cases
54 healthy controls HFP 0.5◦

Lower MPOD in glaucomatous
eyes compared with controls

(p = 0.03)

Ji (2016) [57] 30 POAG cases
52 healthy controls

Single-wavelength
Reflectometry MPOD mean over 7◦

Significantly reduced MPOD
and GCC thickness in POAG

patients (p < 0.001, for all)

Siah (2015) [58]
44 POAG cases
(22 with foveal
involvement)

cHFP 0.25◦, 0.5◦, and 1◦
Glaucomatous eyes with

foveal GCC loss had a lower
overall MPOD

(p < 0.001, for all)

Siah (2018) [59] 88 OAG cases cHFP 0.25◦, 0.5◦, and 1◦
Lower MPOD was correlated

with the magnitude of the
central 10◦ field loss (p < 0.01,

for all)

Abbreviations: MPOD, macular pigment optical density; POAG, primary open-angle glaucoma; AFI, autofluorescence imaging; MP,
macular pigment; HFP, heterochromatic flicker photometry; GCC, ganglion cell complex; cHFP, customized heterochromatic flicker
photometry; OAG, open-angle glaucoma.

Glaucomatous neurodegeneration is multifaceted and has a complex etiopathogen-
esis, so it is not surprising that there are differing schools of thought regarding possible
causative mechanisms whereby the MPOD may be lower in patients with POAG. Several
prospective studies found significant reductions in the spatial profile of macular pigments
within 1◦ of retinal eccentricity in glaucomatous eyes using a customized HFP (cHFP) tech-
nique [56,58,59]. Similarly, the MPOD was also significantly reduced in a cohort of Chinese
patients with POAG (p < 0.001) as compared with age-matched controls and measured
by single-wavelength reflectometry [57]. Researchers suggest that reductions in MPOD
may be explained, in part, by apoptosis of RGCs and neurodegeneration of the nerve fiber
layer as concomitants of the pro-oxidative environment in glaucomatous retina. Thus,
the loss of photoreceptors and ganglion cells may severely compromise the localization
of macular pigment within the innermost retinal layers of the fovea [59,264,268,269]. In
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fact, cross-sectional studies observed, upon FD-OCT imaging of the retina, that the MPOD
was significantly lower in those who exhibited structural thinning of the ganglion cell
complex (GCC) that encroaches upon the foveal zone [58,59]. Data from these studies
determined that the presence of foveal GCC loss was a major determinant of MPOD levels
in glaucomatous eyes [58,59]. Similar results from a case-control study mirrored these
findings, demonstrating that both the maximum and mean MPOD levels displayed a
positive relationship with macular GCC thickness on SD-OCT (p < 0.001 and p = 0.001,
respectively) [57]. Glaucomatous eyes with foveal GCC loss also exhibited greater disease
severity, as evidenced by thinning of the RNFL and the GCC layer, an increased cup-to-disc
ratio, or narrowing of the neuroretinal rim (p < 0.001, for all) [58]. This is of relevance
because early glaucomatous injury to retinal substructures likely involves the macula,
in particular the layers that comprise the GCC [99,267]; that is, the nerve fiber layer, the
ganglion cell layer, and the inner plexiform layer, which correspond to the axons, cell
bodies, and dendrites of retinal ganglion cells, respectively. Thus, given that glaucoma
appears to target the retinal layers in which macular pigment is primarily localized, this
may explain, at least in part, the finding that the MPOD appears to be lower in more severe
cases of POAG with foveal involvement.

Macular involvement with corresponding VF defects in early stages of glaucoma
may be more common than previously realized, as evidenced by paracentral scotoma on
standard automated perimetry [270,271]. Thus, glaucomatous loss of foveal RGCs with
a subsequent MPOD decrease is likely to be of significance in relation to vision-related
quality of life for patients with POAG. The literature provides a strong rationale to support a
structure–function relationship between a greater reduction in MPOD with foveal ganglion
cell loss and corresponding VF defects in glaucoma [37,57–59,99,270]. A cross-sectional
analysis found that functional vision loss in the central retina (within 10◦ of fixation) was
significantly correlated with a lower MPOD at multiple retinal eccentricities among those
with foveal GCC involvement (p < 0.01 at 0.25◦, 0.5◦; p = 0.01 at 1◦) [59]. Glaucomatous
foveal scotoma was assessed by mean deviation (MD) on the Humphrey 10-2 VF test
because it samples macular visual function more precisely than the standard 24-2 VF
test [59,272–275]. Furthermore, not only were lower MPOD levels associated with greater
glare-related disability and reduced glare-related visual performance in the glaucomatous
eye, but it appeared that this relationship was mediated by foveal involvement [59]. Given
that the macula contains the highest density of RGCs (~50% concentrated within 4.5 mm of
the fovea) [34,276], observations in which foveal involvement relates to a lower MPOD, as
encountered in glaucoma, may therefore elucidate, at least in part, the degree of functional
vision loss in cases of POAG.

On the other hand, two prospective studies were unable to demonstrate a significant
correlation between macular pigment and the presence of POAG using dual-wavelength
autofluorescence imaging [54,55]. In the first study, a cross-sectional analysis found that
macular pigment volumes were comparable between glaucomatous eyes and controls [55].
Similarly, a case-control study found no significant evidence that the MPOD was lower in
glaucoma patients, or that a lower MPOD was linked to the presence of glare symptoms [54].
The inconsistency in results may be attributed, at least in part, to differences in the study
methodology with regard to the MPOD measurement technique [132–134]. Briefly, because
the cHFP technique is psychophysical in nature, it cannot be ruled out whether the presence
of glaucoma may have influenced the individual’s fixation capacity and affected the
acquisition of MPOD measurements. Despite this, cHFP remains the current gold standard
approach to MPOD measurement in clinical applications.

The results from these [54–59] clinical studies that have investigated the relationship
between MPOD and glaucomatous neurodegeneration are promising, but not without
several limitations: (1) with one exception [57], the inclusion criteria for the presence of
glaucoma were not exclusive to individuals with POAG; (2) with one exception [58], foveal
involvement was analyzed homogenously among different subtypes of open-angle glau-
coma in relation to MPOD levels; (3) there were relatively small and unequal sample sizes
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based on ocular health status (glaucoma vs control) in several studies; and (4) all studies
were observational in nature only. Additional research is necessary to further investigate
the potential relationship whereby the MPOD appears to be lower in glaucomatous eyes
and may be further compromised among those with greater disease severity.

5.6. Carotenoid Supplementation—Interventional Studies

Prospective studies in patients with glaucoma evaluating the efficacy of dietary
carotenoid supplementation with antioxidant micronutrient formulas in randomized con-
trolled trials (RCTs) remain limited and controversial at best (Table 3) [60–62]. In an open-
label long-term follow up assignment among patients with mild/moderate POAG, two
experimental antioxidant formulas containing lutein (6 mg) and zeaxanthin (0.3–0.5 mg),
with or without omega-3 fatty acids, failed to demonstrate any difference between groups at
the end of trial period [60]. Researchers found no significant change with either supplement
after a two-year follow up on visual field loss or quantitative measures indicating thinning
of the RNFL or the GCC upon FD-OCT scanning [60]. In contrast, a prospective study with
an antioxidant nutraceutical formula containing lutein (10 mg) and zeaxanthin (2 mg) in
equal groups of healthy controls and POAG patients found a significant protective trend
with carotenoid supplementation after a six-month follow up [62]. In the POAG group, a
marked increase in plasma antioxidant capacity (p = 0.028), with a concomitant reduction
in the pro-oxidant stressor malondialdehyde, reached greater significance (p = 0.005) [62].
Similar protective trends have also been observed in clinical trials with a carotenoid supple-
ment nutraceutical conducted in patients with pseudoexfoliative glaucoma [61]. However,
there is simply a paucity of evidence from clinical trials to sufficiently determine the precise
neuroprotective potential in open-angle glaucomatous injury. Hence, further interven-
tional studies are required should carotenoid vitamin therapy be immediately considered a
primary form of treatment in the management of glaucomatous neurodegeneration.

Table 3. Characteristics of the eligible randomized clinical trials.

Author (Year) Participants Duration No. of
Groups Interventions Treatment

Schedule

Garcia-Medina
(2015) [60]

117 patients with
mild/moderate POAG,
aged (61.5 ± 11.7) years

2 years 3

6 mg L and 0.3 mg Z
(multivitamin plusω-3); 6 mg L

and 0.5 mg Z (multivitamin
only); placebo

5 days/wk

Romeo Villadóniga
(2018) [61]

47 patients with PEX,
aged (70.3 ± 5.0) years 6 months 2 10 mg L and 1 mg Z

(multivitamin); placebo Daily

Sanz-González
(2020) [62]

15 patients with POAG
and 15 controls, aged

40–75 years
6 months 2 10 mg L and 2 mg Z

(multivitamin) Daily

Abbreviations: POAG, primary open-angle glaucoma; L, lutein; Z, zeaxanthin;ω-3, omega-3 fatty acids; PEX, pseudoexfoliative glaucoma.

Inconsistency among findings from these intervention trials may be attributed, at
least in part, to a variety of potential factors and limitations. Most notably, none of the
available trials included a serum analysis of lutein and zeaxanthin or measured MPOD
levels within the study design. Limitations regarding low absorption rates continue to pose
a major challenge to clinical trials [277,278]. A growing body of evidence strongly suggests
that conventional delivery systems, such as the soft-gel capsules used within all three
reports, may significantly limit the bioavailability of carotenoids and consequently impede
the desired health benefits in the retina [43,122,277–280]. To overcome such a limitation,
greater amounts of carotenoids may be necessary along with a longer duration of intake.
Assimilation and transport of carotenoids from food matrices are also heavily influenced
by anthropometric features as well as gender, ethnicity, and age [45,116,279,281–286]. En-
hanced performance in the bioavailability and accumulation of lutein and zeaxanthin in the
retina has been demonstrated using micronized and nanoemulsion-based microsphere tech-
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niques [43,278,286–289]. Moreover, clinical implementation of these carotenoid-containing
microspheres has shown improved dissolution efficacy while maintaining overall safety
when applied intraocularly.

6. Conclusions

There is a theoretical rationale for the use of carotenoid vitamin therapy as an adjunc-
tive treatment in the management of glaucoma. It appears that the glaucomatous retina
creates an environment hostile to the survival of neurons, in part due to sustained oxidative
injury with a concomitant depletion of endogenous antioxidant defenses. The cumulative
effect of glaucoma appears to compromise the localization of the macular carotenoids
lutein, zeaxanthin, and meso-zeaxanthin, contributing to deteriorating retinal health and
ultimately irreversible vision loss. Based on the available preliminary results, carotenoid
vitamin therapy has shown promise in augmenting MPOD levels and enhancing visual
performance. In this regard, there is sufficient evidence from preclinical studies to sup-
port the synergic neuroprotective benefits of carotenoid supplementation as an adjunctive
nutraceutical approach to the management of glaucoma. However, the available results
from clinical trials are largely controversial and insufficient at present, thereby warrant-
ing further prospective controlled studies. Thus, it remains to be seen if this adjunctive
nutraceutical approach, in combination with IOP-lowering therapy, can provide additional
protective benefits to glaucomatous eyes.
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