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Abstract

Adenoviruses are double-strained DNA viruses found in a great number of vertebrates,

including humans. In order to understand their transmission dynamics, it is crucial, even

from a human health perspective, to investigate how host traits influence their prevalence.

Bats are important reservoirs for adenoviruses, and here we use the results of recent

screenings in Western Europe to evaluate the association between characteristic traits of

bat species and their probability of hosting adenoviruses, taking into account their phyloge-

netic relationships. Across species, we found an important phylogenetic component in the

presence of adenoviruses and mating strategy as the most determinant factor conditioning

the prevalence of adenoviruses across bat species. Contrary to other more stable mating

strategies (e.g. harems), swarming could hinder transmission of adenoviruses since this

strategy implies that contacts between individuals are too short. Alternatively, bat species

with more promiscuous behavior may develop a stronger immune system. Outstandingly

high prevalence of adenoviruses was reported for the Iberian species Pipistrellus pyg-

maeus, P. kuhlii and Nyctalus lasiopterus and we found that in the latter, males were more

likely to be infected by adenoviruses than females, due to the immunosuppressing conse-

quence of testosterone during the mating season. As a general trend across species, we

found that the number of adenoviruses positive individuals was different across localities

and that the difference in prevalence between populations was correlated with their geo-

graphic distances for two of the three studied bat species (P. pygmaeus and P.kuhlii).

These results increase our knowledge about the transmission mechanisms of

adenoviruses.

Introduction

Some viruses have the potential for cross-species transmission, with spillover episodes from

humans to wildlife and vice versa, a phenomenon referred to as zoonosis [1]. Current research

on the dynamics behind host/virus interactions and inter- and intra-specific transmissions is
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of scientific interest and important implications for emerging zoonoses and consequently for

public health.

The heterogeneity (understood as the inter- and intra-specific variation) in the ability of

hosts to transmit pathogens is among the most fundamental concepts in disease dynamics and

crucial in the design of disease control strategies [2]. The potentiality of cross-species or cross-

populations transmission depends on the characteristics of host and virus traits and is affected

directly or indirectly by a variety of ecological, social, or socioeconomic changes [3] that can

lead to new conditions boosting the expansion of the viruses to new host species or popula-

tions. Recent studies have revealed that traits such as host phylogenetic relatedness, conserva-

tion status, and geographical overlap are critical in the potential for cross-species transmission

of viruses [4,5].

The highest proportion of zoonotic viruses in mammals is found in bats, primates and

rodents [6]. Specific bat characteristics like their ability to fly, unique among mammals, or

their migratory capacity [7], increase their potential role as reservoirs of diseases. Bats are nat-

ural reservoirs for many viruses, such as coronavirus, Nipah virus and–apparently- Ebola,

related to new emerging diseases that have received attention in the last years due to the poten-

tial risk they pose for human pandemic events [8–10] or with important health and economic

consequences world-wide, such as rabies outbreaks [11,12]. The capacity to coexist with

viruses (in the absence of disease) is probably linked to the bats’ immune-system which seems

be different to that of other mammals, [7,13] and related to the development of altered mito-

chondrial genomes [14]. This pathogen control in bat hosts has favored ancient events of

coevolution or parallel evolution [15,16] between bats and viruses.

Additionally, bats are very diverse and form the second largest order of mammals [17]. In

fact, bats occupy all kinds of habitats throughout all continents except Antarctica, showing a

surprising ecological breadth that implies large variation in trait characteristics either in their

morphology: e.g. size variation across species [18]; social behavior: e.g. differences in mating

system [19]; or habitat requirements: e.g. roosts preferences from trees to caves [18]. Further-

more, all European bats (used for this study) are insectivorous but use very different foraging

strategies. For all these reasons, bats provide a good model system to inspect the correlation of

host trait characteristics with the prevalence of viruses.

Adenoviruses (AdVs) are non-enveloped dsDNA viruses with a broad range of vertebrate

hosts, such as humans. These viruses have been grouped into five genera [20]: Mastadenovirus
(mammals), Atadenovirus (mammals, birds and reptiles), Aviadenovirus (birds), Siadenovirus
(poultry and amphibians) and Ichtadenovirus (fish). Symptoms in humans include respiratory

or eye infections and intestinal or digestive illness that rarely lead to mortality [21,22]. Since

the first detection of an AdV in a fruit bat from Japan [23], a high diversity of AdVs has been

isolated from bats from America, Africa and Asia, all grouped within the genus Mastadeno-
virus [24]. The first AdV in a European bat was isolated from a common pipistrelle (Pipistrellus
pipistrellus) in Germany [25]. Later, Vidovszky et al. [26] obtained partial sequences from as

many as 28 presumably new AdVs hosted by 12 different bat species in Germany and Hun-

gary. Iglesias-Caballero et al. [16] conducted a country-wide survey in Spain constituting the

largest screening for AdVs in bats to date, checking >1,000 individuals belonging to 28 species

and focusing not only on the analysis of fecal samples and internal tissues -as in previous stud-

ies- but also on the analysis of the oropharyngeal swabs. AdVs are detected in almost half of

the Iberian bat species studied, in both feces and in the upper respiratory tract (for the first

time in bats), establishing a possible fecal-oral transmission route in two Pipistrellus pygmaeus.
Moreover, they found a surprisingly high prevalence in this species together with the co-

generic P. kuhlii and the closely related giant noctule, Nyctalus lasiopterus, which accounted

for the vast majority of viruses detected in the study. These results have presented us with the
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opportunity to analyze the abiotic factors or biotic traits determining prevalence of AdVs in

European bats at two levels: across-species and among individuals within a species.

The analysis of morphological and behavioral traits and presence of AdVs in bats is also

useful for the understanding of viral transmission dynamics. In fact, little is known about the

transmission mechanisms of AdVs and to the best of our knowledge, no study has focused on

transmission in bats. A handful of studies in humans suggest that transmission may need

direct contact or at least a droplet spraying (such as those produced by coughing or sneezing)

or aerosol [27–29]. The strong host specificity and the parallelism between host and AdVs phy-

logenies found for bats [16,30] and for primates [31] strongly suggest that cross-species switch-

ing of mastadenovirus are not frequent events although they have been detected in AdVs

evolution [30].

To our knowledge, no study has focused so far on the analyses of the determinant factors

influencing prevalence of viruses on bats at both species and individual levels. Across species,

Webber et al. [32] found that viral richness was positively correlated with group size as pre-

dicted by the contact-rate hypothesis. In turn, at the intra-specific level Dietrich et al. [33]

found an important seasonal shift in prevalence with a significant increase in AdVs shedding

during reproduction while studying AdVs prevalence in two bats (Miniopterus natalensis and

Rousettus aegyptiacus). The aim of this study is to advance our understanding of heterogeneity

in the prevalence of AdVs in bats, testing the association between traits and presence of AdVs

at both the among-species and within-species levels. Among species, and according to the con-

tact-rate hypothesis, higher prevalence of AdVs is expected in species roosting in large groups,

sharing refuge with other species and/or mating in swarming aggregations. In addition, we

hypothesize a strong phylogenetic signal given the strong species-specificity found in the pres-

ence of AdVs. Within species, we predict a higher prevalence in females because of their con-

centration in large numbers in nursery colonies [34], with high contact rate and a high

concomitant risk of infection.

In summary, our aims were to: 1) Test for significant phylogenetic component to the pres-

ence of AdVs in European bats; 2) test the importance of ecological characteristics at a species-

level for the presence of AdVs taking into account phylogenetic relationships; 3) investigate

whether some individual characteristics are determinant to explain the differences in the prev-

alence of AdVs within species.

Materials and methods

Ethics statement

Non-lethal sampling was based on permits 201710730002961/IRM/MDCG/mes issued by

Dirección General de Gestión del Medio Natural y Espacios Protegidos (Consejerı́a de Medio

Ambiente, Junta de Andalucı́a, Spain), 10/085545.9/17.9/17 issued by ‘Consejerı́a de Medio

Ambiente, Administración Local y Ordenación del Territorio, Comunidad de Madrid’, and

PNSNG_SG_2018_0093 issued by ‘Servicio Territorial de Medio Ambiente de Segovia, Junta

de Castilla y León’. For this study, permits for the collection of punch biopsies of wing mem-

branes from bats were issued by Comité de Ética del Consejo Superior de Investigaciones

Cientı́ficas and by Consejerı́a de Agricultura y Pesca y Desarrollo Rural, Junta de Andalucı́a

(permit reference: SSA/SSI/MD/ps). The techniques used meet the guidelines published by the

American Society of Mammalogists on the use of wild mammals in research [35]

Data collection

Most of the information used in this study was obtained during a surveillance program for bat

rhabdovirus and lyssavirus carried out between 2004 and 2008, 2016 and 2018 across 21

Adenovirus prevalence in European bats
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Iberian localities. Bats were mist-netted near roosts or over water and released at the same col-

lection point after sampling. Each animal was identified, sexed, measured and weighed. Sam-

pling consisted of a 2 mm Ø membrane wing-punch, saliva with oropharyngeal swabs and

stool samples (when this was possible). Swabs were stored in 1.5 mL tubes filled with lysis

buffer. All samples were aliquoted and stored at -80 ˚C prior to analysis. Samples were

screened for AdVs following published protocols [16,36,37]. Our own database of bats cap-

tured in Iberia was combined with the published data of AdVs presence in other bats from

Germany and Hungary [25,26]. The identification of bats belonging to species complexes was

confirmed through PCR amplification of a diagnostic mtDNA fragment following Ibañez

et al., [38] and Kaňuch et al. [39].

Phylogeny and phylogenetic signal

A fully resolved phylogeny containing all the study species was not available from the literature

and is difficult to reconstruct for this group, [40] so a hybrid approach was taken whereby,

published trees were grafted to obtain a full-solved topology whereas branch lengths were esti-

mated using molecular sequence data. The published phylogenetic studies for the four families

existing in Europe, used to manually construct a topology of all species in this study were Guil-

lén-Servent et al., [41] for relationship in the family Rhinolophidae; Ruedi et al., [42] and Sta-

delmann et al. [43] for the subfamily Myotinae within Vespertilionidae; and Hoofer and

Bussche [44] for the rest of this last family and for the family Miniopteridae. Complete

sequences of the mitochondrial genes cytochrome b (CYTB) and NADH dehydrogenase 1
(ND1) were obtained from GenBank for all available European species and were used to esti-

mate branch length in the constructed topology. This dataset needed to generate sequences de
novo for the species Miniopterus schreibersii for which these markers were not available. The

new sequences are deposited in GenBank under the accession numbers MK737740 and

MK737741. For each locus sequences were aligned with the software ‘ALTER’ [45] and MEGA

[46], and partitionfinder v2.1.1 [47] was run on the concatenated alignment (1805 base pairs

in length) to obtain the optimal partitioning scheme and substitution models. Partitionfinder

was set to use unlinked branch lengths, search only BEAST models with the ‘greedy’ algorithm

and AICc as the model selection criterion. A maximum of six possible partitions were allowed;

the three codon positions of the two loci. BEAST v2.4.7 [48] was then fed the alignment and

the fixed topology, and using a relaxed clock log normal model with exponential priors on the

mean (mean = 10) and standard deviation (mean = 0.33), was allowed to estimate the branch

lengths over 20 million MCMC iterations, storing every 1000th. Chain diagnostics was per-

formed using Tracer v1.7 [49] to ensure sufficient mixing and parameter convergence and a

maximum clade credibility tree was generated using TreeAnnotator v.2.4.7 (part of BEAST

package) using a 10% burn-in and median node heights.

Fritz’s D, Pagel’s λ and Blomberg’s K parameters were used to estimate the strength of the

phylogenetic signal affecting the pattern of AdVs presence across European bats. Fritz’s D was

used for binary data (presence/absence) so that values close to one indicate that the distribu-

tion of the binary trait is random with respect to the given phylogeny and values close to zero

indicate the trait is distributed as expected under a Brownian motion model of evolution [50].

When the variable estimated was the proportion of infected bats in each species, Pagel’s λ and

Blomberg’s K parameters were used. Values of λ range from zero to one where λ = 0 indicates

that related species do not share similar values for the trait (percentage of infection) and λ = 1

indicates a pattern fully explained by the phylogenetic relationships under Brownian motion,

with related species showing similar values for the given trait. Finally, K is scaled so that zero

indicates no phylogenetic signal, K = 1 is the expected value for trait evolution under Brownian

Adenovirus prevalence in European bats
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motion and values higher than one suggest stronger phylogenetic signal than predicted by

Brownian motion [51,52].

Variables selection and modeling

Ecological and behavioural traits were selected considering their ‘a priori’ importance for the

virus transmission and their availability for the European bat species from the bat literature

and general revisions [53], identification guides [34] (S1 Table). For the comparative analysis

across all European bats, the following variables were recorded for each species: (1) ‘Group

size’, defined as the upper bound of individuals found usually in summer roosts; (2) ‘Forearm’:

defined as the average range of forearm length (in mm) reported for each species; (3) ‘Sociabil-

ity’ defined as the chance of sharing summer roost with other species and considering just two

categories: species that have never been found sharing their roost with other species and spe-

cies that sometimes or always share roost with other species; (4) ‘Mating strategy’: considered

as whether mating takes place in seasonal swarming or not; (5) ‘Migration’: defined as whether

the bat species is known to perform long-distance seasonal movements (longer than 100 km),

regional (between 10 and 100 km) or no movements; (6) ‘Roost Type’: considered in three cat-

egories: roosts in caves, trees or crevices. At the individual level, the analyses focused on the

three species that showed the highest AdVs presence combined with a large enough sample

size (Nyctalus lasiopterus: N = 234; Pipistrellus pygmaeus: N = 298; P. kuhlii: N = 230). The

recorded variables were: (1) ‘Locality’: site of capture; (2) ‘Sex’: male or female; (3) ‘Forearm’:

measured in mm.

For among-species comparisons, AdVs prevalence was analyzed as the percentage of posi-

tive samples for each species. The percentage was logit-transformed to conform to the normal-

ity assumption of the data. Species with fewer than 10 samples were eliminated from the

matrix and from the phylogeny. The analyses were performed with R statistical computing

packages [54] and scripts are available as Supplementary Material. Fritz’s D, Pagel’s λ and

Blomberg’s K parameters were estimated with the packages ‘caper’ [55] and ‘phytools’ [56].

Phylogenetic linear regressions were carried out with the package ‘phylolm’ [57] that respects

the shared evolutionary histories of species [58]. Models of trait evolution were compared

assuming correlation structures under either Brownian motion, Ornstein-Uhlenbeck or Pagel

models [59] and the best model was selected based on the Akaike Information Criterion (AIC)

[60]. As a threshold value for model selection, a model showing ΔAIC > 3 was taken as having

greater support [61]. The best correlation structure selected was included in the phylogenetic

linear regression, in which the variables aforementioned were selected by considering all possi-

ble subsets, again based on the Akaike Information Criterion and with the same threshold

value, using the package ‘MuMIn’ [62]. Complementary, the analyses were also run consider-

ing presence/absence of AdVs as a dependent variable and including in this case all sampled

species. A binary phylogenetic generalized linear model was run using the ‘ape’ package, with

presence of AdVs as the dependent variable [63].

Within species, again, we considered only the three species showing the highest AdVs pres-

ence combined with a large enough sample size (Nyctalus lasiopterus: N = 234; Pipistrellus pyg-
maeus: N = 298; P. kuhlii: N = 230; distribution of sampling localities shown in Fig 1). We used

general linear mixed models implemented in the ‘lme4’ package [64] to test for associations

between traits and presence of AdVs for each species considered, and considering AdVs pres-

ence as a binary dependent variable while ‘Forearm’ and ‘Sex’ were set as independent vari-

ables. In order to account for uncontrolled spatial variation, ‘Locality’ was included in the

models as a random variable. As a confirmatory analysis for the models, the variance explained

by only the fixed variables was compared to the variance obtained including the random

Adenovirus prevalence in European bats
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variables using the package ‘MuMIn’ [62]. At both among-species and within-species levels,

inter-correlation was were checked using a Pearson’s correlation test for continuous variables

and an ANOVA for categorical variables. The spatial distribution of the AdVs positive bats

was inspected by performing a Mantel test between the matrix of geographic distances and the

matrix of differences in proportion of infection between sites with the package ‘ade4’ [65,66].

Results

The final working database consisted of 1,806 bats sampled and checked for AdVs, belonging

to 10 genera (Barbastella, Eptesicus, Hypsugo, Miniopterus, Myotis, Nyctalus, Pipistrellus, Pleco-
tus, Rhinolophus, Vespertilio) and representing 33 of the 45 European bat species. The database

of bats sampled in the Iberian region included a total of 1,466 bats belonging to 27 Iberian spe-

cies surveyed for the study (Fig 2). The inclusion in the analyses of the published results from

Vidovszky et al. [26] and Sonntag et al. [25] for Germany and Hungary, allowed the addition

of six European species (Eptesicus nilssonii, Myotis brandtii, M. dasycneme, M. nattereri, Pipis-
trellus nathusii and Vespertilio murinus), not found in Iberia and therefore not included in the

Iberian database.

Fig 1. Sampling localities with percentage of AdVs positive samples. Portion of AdVs positive sample is indicated in

blue, AdVs negative samples in orange for (A) Nyctalus lasiopterus, (B) Pipistrellus pygmaeus (C) P. kuhlii. Only

localities with at least 10 recorded individuals are shown. (Modified from USGS National Map Viewer—Public

Domain).

https://doi.org/10.1371/journal.pone.0226203.g001
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The number of individuals sampled within species varied considerably and 5 species

(Myotis daubentonii, Miniopterus schreibersii, Nyctalus lasiopterus, Pipistrellus kuhlii, P. pyg-
maeus), accounted for 50% of the total number of individuals sampled for this study. On the

other hand, the species Eptesicus nilssonii, Myotis alcathoe, M. brandtii, M. crypticus, Rhinolo-
phus mehelyii were represented by fewer than 10 individuals and were consequently dis-

carded from the proportion-based analyses of prevalence. Values of proportion of positive

samples varied considerably across species, averaging 7.02% (calculated as the average of the

percentages of all the species) (Table 1). The species targeted for the individual-level analyses

based on the highest prevalence of AdVs and large enough sample size were: Nyctalus lasiop-
terus (10.26% prevalence), Pipistrellus pygmaeus (10.07% prevalence) and Pipistrellus kuhlii
(9.57% prevalence).

Phylogenetic signal

The fully resolved phylogeny for all the studied species with proportional branch lengths was

used to estimate the different phylogenetic component in AdVs presence (S1 Fig). Fritz’s D
parameter was 0.482, and we detected a marginally significant departure from Brownian

motion structure (p = 0.058), whereas the probability of D resulting from Brownian motion

structure was p = 0.165. The value of Pagel’s λ when analyzing the distribution of proportion

of AdVs across the phylogeny was λ = 0.94 and Blomberg’ K was K = 0.70. Pagel’s λ and Blom-

berg’ K were both significantly different from zero (λ: p = 0.0003; K: p = 0.001). Thus, the dis-

tribution of the AdVs infection across the studied European bats showed a strong phylogenetic

component following Brownian motion.

Fig 2. Study sites in Spain where bats were screened for AdVs. Blue dots indicate localities with at least one AdVs

positive samples, orange dots indicate localities with negative samples for AdVs. (Modified from USGS National Map

Viewer—Public Domain).

https://doi.org/10.1371/journal.pone.0226203.g002
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Trait association with AdVs prevalence

The phylogenetic linear regression analysis showed that regardless of the phylogenetic model

used (although Ornstein-Uhlenbeck had the lowest AIC score, all three models tested were

within ΔAIC� 3), the variable ‘Mating strategy’ was selected in the three best models through

the Akaike Information Criterion by considering all possible subsets (model selection pre-

sented in S2 Table) and showed a significant (and negative) effect, as shown in Fig 3 (model =

Ornstein-Uhlenbeck, t = -3.5849, p = 0.002; all model results presented in S3 Table). Moreover,

the same result was recovered when using AdVs presence as a binomial dependent variable

(S4 Table), indicating a significantly higher AdVs presence in bat species not engaging in

swarming for mating.

Table 1. Number of individuals screened as positive or negative for adenoviruses and percentage of positives for each species taken into account in this study.

Species N˚ Positives N˚ Negatives Percentage (%) Lower limit (%) Upper limit (%)

Barbastella barbastellus 0 46 0.00

Eptesicus nilssonii 1 5 16.67 0.85 58.18

Eptesicus isabellinus 4 18 18.18 6.46 36.91

Eptesicus serotinus 2 20 9.09 1.64 25.95

Hypsugo savii 3 50 5.66 1.56 13.98

Miniopterus schreibersii 0 163 0.00

Myotis alcathoe 0 4 0.00

Myotis bechsteinii 1 38 2.56 0.13 11.60

Myotis blythii 1 35 2.78 0.14 12.51

Myotis brandtii 0 7 0.00

Myotis capaccinii 0 15 0.00

Myotis crypticus 0 3 0.00

Myotis dasycneme 2 3 40.00 7.64 81.07

Myotis daubentonii 0 102 0.00

Myotis emarginatus 4 59 6.35 2.20 13.94

Myotis escalerai 0 23 0.00

Myotis myotis 5 88 5.38 2.14 10.97

Myotis mystacinus 1 29 3.33 0.17 14.86

Myotis nattereri 0 13 0.00

Nyctalus lasiopterus 24 210 10.26 7.17 14.12

Nyctalus leisleri 5 40 11.11 4.48 21.95

Nyctalus noctula 24 60 28.57 20.55 37.77

Pipistrellus kuhlii 22 208 9.57 6.56 13.38

Pipistrellus nathusii 2 13 13.33 2.42 36.34

Pipistrellus pipistrellus 10 85 10.53 5.82 17.20

Pipistrellus pygmaeus 30 268 10.07 7.34 13.41

Plecotus auritus 1 26 3.70 0.19 16.40

Plecotus austriacus 0 15 0.00

Rhinolophus euryale 7 40 14.89 7.20 26.16

Rhinolophus ferrumequinum 9 95 8.65 4.59 14.62

Rhinolophus hipposideros 1 10 9.09 0.47 36.44

Rhinolophus mehelyi 0 1 0.00

Vespertilio murinus 1 14 6.67 0.34 27.94

Data from Vidovszky et al. [26] and Sonntag et al. [25] included. Lower and upper limits of 95% confidence intervals of the percentage have been included [67].

https://doi.org/10.1371/journal.pone.0226203.t001
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At individual level and for the three species considered the GLMM analysis revealed a sig-

nificantly higher AdVs presence for males (z = 2.067, p = 0.039) in N. lasiopterus (Fig 4A), and

a trend towards higher AdVs prevalence for individuals with smaller forearm (Fig 4B) for P.

kuhlii (z = -1.656, p = 0.098). The variance of the model explained by only the random variable

was 4% for N. lasiopterus, 62% for P. pygmaeus and 16% for P. kuhlii. Results for all the vari-

ables are available in supplementary material S5 Table.

Mantel test

The Mantel tests showed no significant correlation for all pairwise comparisons between geo-

graphic distances and differences in the proportion of AdVs presence across localities for N.

lasiopterus (r = -0.2873; p = 0.909) (S2 Fig), but this correlation was significant for P. pygmaeus
(r = 0.3185; p = 0.036) and for P. kuhlii (r = 0.6137; p = 0.05) indicating that with greater dis-

tance, there will be a greater difference in the proportion of individuals affected by AdVs

(S2 Fig).

Discussion

For the first time to our knowledge, adenovirus prevalence and its correlation with host traits

is studied across a wide range of bats both at the species and individual level. The understand-

ing of which and how host traits affect the presence of viruses in bats is a key step to the under-

standing of the transmission mechanisms and evolutionary strategies of viruses. Such

Fig 3. Boxplot of the percentage of positive individuals for species engaging in swarming and species not engaging

in swarming. N positive species = 14; N negative species = 19. Black horizontal lines indicate the median value. Lower

and upper hinges correspond to the first and third quartiles. The upper whisker extends from the hinge to the largest

value no further than 1.5 � IQR from the hinge (where IQR is the inter-quartile range). The lower whisker extends

from the hinge to the smallest value at most 1.5 � IQR of the hinge. Dots beyond the end of the whiskers indicate

outlying points.

https://doi.org/10.1371/journal.pone.0226203.g003
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mechanisms are key in the process of host switching that cause the appearance of emerging

diseases and therefore its understanding is important to improve disease managements [68].

Our results show that adenoviruses seem to be quite common in European bats since they

were found across all the studied tribes and in most genera (except for Barbastella and Miniop-
terus) but their prevalence varied considerably among species [16]. The three species best sam-

pled and showing the highest frequency of adenovirus infection (Nyctalus lasiopterus,
Pipistrellus pygmaeus and P. kuhlii) experienced an average of 9.97% prevalence. In contrast,

other species showed very low adenovirus presence and was completely absent in others

despite their large sample sizes (e.g.: Miniopterus schreibersii) but in other species, the absence

of positive results could be due to the low number of sampled individuals (generally the rarest

bats in Europe).

Fritz’s D, Pagel’s λ and Blomberg’s K parameters all pointed to a phylogenetic signal in the

presence of AdVs across European bats and consequently, the need for accounting for phylo-

genetic relationships in all subsequent models. This phylogenetic component of the distribu-

tion pattern of AdVs in bats was also recently suggested by Iglesias-Caballero et al. [16] as the

sequences of new mastadenoviruses were clustering generally in agreement with the host bat

families or even with the bat species.

Fig 4. Results of within-species analysis. (A) Barplot by sex of number of Nyctalus lasiopterus individuals positive

(blue) and negative (orange) to adenovirus. (B) Boxplot for individuals screening negative for AdVs (0) and positive

for AdVs (1) in relation to forearm length for Pipistrellus kuhlii. Black lines indicate the median value. Lower and

upper hinges correspond to the first and third quartiles. The upper whisker extends from the hinge to the largest value

no further than 1.5 � IQR from the hinge (where IQR is the inter-quartile range). The lower whisker extends from the

hinge to the smallest value at most 1.5 � IQR of the hinge. Dots beyond the end of the whiskers indicate outlying

points.

https://doi.org/10.1371/journal.pone.0226203.g004

Adenovirus prevalence in European bats

PLOS ONE | https://doi.org/10.1371/journal.pone.0226203 January 7, 2020 10 / 17

https://doi.org/10.1371/journal.pone.0226203.g004
https://doi.org/10.1371/journal.pone.0226203


Contrary to a previous study on the factors influencing viruses on bats [32], we have not

found significant effect of the bats’ group size on the presence of adenoviruses for European

species. In their study, Webber et al. [32] had a wider perspective and focused on overall viral

richness in bats, whereas this study is centered exclusively on AdVs and so our differing results

may indicate that adenoviruses use different transmission pathways than other viruses. Trans-

mission of respiratory AdVs in humans requires close contact although it can possibly occur

through droplet spray or aerosols, but data are still limited [27–29]. In general, little is known

about transmission mechanisms of adenoviruses and to our knowledge, no study has focused

on this particular aspect across bats, although the host species specificity found for most of the

adenoviruses in bats [16] points to cross-species contacts as rare events.

Counterintuitively, species engaging in swarming behavior were found to have significantly

lower prevalence of adenoviruses than other bats despite having theoretically greater chances

of contact. Swarming related to mating is shown mainly by forest species and is described as

the gathering of bats, commonly in caves and underground sites, during a few hours after dusk

and for a few days [69]. Two hypotheses could explain this finding. Firstly, bat species engag-

ing in swarming seem to be in close contact for only a short period of time, which would imply

a lower chance of transmission compared to bats with polygynous mating systems, like har-

ems, which stay in contact for longer periods of time, sometimes all year around [70]. A second

plausible hypothesis is based on the fact that mammals with high infection risk, especially

those with promiscuous behavior, develop a stronger immune system compared to species

with low infection risk [71,72]. Thus, it seems reasonable that bats with swarming behavior

may show stronger immune response protecting them from infections, despite being very

costly and even represent a trade-off with other life-history traits [72].

When analyzing the effect on the AdVs presence of within-species variance in traits, we

found that the site of capture explains an important part of the variance of all models suggest-

ing an underlying general pattern across species and supporting the contact-rate hypothesis.

This trend is particularly clear for Pipistrellus pygmaeus and for P. kuhlii, whose sampling

localities are more widespread along the Iberian Peninsula than those for Nyctalus lasiopterus
(Fig 1). Following the contact-rate hypothesis, bats from a specific locality interact with other

individuals of the same area, favoring the virus transmission locally [7]. A similar pattern was

already found for the viruses responsible for avian influence, Marburg or Ebola [73–75]. In

this direction, the Mantel’s test supported a significant geographic component in the incidence

of the adenoviruses for Pipistrellus pygmaeus and for P. kuhlii which are typically sedentary

species [34].

A higher prevalence of adenoviruses was found in males for Nyctalus lasiopterus, the species

in which the different sexes were best represented. This result is particularly interesting since it

could affect the general dynamics of the virus given the generally predominant role played by

males in dispersal [76]. The possibility of a sex biased infection as a general pattern should be

explored further in other bat species and could be related to the trade-off between immune

function and reproduction, making males more susceptible to virus infections during repro-

ductive season due to the immune-suppressant effect of testosterone production [77].

Our results show that, individuals with smaller forearm are more likely to be infected by

adenoviruses for Pipistrellus kuhlii. Subadult bats usually have slightly longer forearms [34]

and the lower prevalence in bats with larger measures could be explained by the influence of

the antibody loads transferred to them through their mother’s milk in still developing bats,

making them less suitable to adenoviruses prevalence [78]. This result could be also associated

with the known fact that young bats stay all together in nurseries. As a consequence, the proba-

bility of enter in contact with adult infected bats might decrease [34]. Nevertheless, these are
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just hypotheses and further studies should help understand the relationships between adenovi-

ruses presence and age.

In sum, our findings highlight a common occurrence of adenoviruses in European bats and

provide evidence of the importance of mating behavior in the prevalence of adenoviruses, con-

trary to what has been suggested generally for viruses. Besides, the three European bats species

that had higher adenovirus prevalence do not show any common pattern, pointing to adenovi-

ruses transmission as a complex process. Our study highlights the importance of combining

behavioral with ecological traits in explaining viral richness and transmission.
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behavior, 1 indicates species engaging in swarming behavior. ‘Sociability’: 0 indicates species

that never share the roost with other species, 1 indicates species sometimes or always share the

roost with other species. ‘Migration’: 0 indicates species not performing seasonal movement or

performing no movement, 1 indicates species performing long-distance movements.
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S2 Table. Model selection of the percentage models under Brownian motion, Pagel and
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value included.
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Nyctalus lasiopterus. B: Pipistrellus pygmaeus. C: Pipistrellus kuhlii.
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S1 Fig. Evolutionary relationships of bat species considered in this study. Based on the phy-

logenetic hypotheses of: Guillén-Servent et al [41].; Hoofer and Bussche [44]; Ruedi et al. [42]

and Stadelmann et al. [43]. Branch lengths reflect mitochondrial sequence divergences. Tip

labels indicate species screening positive (black) or negative (white) for AdVs.

(TIF)

S2 Fig. Scatterplot showing the results of the Mantel test. Mantel test between the matrix of

differences in percentages of AdVs presence and the matrix of geographic distances for (A)

Nyctalus lasiopterus (B) Pipistrellus pygmaeus and (C) P. kuhlii. Geographic distances are
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