Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[μ - N, N^{\prime}-bis(2-hydroxyethyl)$N, N, N^{\prime}, N^{\prime}$-tetramethylpropane-1,3-diaminium- $\left.\kappa^{2} O: O^{\prime}\right]$ tetra- μ-bromidodibromidodimanganese(II)]

Heikki Rinta, Anssi Peuronen and Manu Lahtinen*
University of Jyväskylä, Department of Chemistry, PO Box 35, FI-40014 JY, Finland Correspondence e-mail: manu.lahtinen@jyu.fi

Received 16 October 2012; accepted 29 October 2012
Key indicators: single-crystal X-ray study; $T=123 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.021 ; w R$ factor $=0.047$; data-to-parameter ratio $=17.7$.

The asymmetric unit of the title three-dimensional coordination polymer, $\left[\mathrm{Mn}_{2} \mathrm{Br}_{6}\left(\mathrm{C}_{11} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]_{n}$, consists of one $\mathrm{Mn}^{\text {II }}$ cation, half of a dicationic N, N^{\prime}-bis(2-hydroxyethyl)$N, N, N^{\prime}, N^{\prime}$-tetramethylpropane-1,3-diaminium ligand (L) (the other half being generated by a twofold rotation axis), and three bromide ions. The $\mathrm{Mn}^{\mathrm{II}}$ cation is coordinated by a single L ligand via the hydroxy O atom and by five bromide ions, resulting in a distorted octahedral $\mathrm{MnBr}_{5} \mathrm{O}$ coordination geometry. Four of the bromide ions are bridging to two adjacent $\mathrm{Mn}^{\mathrm{II}}$ atoms, thereby forming polymeric chains along the a and b axes. The L units act as links between neighbouring $\mathrm{Mn}-(\mu-\mathrm{Br})_{2}-\mathrm{Mn}$ chains, also forming a polymeric continuum along the c axis, which completes the formation of a three-dimensional network. Classical O$\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds are present. The distance between adjacent $\mathrm{Mn}^{\mathrm{II}}$ atoms is 4.022 (1) \AA.

Related literature

For related structures of $M^{\text {II }}$ transition metal halide onedimensional coordination polymers, see: Han et al. (2012); Englert \& Schiffers (2006). For two-dimensional networks, see: Hu \& Englert (2006); Turgunov et al. (2011). For properties of metal halides, see: Hitchcock et al. (2003); Wang et al. (2011). For ligand conformations, see: Kärnä et al. (2010).

Experimental

Crystal data

$\left[\mathrm{Mn}_{2} \mathrm{Br}_{6}\left(\mathrm{C}_{11} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$Z=4$
$M_{r}=809.69$
Mo $K \alpha$ radiation
Tetragonal, $P 4_{3} 2_{1} 2$
$\mu=11.69 \mathrm{~mm}^{-1}$
$a=8.0163$ (4) A
$T=123 \mathrm{~K}$
$c=35.3103(18) \AA$
$0.25 \times 0.25 \times 0.20 \mathrm{~mm}$
$V=2269.1$ (2) A^{3}
Data collection

Bruker-NoniusKappa APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) $T_{\text {min }}=0.440, T_{\text {max }}=0.746$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.047$
$S=1.02$
toms treated by a mixture of independent and constrained refinement
1966 reflections
111 parameters
1 restraint

5076 measured reflections 1966 independent reflections 1856 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Br} 3^{\mathrm{i}}$	$0.75(2)$	$2.49(2)$	$3.232(3)$	$175(5)$

Symmetry code: (i) $x+\frac{1}{2},-y+\frac{5}{2},-z+\frac{1}{4}$.

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The financial support of University of Jyväskylä is gratefully acknowledged.

metal-organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2604).

References

Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
Englert, U. \& Schiffers, S. (2006). Acta Cryst. E62, m295-m296.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Han, S., Liu, X.-Y., Cai, Z.-F. Z.-P., Yin, W.-T., Xie, X.-D., Zhou, J.-R., Yang, L.-M. \& Ni, C.-L. (2012). Inorg. Chem. Commun. 24, 91-94.

Hitchcock, P. B., Lee, T. H. \& Leigh, G. J. (2003). Dalton Trans. pp. 2276-2279.
Hu, C. \& Englert, U. (2006). Angew. Chem. Int. Ed. Engl. 45, 3457-3459.

Kärnä, M., Lahtinen, M., Hakkarainen, P.-L. \& Valkonen, J. (2010). Aust. J. Chem. 63, 1122-1137.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
Turgunov, K. K., Wang, Y., Englert, U. \& Shakhidoyatov, K. M. (2011). Acta Cryst. E67, m953-m954.
Wang, Y.-Q., Sun, Q., Yue, Q., Cheng, A.-L., Song, Y. \& Gao, E.-Q. (2011). Dalton Trans. 40, 10966-10974

supplementary materials

Poly[[$\mu-N, N^{\prime}$-bis(2-hydroxyethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethylpropane-1,3-diaminium- $\left.\kappa^{2} O: O^{\prime}\right]$ tetra- μ-bromido-dibromidodimanganese(II)]

Heikki Rinta, Anssi Peuronen and Manu Lahtinen

Comment

Solid state chemistry of metal halides has been widely studied in order to improve various magnetic and non-linear optical applications. In the crystal structure of the type $M X_{4} L_{2}$, the bridging qualities of the halide anions and the coordination properties of the organic ligands result in various polymeric structures. For example, one-dimensional M - $(\mu$ -$X)_{2}-M$ bridged chains with low-dimensional arrangement have more suitable magnetic properties than classic structures of layered metal halide salts (Han et al. 2012; Wang et al. 2011 and Hitchcock et al. 2003).
The title compound, $\left[\mathrm{Mn}{ }^{\text {II }}(\mu-\mathrm{Br})_{2} \mu-\left(\mathrm{C}_{11} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{Br}\right]_{n}$, crystallizes in a tetragonal $P 4_{3} 2_{1} 2$ crystal system showing one $\mathrm{Mn}^{\text {II }}$ cation, half of a dicationic $\left[\mathrm{C}_{11} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{2+}$ ligand (L) and three bromide anions in an asymmetric unit (Fig. 1). In this three-dimensional polymer each $\mathrm{Mn}^{\mathrm{II}}$ cation is coordinated by four bridging bromo anions in the equatorial plane. A single terminal bromo anion and a ligand are located in the axial positions of the distorted octahedron showing axial Br 3 —Mn1—O1 angle of $174.03(8)^{\circ}$. The three-dimensional network structure comprises two alternating crossed $\mathrm{Mn}-(\mu$ -$\mathrm{Br})_{2}-\mathrm{Mn}$ chains (a - and b-axes) and an undulated $\mathrm{L}-\mathrm{Mn}-(\mu-\mathrm{Br})_{2}-\mathrm{Mn}-L$ chain (c-axis). Distances between parallel $\mathrm{Mn}-(\mu-\mathrm{Br})_{2}-\mathrm{Mn}$ chains (planes through Mn -centres) are about $17.656 \AA$ and between anti-parallel chains $8.7825 \AA$. This allows a formation of a structure model having alternating organic cation and a metal halide layers along c-axis (Figures $2 \& 3$).
In $\mathrm{Mn}^{\text {II }}$ cation coordination environment, the terminal Br^{-}anion fulfills the coordination of the $\mathrm{Mn}^{\text {II }}$ cation to octahedral $\mathrm{MnBr}_{5} \mathrm{O}$. The metal-metal distance along the resulting chain of octahedra is 4.022 (1) \AA. All the equatorial $\mathrm{Mn}-\mathrm{Br}$ bridge bond distances are almost identical but still somewhat longer than the axial $\mathrm{Mn} 1 — \mathrm{Br} 3$ bond. The bridging bromides and the adjacent Mn -centers form folded square-planar geometry, showing nearly orthogonal contact angle of $94.05(2)^{\circ}$ via $\mathrm{Mn} 4 — \mathrm{Br} 2-\mathrm{Mn} 4$ atoms, and torsion angle of $12.82(2)^{\circ}$ through $\mathrm{Mn} 4 — \mathrm{Br} 2 — \mathrm{Mn} 4 — \mathrm{Br} 1$ atoms.
In the structure, the ligands are in S-shaped conformation between the anti-parallel $\mathrm{Mn}-(\mu-\mathrm{Br})_{2}-\mathrm{Mn}$ chains (Fig. 4). It seems that S-conformation is an ideal conformation for this type of relatively flexible ditopic ligand (Kärnä et al. 2010). The torsion angle $\mathrm{C} 2-\mathrm{N} 4-\mathrm{N} 4-\mathrm{C} 2$ is 156.70°. Similar cation conformations are found in ion pair structures

[$\left.\mathrm{Zn}^{\text {II }} \mathrm{Br}_{4}\left(\mathrm{C}_{11} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$ and $\left(\mathrm{C}_{11} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{Br}_{2} \mathrm{H}_{2} \mathrm{O}$.

Classical $\mathrm{Br} 3 \cdots \mathrm{H}-\mathrm{O} 1$ hydrogen bonds are present in the $\mathrm{Mn}^{\mathrm{II}}$ cation coordination environment between the terminal Br^{-} anions of $\mathrm{Mn}^{\text {II }}$ cation and the hydroxyl group of the neighboring metal center (Fig. 5). Hence, it seems likely that in the parent complex the hydrogen bonding steers the oxygen's coordination to the $\mathrm{Mn}^{\mathrm{II}}$ cation. Weak interactions between O1 and halide bridge on the other side of Br 1 and Br 2 leads to distortions of chains torsion angle. The angle between the $\mathrm{Mn} 1 — \mathrm{Br} 1 — \mathrm{Br} 2$ and $\mathrm{Mn} 1 — \mathrm{Br} 1 — \mathrm{Br} 2$ planes is 162.6°. For this reason, $\mathrm{Mn}-(\mu-\mathrm{Br})_{2}-\mathrm{Mn}$ chains zigzag-conformation (Fig. 6).

Experimental

The single crystals of the title compound were obtained in the following two steps: First, dicationic bromide salt, as the precursor, was synthesized in 30 ml of acetone by reacting $2.20 \mathrm{ml}(13.15 \mathrm{mmol})$ of TMPDA, $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{~N}_{2}$, and 2.16 ml (28.93 mmol) of 2-bromo-1-ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BrO}$, for 48 h at $60^{\circ} \mathrm{C}$ in a sealed flask. After removing the solvent, the white precipitation was washed by acetone and dried in vacuo (yield $71.6 \% ; 3.58 \mathrm{~g}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO, 250 MHz, p.p.m.): 2.08-2.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), $3.16\left(12 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.31\left(2 \mathrm{H}, \mathrm{s}, \mathbf{H}_{2} \mathrm{O}\right)$, 3.37-3.43 (4H, t, HO- $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\right), 3.48-3.52\left(4 H, \mathrm{t}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\right), 3.84(4 H, \mathrm{~s}, \mathrm{CH} 2-\mathrm{OH}), 5.29-5.33(2 H$, t , OH)
Second, the precursor salt and the dried $\mathrm{MnBr}_{2} 4 \mathrm{H}_{2} \mathrm{O}$ (molar ratio $\sim 1: 1.5$) were dissolved separately in minimum volume of warm methanol before combining the solutions. The title compound was synthesized in an open flask by metathesis reaction of the two aforementioned salts. The combined solution was stirred for about 1 h at $40^{\circ} \mathrm{C}$ after which it was slowly cooled to RT and methanol was allowed to evaporate slowly. After several days, purple crystals suitable for X-ray analysis were formed.

Refinement

Hydrogen atoms (except of a hydroxyl hydrogen atom that was taken from the electron density map) were calculated to their positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

Computing details

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: Mercury (Macrae et al. 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figure 1

Asymmetric unit and labeling scheme of the title compound. Ellipsoids are presented at the 50% probability level.

Figure 2
The one-dimensional linear chain with $(\mu-\mathrm{Br})_{2}$ bridges, $\mathrm{Mn} \cdots \mathrm{Mn}$ contact with a distance of 4.022 (1) \AA and hydrogen bonding scheme.

Figure 3
Undulated network formed by the L ligands connecting the alternating crossed $\mathrm{Mn}-(\mu-\mathrm{Br})_{2}-\mathrm{Mn}$ chains, viewed along $b-$ axis.

Figure 4
S-shaped conformation of the ligands (only ligand backbone showed) between the anti-parallel $\mathrm{Mn}-(\mu-\mathrm{Br})_{2}-\mathrm{Mn}$ slightly distorted octahedron chains.

Figure 5
The structure is stabilized by weak intermolecular interactions between Br 3 and nearby ligands.

Figure 6
Zigzag tilting of the adjacent $\mathrm{MnBr}_{5} \mathrm{O}$ octahedra.

Poly[$\left[\mu-N, N^{\prime}\right.$-bis(2-hydroxyethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethylpropane-1,3-diaminium- $\left.\kappa^{2} O: O^{\prime}\right]$ tetra- μ-bromidodibromidodimanganese(II)]

Crystal data

$\left[\mathrm{Mn}_{2} \mathrm{Br}_{6}\left(\mathrm{C}_{11} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=809.69$
Tetragonal, $P 4_{3} 2_{1} 2$
Hall symbol: P 4nw 2abw
$a=8.0163$ (4) \AA
$c=35.3103(18) \AA$
$V=2269.1(2) \AA^{3}$
$Z=4$
$F(000)=1536$

Data collection

Bruker-NoniusKappa APEXII diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 9 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.440, T_{\text {max }}=0.746$
$D_{\mathrm{x}}=2.370 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1871 reflections
$\theta=0.4-27.9^{\circ}$
$\mu=11.69 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
Block, violet
$0.25 \times 0.25 \times 0.20 \mathrm{~mm}$

5076 measured reflections
1966 independent reflections
1856 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-9 \rightarrow 9$
$k=-4 \rightarrow 9$
$l=-22 \rightarrow 41$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.047$
$S=1.02$
1966 reflections
111 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0 . P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.36$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.41 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983), 690 Friedel pairs
Flack parameter: 0.048 (14)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
C2	$0.8227(5)$	$0.8960(5)$	$0.15487(11)$	$0.0158(9)$	
H2A	0.8379	0.8507	0.1290	0.019^{*}	

H2B	0.7031	0.9236	0.1580	0.019^{*}
C3	$0.8705(5)$	$0.7633(5)$	$0.18350(10)$	$0.0143(9)$
H3A	0.8340	0.6538	0.1735	0.017^{*}
H3B	0.9937	0.7605	0.1853	0.017^{*}
C5	$0.6146(5)$	$0.7687(6)$	$0.22206(11)$	$0.0197(10)$
H5A	0.5825	0.6644	0.2095	0.030^{*}
H5B	0.5680	0.8634	0.2081	0.030^{*}
H5C	0.5713	0.7693	0.2480	0.030^{*}
C6	$0.8652(5)$	$0.6412(5)$	$0.24628(11)$	$0.0172(10)$
H6A	0.8250	0.6531	0.2724	0.026^{*}
H6B	0.9874	0.6423	0.2461	0.026^{*}
H6C	0.8250	0.5356	0.2357	0.026^{*}
C7	$0.8412(5)$	$0.9495(5)$	$0.24099(11)$	$0.0116(9)$
H7A	0.7764	0.9603	0.2647	0.014^{*}
H7B	0.8049	1.0396	0.2237	0.014^{*}
C8	$1.0268(5)$	$0.9732(5)$	0.2500	$0.0140(13)$
H8A	1.0594	0.9039	0.2720	0.017^{*}
H8B	1.0961	0.9406	0.2280	0.017^{*}
N4	$0.8013(4)$	$0.7825(4)$	$0.22294(9)$	$0.0130(8)$
O1	$0.9205(3)$	$1.0470(4)$	$0.15874(8)$	$0.0140(6)$
Br1	$0.61915(5)$	$1.32320(5)$	$0.175357(11)$	$0.01348(10)$
Br2	$1.13256(5)$	$1.39037(5)$	$0.167113(10)$	$0.01205(10)$
Br3	$0.8111(5)$	$1.55274(5)$	$0.090982(11)$	$0.01279(11)$
Mn1	$0.87136(8)$	$1.27065(7)$	$0.124710(17)$	$0.01152(14)$
H1	$1.010(3)$	$1.021(5)$	$0.1575(13)$	0.017^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C 2	$0.024(2)$	$0.0120(19)$	$0.011(2)$	$-0.004(2)$	$-0.003(2)$	$-0.0030(18)$
C 3	$0.021(2)$	$0.014(2)$	$0.009(2)$	$0.001(2)$	$0.0015(19)$	$0.0001(17)$
C 5	$0.013(2)$	$0.025(2)$	$0.021(2)$	$-0.001(2)$	$0.001(2)$	$-0.006(2)$
C 6	$0.023(2)$	$0.013(2)$	$0.015(2)$	$-0.0018(19)$	$-0.0049(19)$	$0.0016(18)$
C 7	$0.015(2)$	$0.0074(18)$	$0.012(2)$	$-0.0020(19)$	$-0.0027(18)$	$-0.0025(17)$
C 8	$0.0114(19)$	$0.0114(19)$	$0.019(3)$	$0.002(3)$	$0.0015(19)$	$0.0015(19)$
N 4	$0.0139(16)$	$0.0157(17)$	$0.0094(17)$	$0.0011(16)$	$-0.0017(14)$	$0.0004(15)$
O 1	$0.0105(14)$	$0.0137(14)$	$0.0178(15)$	$0.0010(13)$	$0.0016(14)$	$0.0026(14)$
Br 1	$0.01241(19)$	$0.0168(2)$	$0.01122(19)$	$-0.00105(19)$	$0.00124(18)$	$-0.00200(18)$
Br 2	$0.01210(19)$	$0.01371(19)$	$0.01035(19)$	$0.00068(18)$	$0.00073(16)$	$0.00004(17)$
Br 3	$0.01400(19)$	$0.01200(19)$	$0.0124(2)$	$-0.00096(19)$	$-0.00056(18)$	$0.00178(17)$
Mn1	$0.0117(3)$	$0.0115(3)$	$0.0113(3)$	$-0.0001(3)$	$0.0003(3)$	$0.0014(3)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 2-\mathrm{O} 1$	$1.449(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.533(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.517(5)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900	$\mathrm{C} 8-\mathrm{C} 7^{\mathrm{i}}$	$1.533(5)$
$\mathrm{C} 3-\mathrm{N} 4$	$1.507(4)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9900
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9900

C3-H3B	0.9900	O1-Mn1	2.194 (3)
C5-N4	1.501 (5)	O1-H1	0.748 (19)
C5-H5A	0.9800	$\mathrm{Br} 1-\mathrm{Mn} 1$	2.7319 (7)
C5-H5B	0.9800	$\mathrm{Br} 1-\mathrm{Mn} 1^{\text {ii }}$	2.7635 (7)
C5-H5C	0.9800	$\mathrm{Br} 2-\mathrm{Mn} 1{ }^{\text {iii }}$	2.7407 (7)
C6-N4	1.491 (5)	$\mathrm{Br} 2-\mathrm{Mn} 1$	2.7472 (8)
C6-H6A	0.9800	$\mathrm{Br} 3-\mathrm{Mn} 1$	2.6010 (7)
C6-H6B	0.9800	$\mathrm{Mn} 1-\mathrm{Br} 2^{\text {ii }}$	2.7407 (7)
C6-H6C	0.9800	$\mathrm{Mn} 1-\mathrm{Br} 1^{\text {iii }}$	2.7635 (7)
C7-N4	1.517 (5)		
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	112.7 (3)	C7- ${ }^{\text {i }} 8$ - H 8 A	110.4
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0	C7-C8-H8A	110.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0	C7- ${ }^{\text {i }} 8$ - H 8 B	110.4
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0	C7-C8-H8B	110.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0	H8A-C8-H8B	108.6
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.8	C6-N4-C5	107.3 (3)
$\mathrm{N} 4-\mathrm{C} 3-\mathrm{C} 2$	116.8 (3)	C6-N4-C3	107.9 (3)
N4-C3-H3A	108.1	C5-N4-C3	109.9 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.1	C6-N4-C7	111.4 (3)
N4-C3-H3B	108.1	C5-N4-C7	106.5 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.1	C3-N4-C7	113.6 (3)
H3A-C3-H3B	107.3	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Mn} 1$	122.3 (2)
N4-C5-H5A	109.5	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{H} 1$	106 (4)
N4-C5-H5B	109.5	$\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{H} 1$	112 (4)
H5A-C5-H5B	109.5	$\mathrm{Mn} 1-\mathrm{Br} 1-\mathrm{Mn} 1^{\text {ii }}$	94.082 (12)
$\mathrm{N} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5	$\mathrm{Mn} 1{ }^{\text {iii }}-\mathrm{Br} 2-\mathrm{Mn} 1$	94.254 (12)
H5A-C5-H5C	109.5	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Br} 3$	174.03 (8)
H5B-C5-H5C	109.5	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Br} 1$	84.28 (8)
N4-C6-H6A	109.5	$\mathrm{Br} 3-\mathrm{Mn} 1-\mathrm{Br} 1$	91.62 (2)
N4-C6-H6B	109.5	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Br} 2{ }^{\text {ii }}$	92.05 (8)
H6A-C6-H6B	109.5	$\mathrm{Br} 3-\mathrm{Mn} 1-\mathrm{Br}^{2 i}$	91.89 (2)
N4-C6-H6C	109.5	$\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{Br} 2^{\text {ii }}$	84.75 (2)
H6A-C6-H6C	109.5	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Br} 2$	81.38 (8)
H6B-C6-H6C	109.5	$\mathrm{Br} 3-\mathrm{Mn} 1-\mathrm{Br} 2$	95.01 (2)
N4-C7-C8	113.7 (3)	$\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{Br} 2$	98.83 (2)
N4-C7-H7A	108.8	$\mathrm{Br} 2{ }^{\text {ii }}-\mathrm{Mn} 1-\mathrm{Br} 2$	172.12 (3)
C8-C7-H7A	108.8	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Br} 1^{\text {iii }}$	89.94 (8)
N4-C7-H7B	108.8	$\mathrm{Br} 3-\mathrm{Mn} 1-\mathrm{Br} 1^{\text {iii }}$	94.43 (2)
C8-C7-H7B	108.8	$\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{Br} 1^{\text {iii }}$	173.07 (2)
H7A-C7-H7B	107.7	$\mathrm{Br} 2 \mathrm{ii}-\mathrm{Mn} 1-\mathrm{Br} 1^{1 i i}$	91.67 (2)
C7-C8-C7	106.5 (4)	$\mathrm{Br} 2-\mathrm{Mn} 1-\mathrm{Br} 1^{\text {iii }}$	84.03 (2)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4$	79.7 (4)	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Br} 2$	179.1 (3)
N4-C7-C8-C7 ${ }^{\text {i }}$	167.0 (4)	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Br} 1^{\text {iii }}$	-96.9 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 6$	-179.3 (3)	$\mathrm{Mn} 1{ }^{\mathrm{ii}}$ - $\mathrm{Br} 1-\mathrm{Mn1}-\mathrm{O} 1$	-105.44 (8)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 5$	64.0 (5)	$\mathrm{Mn} 1{ }^{\text {ii }}-\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{Br} 3$	78.92 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 7$	-55.2 (5)	$\mathrm{Mn} 1{ }^{\mathrm{ii}}-\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{Br} 2{ }^{\text {ii }}$	-12.838 (12)
C8-C7-N4-C6	54.1 (4)	$\mathrm{Mn} 1{ }^{\text {ii }}-\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{Br} 2$	174.24 (3)

supplementary materials

C8-C7-N4-C5	170.8 (3)	$\mathrm{Mn} 1{ }^{\text {iii }}$ - $\mathrm{Br} 2-\mathrm{Mn1}-\mathrm{O} 1$	78.06 (8)
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 4-\mathrm{C} 3$	-68.1 (4)	$\mathrm{Mn} 1^{\text {iii }}$ - $\mathrm{Br} 2-\mathrm{Mn} 1-\mathrm{Br} 3$	-106.73 (2)
C3-C2-O1-Mn1	-175.3 (2)	$\mathrm{Mn} 1^{\text {iii }}$ - $\mathrm{Br} 2-\mathrm{Mn} 1-\mathrm{Br} 1$	160.85 (3)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Br} 1$	79.3 (3)	$\mathrm{Mn} 1{ }^{\text {iii }}-\mathrm{Br} 2-\mathrm{Mn} 1-\mathrm{Br} 1^{\text {iii }}$	-12.785 (11)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Br} 2^{\text {ii }}$	-5.2 (3)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{iii}}$	$0.75(2)$	$2.49(2)$	$3.232(3)$	$175(5)$

Symmetry code: (iii) $x+1 / 2,-y+5 / 2,-z+1 / 4$.

