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C L I M A T O L O G Y

Skillful prediction of summer rainfall in the Tibetan 
Plateau on multiyear time scales
Shuai Hu1,2 and Tianjun Zhou1,2,3*

Skillful near-term climate predictions of rainfall over the Tibetan Plateau (TP), the Asian water tower, benefit billions 
of people. On the basis of the state-of-the-art decadal prediction models, we showed evidence that although the raw 
model outputs show low predicted ability for the summer Inner TP (ITP) rainfall due to low signal-to-noise ratios in 
models, we can produce realistic predictions by extracting the predictable signal from large ensemble predictions 
along with a postprocessing procedure of variance adjustment. The results indicate that the summer ITP rainfall 
is highly predictable on multiyear time scales. The predictability of ITP rainfall originates from the Silk Road pattern 
driven by sea surface temperature over the subpolar gyre region in North Atlantic. Real-time forecasts suggest 
that the ITP will become wetter, with 12.8% increase in rainfall during 2020–2027 relative to 1986–2005. Our results 
will help the water resources management in the surrounding regions.

INTRODUCTION
The Tibetan Plateau (TP), known as the “roof of the world” or the 
“3rd pole of the earth” (1, 2), has the most glaciers outside the Arctic 
and Antarctic (3). The meltwater feeds more than 10 prominent rivers, 
including the Yangtze River, the Yellow River, and the Ganges River, 
supplying water resource to more than 2.0 billion people, playing a 
role of “the Asian Water Tower” (Fig. 1A) (4). The enormous latent 
heating released from the precipitation along with the surface sensible 
heating makes the TP a heat source in boreal summer [June-July-
August (JJA)], subsequently influencing regional and even global 
climate, via interactions with the atmospheric circulations (5). A rapid 
warming has been witnessed in the TP in recent decades along 
with retreated glaciers and degraded permafrost (6), which thereby 
threatens water supplies to the surrounding regions (7). Hence, 
forecasting future climate change is imperative for the adaptation 
and mitigation planning in this ecologically vulnerable region.

The urgent need for the timely and effective near-term (2021–2040) 
climate information has been recognized by the government and 
scientists in recent decades (8, 9). Previous studies have provided 
the multidecadal to century-scale climate change projections based on 
the coupled general circulation models (CGCMs) from the Coupled 
Model Intercomparison Project (CMIP) along different pathways, 
which take account of the response to external radiative forcing, 
including the anthropogenic and natural factors (10). The CGCMs 
from CMIP5 have projected an increased temperature over TP by 
about 1.4° and 1.6°C in 2006–2050 under the Representative Con-
centration Pathway (RCP) RCP4.5 and RCP8.5 emission scenarios, 
respectively (11). The greatest warming is projected in winter, and 
the warming rates are amplified with elevation (12). Compared with 
the temperature, there is much uncertainty in the projections of the 
TP precipitation during the rainy season (JJA), changing with a range 
from −1.8 to 15.2% in 2016–2035 under the RCP4.5 (13). Neverthe-
less, beyond the long-term climate changes determined by external 
radiative forcing, near-term climate changes are affected by natural 

internal climate variability (14). For example, compared to the long-
term period (2081–2100), the near-term projection of TP summer 
rainfall under different emission scenarios is indistinguishable from 
each other because of internal variability (Fig. 1B). So far, how to 
narrow down the uncertainty in the near-term climate change pro-
jection remains an open question (15).

The near-term climate prediction (16) is a valuable tool to over-
come the defect of projection uncertainties. The near-term climate 
prediction, also referred to as decadal climate prediction, is an 
emerging research field in climate science in recent decades (17). 
Skillful decadal predictions can bridge the gap between the seasonal-
to-interannual predictions and long-term projections (18). Decision-
makers concerned with the climate adaptation and resilience could 
benefit greatly from the skillful decadal climate prediction. In general, 
both externally forced and internally generated climate variability 
contribute to decadal climate predictability (19). Decadal climate 
predictions can be enabled by initialized climate model simulations, 
which reproduce the historical externally forced variability by 
prescribing the external radiative forcing as in the historical climate 
simulations and forecast the internally generated components of 
the climate system by using data assimilation systems to preset the 
observed climate state at the beginning of the prediction. Initialized 
predictions have shown that the global mean surface air temperature 
(20) and the sea surface temperatures (SSTs) in the North Atlantic 
Ocean (21), the Indian Ocean (22), and the Southern Ocean (23) 
can be well predicted in the hindcasts or the retrospective forecast, 
while the confidence in precipitation predictions over most land 
regions is generally lower (24).

Precipitation changes in the TP can cause severe geological 
hazards (25). For instance, the Inner TP (ITP; also referred to as 
Qiang-tang Plateau), with the largest number of natural lakes, has 
experienced drastic lake expansion since the mid-1990s (26), in 
conjunction with a notable decadal variations of boreal summer 
precipitations (27). How the boreal summer ITP rainfall will change 
in the near future remains unknown. Here, on the basis of the 
decadal hindcast experiments from 10 state-of-the-art decadal 
prediction models of the CMIP6 Decadal Climate Prediction Project 
(DCPP) (28), we showed evidence that the summer ITP rainfall is 
highly predictable on multiyear time scales. The predictable signal 
is extracted from large ensemble predictions along with a post-
processing procedure of variance adjustment. Real-time forecasts 
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indicate that the ITP will experience a 12.8% increase in summer 
mean precipitation during 2020–2027 relative to 1986–2005.

RESULTS
Decadal prediction skill
To evaluate the decadal prediction skill for boreal summer TP rainfall, 
we use the Global Precipitation Climatology Centre (GPCC) monthly 
precipitation dataset as the observation, which is consistent with other 
frequently-used rainfall datasets with respect to the interdecadal vari-
ability (figs. S2 and S3). We calculate the anomaly correlation coefficient 
(ACC) skill score and the mean squared skill score (MSSS) (see 
Materials and Methods) for boreal summer rainfall for the predictions 

averaged over 2 to 9 years in DCPP multimodel ensemble predic-
tions. In total, 138 ensemble members from 10 decadal prediction 
models are used (table S2). We find significant ACC skills in the 
main body of the TP by using the 138-member ensemble mean pre-
diction (Fig. 2A). The ACC values are greater than 0.7 over the central 
TP, with the center located in the ITP. Hence, the ensemble mean 
prediction is able to capture the phase of decadal variability of the 
boreal summer ITP rainfall. We further estimate the relative contri-
butions of the initialized and uninitialized components to the overall 
ACC skill in the ensemble mean prediction (see Materials and 
Methods and fig. S4). For the average over the ITP, 86.7% (13.3%) of 
total skill is attributed to the uninitialized (initialized) components 
of the prediction, respectively (see Materials and Methods), implying 
that the external radiative forcing has great influence on the predictions.

Although high ACC skill is seen in 138-member ensemble mean 
prediction, the amplitude of the 138-member mean predictions is 
small, indicated by the low MSSS skill (Fig. 2C). The ACC skill 
calculated by the 10-member ensemble mean is lower (Fig. 2B), 
suggesting that a small ensemble has a limited ability to predict the 
phase of decadal variability. Both the evolutions of the actual climate 
system and the model prediction are composed of predictable 
(the signal) and unpredictable (the noise) components. The incon-
sistence between ACC and MSSS in the ensemble mean predictions 
and the requirement for a large ensemble to obtain higher ACC arise 
from the low signal-to-noise ratio in models compared with the 
observations. The disagreements in the signal-to-noise ratio between 
models and observations can be equivalently measured by the ratio 
of predictable components (RPCs) (see Materials and Methods). 
Ideally, the RPC should be one for perfect models. We find a higher-than-
expected RPC over the central TP, with values significantly greater 
than one (Fig. 2D). High values of RPC indicate that the models 
with low signal-to-noise ratio underestimate the predictability of the 
real world (29). The ensemble members contain much unpredictable 
noise and weak predictable signal (30, 31). Therefore, the ensemble 
mean predictions conducted by larger ensemble can effectively 
eliminate the noise component and extract the weak predictable 
signal. The ACC is not affected by the magnitude of the predict-
able signal, and the significant ACC arises from the ensemble mean 
predictions. In contrast, the MSSS skill, which measures the ampli-
tude of variability, is low because of the weak predictable signal. It is 
also evident that the spatial distribution of RPC is consistent with 
the regions that have added value of ACC skill with increased en-
semble sizes (Fig. 2, A and B), further demonstrating that large 
ensemble is needed to obtain a skillful prediction.

In summary, on the basis of the decadal hindcast experiments 
from 10 state-of-the-art decadal prediction models of the CMIP6 
DCPP, we show evidence that the models have lower signal-to-noise 
ratio compared with the observations for the prediction of the boreal 
summer rainfall over the central TP. As a result, the 138-member 
ensemble mean has a high ACC skill but a low MSSS skill, and the 
ACC skill increases with the ensemble size.

Prediction of ITP rainfall and variance adjustment
We focus on the prediction of summer rainfall in the ITP, where 
there exists the largest number of natural lakes over TP (32). We see 
skillful predictions in the ITP region (Fig. 2A). In the observations, 
the summer rainfall over ITP shows strong decadal variability, with 
a decrease from the 1960s to the 1990s and a rapid increase thereafter 
(Fig. 3A, black line).

Inner TP

Amu Dayra

Brahmaputra

Ganges

Hexi Corridor

Indus

Mekong

Qaidam

Salween

Tarim

Yangtze

Yellow

The Tibetan Plateau (TP)

Projections of the TP summer rainfall

A

B

Fig. 1. The TP and the CMIP6 multimodel ensemble projections of the TP summer 
precipitation. (A) The surface elevation of the TP (shaded; unit: m). Distribution of 
natural lakes (blue shades) and major rivers (light blue lines; including Yellow, 
Yangtze, Mekong, Salween, Brahmaputra, Ganges, Indus, and Amu Darya) on the 
TP are also shown. The TP is divided into 12 large river basins (26). (B) Time series of 
observations and CMIP6 multimodel ensemble projections of the summer precipi-
tation anomalies (unit: mm/day) over the TP relative to 1986–2005. The historical 
simulations (gray lines) during 1960–2014 and projections under SSP1-2.6 (green 
lines), SSP2-4.5 (blue lines), SSP3-7.0 (purple lines), and SSP5-8.5 (red lines) emission 
scenarios during 2015–2100 from 19 CMIP6 models (table S1) are used. The thick 
(dashed) lines represent the ensemble mean (individual ensemble) simulations, 
respectively. The observations were derived from Asian Precipitation-Highly Resolved 
Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) 
(black line), Global Precipitation Climatology Project (GPCP) (orange line), and 
Global Precipitation Climatology Centre (GPCC) (brown line). Both the observations 
and simulations are smoothed with a 9-year running average. The inset figure in (B) 
emphasizes the projections for the period of 2014–2040.
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We compare the time series of the ITP rainfall index derived 
from the raw model outputs to the observations (Fig. 3A, red line). 
The raw 138-member ensemble mean prediction has a high correla-
tion coefficient with the observation (ACC = 0.74, significant at the 
1% level), but the predicted magnitude is weaker than the observation 
because of the low signal-to-noise ratio in the models (RPC = 4.05). 
The total variability of the 8-year averaged ITP summer precipita-
tion in individual model members measured by SD is 0.07 to 
0.22 mm/day (5 to 95% range and 2- to 9-year prediction), which is 
not significantly different from the observations (0.14 mm/day). 
Hence, the variance of the predictable signal in the observations is 
about 15 times larger than that in the models. In this case, the models 
can provide better predictions for the real world than for the model 
itself (30). In the model’s predictions for the real world, the predic-
tion skills of the summer ITP rainfall gradually increase with the 
increasing ensemble size, with ACC reaching the saturation point at 
0.77 (Fig. 3D, red line), while the skills for the model in predicting 
one realization of the model itself are lower, and the saturation 
point of ACC is 0.19 (Fig. 3D, blue line). This contrasts the “perfect 
model” assumption that low skill is expected from the low signal-to-
noise ratio in models and thus is referred to as the “signal-to-noise 
ratio” paradox (31). By using large ensemble, we find a steady increase 
of skill along with increasing ensemble sizes for the forecast periods 
ranging from 1 to 4 years to 7 to 10 years (Fig. 3C).

To improve the prediction, we need to rescale the variance of the 
predictable signal and the unpredictable noise in the raw predictions. 
Here, we use the observations to adjust the raw predictions with a 
proper consideration of the influence of long-term linear trend (see 
Materials and Methods). After variance adjustment, the predictions 
are highly consistent with the observations, as evidenced by the 
ACC value increasing to 0.85 (significant at the 1% level). The pre-
diction reasonably captures the decrease from the 1960s to the 
1990s and the rapid increase in the late 1990s of the summer ITP 
rainfall (Fig. 3B).

In summary, we find that the signal-to-noise ratio for the predic-
tion of the summer ITP rainfall in models is low. The raw model 
outputs have a high ACC skill but a weak predicted magnitude. To 
produce realistic predictions, we extract the predictable signal using 
a large ensemble and apply a postprocessing procedure of variance 
adjustment. The results indicate that the summer ITP rainfall is 
highly predictable on multiyear time scales.

Sources of decadal predictability
What are the sources of TP rainfall decadal predictions? We examine 
the relationship between the 8-year running averaged summer SST 
anomalies (SSTAs) of the subpolar gyre (SPG) region in the North 
Atlantic (50° to 65°N; 60° to 10°W) (33) and the summer ITP rainfall 
in both the observation and the prediction (Fig. 3, E and F). In the 
observations, the SPG SSTA has a close relationship with the summer 
ITP rainfall, with the correlation coefficient reaching 0.87 (significant 
at the 1% level). In the predictions, the correlation coefficients 
between the predicted SPG SSTA and the predicted summer ITP 
rainfall range from −0.265 to 0.545 among the ensemble members, 
while the correlation in the ensemble mean prediction is 0.880 
(significant at the 1% level). A warmer (colder) SPG SSTA is favor-
able for increased (decreased) summer rainfall over the ITP on 
the interdecadal time scale both for the observations and decadal 
hindcasts. Hence, the decadal predictability of ITP rainfall originated 
from the North Atlantic.

To reveal the physical processes underpinning the decadal pre-
dictability of boreal summer ITP rainfall, we investigate the SSTA 
and atmospheric circulation anomalies associated with the variations 
of summer ITP rainfall in the upstream regions. The simultaneous 
regressions of 200-hPa eddy geopotential height (see Materials and 
Methods) show a zonal oriented wave structure over the mid-latitude 
Eurasian continent, and the wave activity fluxes (WAFs) for stationary 
Rossby waves propagate from the North Atlantic Ocean to the 
downstream East Asian regions along the upper-level jet stream 
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Fig. 2. Decadal prediction skill for 2- to 9-year forecast periods of the averaged summer rainfall over the TP. (A) ACC skill for 138-member ensemble mean prediction. 
(B) ACC skill for 10-member ensemble mean prediction (averaged over all possible combinations). (C) MSSS skill for 138-member ensemble mean prediction. Only the 
values higher than 0 are shown. (D) RPC calculated from 138-member predictions. The dots denote values passing the 95% confidence level (see Materials and Methods). 
The elevation of 2500 m is used as the outline of TP. The outline of the ITP is also shown.
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waveguides (Fig. 4A). We see a significant warming over the SPG 
region (Fig. 4B), indicating that the decadal change of ITP summer 
rainfall is linked to the Atlantic multidecadal variabilities (34).

To further demonstrate the key role of the SPG SSTA in driving 
the wave trains, we use the maximum covariance analysis (MCA) to 
extract the maximum coordinated variation of SSTA over the SPG 
region and the summer 200-hPa meridional wind anomalies over 
the mid-latitude regions over the Eurasian continent (see Materials 
and Methods). The leading MCA mode is highly consistent with the 
circulation anomalies related to the summer ITP rainfall, indicating 
that the SPG SSTA and the wave trains over the Eurasian are tightly 
coupled on the decadal time scale (fig. S5). The wave pattern over 
the Eurasian is the interdecadal Silk Road pattern (35–37), which is 
a typical teleconnection pattern in the summertime that encompasses 

several geographically fixed centers along the upper tropospheric 
subtropical jet over the Eurasian continent.

How does the interdecadal Silk Road pattern influence the summer 
ITP rainfall? Two possible mechanisms are suggested. The first is 
related to the Silk Road pattern–related anomalous upper troposphere 
anticyclone over northeast of the TP under the influence of the 
positive phase of the Atlantic multidecadal oscillation (38). The 
anomalous anticyclone can weaken the westerly winds in the lower 
levels, prevent the export of water vapor to the eastern boundary of 
the TP, and thus affect the summer ITP precipitation variability. The 
second mechanism emphasizes the role of the Silk Road pattern–
related upper troposphere anomalous cyclone to the west of the TP 
(27), which facilitates water vapor meridionally intruding from the 
Arabian Sea into the ITP and thus also influences the variations of the 
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Fig. 3. Decadal prediction for the summer ITP precipitation. (A) The 2- to 9-year ensemble mean predictions of the summer ITP precipitation (unit: mm/day) from 
decadal hindcasts (raw hindcast ensembles, red line), the quasi–real-time predictions (raw prediction ensembles, blue line), and the corresponding observations (black 
line). (B) Same as in (A), but after applying variance adjustment to the raw predictions. Cor noted in parentheses is the correlation coefficient between the observation 
and the predictions. Shading in (A and B) show the 5 to 95% uncertainty range. (C) Correlation of the predicted summer ITP rainfall with the observational reference along 
the forecast time for 4-year averages. The black dashed line represents the persistence predictions. The vertical segments denote 5 to 95% uncertainty range of all possible 
combinations. (D) Correlation as a function of ensemble size for model ensemble mean predictions of an independent ensemble member (blue line; averaged over all 
possible combinations) and for model ensemble mean predictions of the observations (red line). Shading shows the 5 to 95% confidence interval. Time series of the 
predictions and the observations in (C and D) are detrended. (E) Relationship between the 8-year running mean of the summer ITP rainfall and the summer subpolar gyre 
(SPG) SSTA in observations. (F) Same as in (E), but for the predicted 2- to 9-year summer SPG SSTA and the summer ITP rainfall from the decadal hindcasts. The COR noted 
in the top left in (E and F) is the correlation coefficient for the observations and ensemble mean predictions, respectively.
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summer ITP rainfall. Hence, both the upper troposphere anticyclone 
over the northeast of the TP and the cyclone over the west TP are the 
key circulation systems that dominate the influence of interdecadal 
Silk Road pattern on summer ITP rainfall.

The decadal variations of SPG SST and the interdecadal Silk 
Road pattern are well predicted in the ensemble mean of DCPP 
models, especially for the two-key upper troposphere circulation 
systems surrounding the TP (Fig. 4, E and F). Hence, we see a high 
prediction skill of the decadal variability of the upper troposphere 
winds over the TP (fig. S6), which leads to the skillful prediction of 
summer rainfall over the ITP. In addition, we find that the CMIP6 
historical simulations can also partly reproduce the decadal variation 
of the summer ITP rainfall after 1980 (fig. S7), which is related to 
the natural forcing in driving the decadal variations of SPG SSTA 
after 1980 (39). This implies that the external radiative forcing could 
play a role in the predictability of summer ITP rainfall through 
modulating the SPG SST. In summary, the decadal predictability 
of the SSTA over the SPG regions in the North Atlantic and the 

associated interdecadal changes of the Silk Road pattern are covarying 
with the skillful decadal predictions of the summer ITP rainfall.

Real-time forecasts
How will the ITP rainfall change in the coming decade? Real-time 
predictions help policy-makers in adopting timely and effective 
mitigation and adaptation activities (18). We analyzed the 2- to 
9-year mean forecast results of DCPP models with real-time forecast 
data available. In total, 60 ensemble prediction members are used 
(see Materials and Methods). We see a notable increase in rainfall 
over the large bodies of the TP in the near future (Fig. 5, A and B). 
The variance-adjusted forecast shows that the rainfall will increase 
in the central to the eastern TP but decrease in parts of the south-
western TP, with an amplitude of 0.10 to 0.30 mm/day. For the forecast 
of the summer rainfall over the ITP, the postprocessing procedure 
of variance adjustment can narrow down 41.8% uncertainties com-
pared to the raw forecasts (see Materials and Methods), with the 
optimum estimate of 0.27 mm/day (0.11 to 0.41 mm/day; 5 to 

Z200 & WAF SST & PREC
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Fig. 4. Mechanism for the decadal variability of ITP summer precipitation and sources of decadal predictability in DCPP. Regressions onto the 8-year running 
averaged summer ITP rainfall index for (A) the observed 200-hPa eddy geopotential height (shaded; unit: m) and WAF (vector; unit: m2·s−2) and (B) the observed SSTA 
(shaded; unit: °C) and land precipitation (shaded; unit: mm/day). (C and D) Same as in (A and B), but for the regressions of the 2- to 9-year averaged ensemble mean pre-
dictions onto the 2- to 9-year averaged ensemble mean predicted ITP summer precipitation index. The dots denote values passing the 95% confidence level (see Materials 
and Methods). (E and F). ACC skill for 2- to 9-year forecast periods of the averaged (E) 200-hPa eddy geopotential height and (F) SSTA and land precipitation. The dots 
denote values passing the 95% confidence level (see Materials and Methods).
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95% range) during 2020–2027 relative to 1986–2005 (Fig. 5, C and D), 
indicating a 12.8% increase in summer mean precipitation.

DISCUSSION
Numerous lakes in the interior ITP are affected by the decadal vari-
ability of summer ITP rainfall. For instance, marked lake shrinkages 
occurred on the ITP during the period of 1970–1990, but then, the 
lakes expanded significantly since the late 2000s, which play a vital 
role in regulating the water resources in the surrounding regions 
(26, 32). In addition, the hydroclimate responses of the TP lakes to 
rainfall have caused serial economical and environmental problems, 
such as desertification in the beach area and loss of grazing grassland, 
soil salinization and swamping (40), and transport infrastructure 
disruptions (41). Hence, a reliable climate prediction, especially 
several years ahead, is both crucial and urgent for the TP region. 
Our results will provide a useful reference to policy-makers for climate 
change adaptation and mitigation activities in these high-elevation 
regions that are sensitive to climate change.

MATERIALS AND METHODS
Observational data
The following observational and reanalysis datasets are used: (i) 
The Asian Precipitation-Highly Resolved Observational Data 
Integration Towards Evaluation of Water Resources (APHRODITE; 
1951–2015) (42), (ii) the GPCC monthly precipitation dataset (GPCC 
Precipitation 1.0 degree V2018 Full Reanalysis; 1891–2016) (43), 
(iii) the Global Precipitation Climatology Project (version 2.3; 
1979–2020) (44), (iv) the Japanese 55-year Reanalysis Project (JRA-55, 
1958–2017) (45), and (v) the Extended Reconstructed Sea Surface 
Temperature version-5 (ERSST v5, 1854–2017) (46).

Historical simulations and projections in CMIP6
We used monthly precipitation data from 19 CMIP6 models (table S1) 
for the projections of TP summer precipitation in Fig. 1B. Four 
realizations of projections under the Shared Socioeconomic Pathways 
(SSPs) SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 emission scenarios, 
respectively, and one realization of historical simulation are used 
for each model.

Decadal prediction experiments
The decadal prediction experiments used in this study are derived 
from the tier 1 set of experiments in the DCPP of CMIP6, with 138 
ensemble members started from October, November, or December 
every year over the period of 1960–2016. To investigate the added 
value of initialization, we also use the historical simulations of the 
corresponding models from the CMIP6, which are independent of 
the initial conditions, consisting of 207 ensemble members over the 
period of 1950–2014. The multimodel ensemble mean is calculated 
by the unweighted mean of all ensemble members. In addition, 6 of 
the 10 climate prediction models used in our studies (MIROC6, EC-
Earth3, NorCPM1, CMCC-CM2-SR5, HadGEM3-GC31-MM, and 
MPI-ESM1-2-HR) have real-time prediction results, with 60 ensem-
ble members started from 2018, which also provide us with an 
opportunity to investigate the future changes in TP climate states. 
The analysis of atmospheric circulations is based on 9 of the 10 models 
excluding CMCC-CM2-SR5 because the hindcast of the monthly 
circulation data in CMCC-CM2-SR5 is unavailable. More details of 
the experiment used in this study are shown in table S2.

Prediction skill
We used the ACC and the MSSS to evaluate the deterministic predic-
tion skill, that is, the ensemble mean prediction, which is an attempt to 
predict the most likely outcome and maximize the forecast skill (17).
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Fig. 5. The 2020–2027 averaged summer TP rainfall anomalies in real-time forecasts. (A and B) Spatial distributions of the 2020–2027 averaged summer precipitation 
anomalies (mm/day) from (A) decadal forecast from 2018 (averaged over raw forecast ensembles) and (B) decadal forecast from 2018 (averaged over variance-adjusted 
forecast ensembles). Regions with ACC < 0 are masked. (C and D) Probability distributions (%) of the ensembles for ITP summer precipitation anomalies from (C) raw 
forecast ensembles and (D) variance-adjusted forecast ensembles. The blue lines and numbers in (C and D) show the ensemble mean values, and the member sizes are 
also noted for each scenario. The precipitation anomalies are relative to the period of 1986–2005.



Hu and Zhou, Sci. Adv. 2021; 7 : eabf9395     9 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 10

The ACC and MSSS are defined as

	​ ACC  = ​  
​∑ i=1​ N  ​​(​f​ i​​ − ​   f ​ ) (​o​ i​​ − ​   o ​)

  ─────────────────   
​√ 

___________
 ​∑ i=1​ N  ​​ ​( ​f​ i​​ − ​   f ​)​​ 2​ ​ ​√ 

____________
  ​∑ i=1​ N  ​​ ​(​o​ i​​ − ​   o ​)​​ 2​ ​
 ​​	 (1)

	​ MSSS  =  1 − ​ 
​∑ i=1​ N  ​​ ​( ​f​ i​​ − ​o​ i​​)​​ 2​

  ─  
​∑ i=1​ N  ​​ ​(​o​ i​​ − ​   o ​)​​ 2​

 ​​	 (2)

where N is the number of hindcast start dates and fi and oi are the 
ensemble mean prediction and the corresponding observation at 
each hindcast start date; overbar represents the average over all 
hindcast start dates. The ACC measures the prediction skill of the 
phase of variability, and the MSSS measures the prediction skill of 
the amplitude of variability.

For the decadal predictions, the predicted anomalies are calcu-
lated with respect to the predicted climatology, which is calculated 
by using hindcasts starting each year from 1960 to 2016. By using 
the anomalies, the mean state biases of the prediction for each start 
month and lead time are approximately removed, which is equivalent 
to the empirical bias correction. To be consistent with the predic-
tions, the anomalies of the observed variables are calculated relative 
to the climatology of 1961–2016. The lead time of the prediction 
represents the time interval between the predictive target and the 
initial date. The 2- to 9-year averaged forecast of each start date is 
calculated by the rolling 8-year average of the forecast anomalies of 
2 to 9 years. Similarly, the 4-year mean forecasts of 1 to 4 years, 2 to 
5 years, 3 to 6 years, 4 to 7 years, 5 to 8 years, 6 to 9 years, and 7 to 
10 years are calculated by the rolling 4-year average of the forecast 
anomalies of the corresponding forecast years. The 8-year (4-year) 
running averages of the observations are used to verify the rolling 
8-year (4-year) averaged forecasts. Both observations and models are 
interpolated to 1.0° (longitude) × 1.0° (latitude) before comparison.

Contributions of initialized and uninitialized components 
to overall skill
A recently developed approach (19) is applied to investigate the rela-
tive contributions of the external radiative forcing and initialization 
to the overall decadal prediction skill of summer ITP rainfall. First, 
the time series of the observation (X), the decadal prediction (Y), 
and the historical simulation (U) are decomposed as

	​ X  = ​ ​ f​​ +  + x​	 (3)

	​​ Y​ A​​  =  {​Y​ k​​}= ​​ f​​ +  + {​y​ k​​}​	 (4)

	​​ U​ A​​  =  {​U​ k​​}= ​φ​ f​​ + {​u​ k​​}​	 (5)

where k represents the ensemble members; f, f, and φf represent 
the externally forced components;  and  represent the predictable 
internally generated components; and x, yk, and uk represent the 
unpredictable noise components. The assumption is that the f and 
φf are common across the ensemble members, while the yk and uk 
are independent and identically distributed across their respective 
ensembles. When taking averages over large ensembles, which are 
denoted by the curly braces, the yk and uk are approximately equal 
to zero. The YA and UA are the ensemble mean of decadal prediction 
and historical simulation, respectively.

The uninitialized (initialized) components of the prediction is 
Yu (Yi), respectively, which are

	​​ Y​ u​​  =   ​φ​ f​​​	 (6)

	​​ Y​ i​​  =  (​​ f​​ −  ​φ​ f​​ ) + ​	 (7)

where  is the scalar projection of f on φf, which is defined as

	​   =   ​r​ ​Y​ A​​​U​ A​​​​ ​ 
​​ ​Y​ A​​​​ ​​ ​U​ A​​​​ ─ 

​​​φ​ f​​​ 
2 ​

  ​​	 (8)

where YA, UA, and φf denote the SD of YA, UA, and φf, respectively; 
 = 0 if the covariance between f and φf is negative, else  = 1; and 
rYAUA is the correlation between the multimodel ensemble mean 
decadal predictions and the multimodel ensemble mean historical 
simulations.

The correlation skill can be decomposed as

	​​ r​ ​XY​ A​​​​  = ​ r​ ​XY​ u​​​​ ​ 
​​ ​Y​ u​​​​ ─ ​​ ​Y​ A​​​​ ​ + ​r​ ​XY​ i​​​​ ​ 

​​ ​Y​ i​​​​ ─ ​​ ​Y​ A​​​​ ​  = ​ r​ u​​ + ​r​ i​​​	 (9)

where YA, Yu, and Yi denote the variance of YA, Yu, and Yi, 
respectively; rXYA, rXYu, and rXYi are the correlation between the ob-
servation and ensemble mean decadal predictions, the external 
force, and the initialized components of the prediction, respectively; 
and ru and ri are the contributions of the initialized and uninitial-
ized components to rXYA. The percentage contributions of the 
initialized and uninitialized components to rXYA are calculated by 
​​​(​​ ​  ​r​ u​​ _ ​r​ ​XY​ A​​​​​​)​​ × 100%​​ and ​​​(​​ ​  ​r​ i​​ _ ​r​ ​XY​ A​​​​​​)​​ × 100%​​, respectively.

Ratio of predictable component
The RPC (29) is defined as

	​ RPC  = ​ √ 

_

 ​ 
​r​​XY​ A​​​ 

2 ​
 ─ 

​r​​Y​ (k)​​​Y​ k​​​ 2 ​
 ​ ​​	 (10)

where rXYA is the correlation between the multimodel ensemble 
mean prediction and the observation, rY(k)Yk is the correlation be-
tween the multimodel ensemble mean prediction and a single 
ensemble member, and the ensemble member is eliminated for the 
ensemble mean. The RPC is calculated by averaging over all possible 
combinations of ensemble members. For a perfect forecast system, 
the RPC should be equal to one. If RPC > 1, then the model can 
predict the real world better than itself (29, 47, 48), which is referred 
to as the signal-to-noise paradox (31, 47, 48).

Variance adjustment
A postprocessing procedure of variance adjustment (29, 30, 48, 49) 
is applied to make the amplitude of the predicted signal consist
ent with the observation. Unlike previous studies such as that of 
Eade et al. (29), where variance adjustment was based on the detrended 
time series, we keep the trend in the variance adjustment to realize 
the real-time forecast. Since the climate change signal can limit the 
effectiveness of adjustment if the climate change signal expresses as 
a long-term trend (see text S1), the components of long-term linear 
trend are considered in the method of variance adjustment used in 
this study.
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First, the time series of the observation and the decadal prediction 
are decomposed as

	​ X′= X − ​X​ trend​​​	 (11)

	​​ Y​ A​ ′ ​  = ​ Y​ A​​ − ​Y​ ​A​ trend​​​​​	 (12)

	​​ Y​ k​ ′ ​  = ​ Y​ k​​ − ​Y​ ​A​ trend​​​​​	 (13)

where X′, ​​Y​ A​ ′ ​​, and ​​Y​ k​ ′ ​​ represent the detrended value of observation, 
ensemble mean prediction, and ensemble member prediction and the 
long-term linear trend time series of the observation and the original 
hindcast ensemble mean are Xtrend and YAtrend, respectively.

The variance adjustment to the predictable components of the 
raw prediction is as follows

	​​  ̃  ​Y​ A​​​  = ​ Y​ A​ ′ ​ ⋅ ​ ​​ X′​​ R(X′, ​Y​ A​ ′ ​) ─ ​​ ​Y​ A​ ′ ​​​  ​ + ​Y​ ​A​ trend​​​​ ⋅ ​ 
​​ ​X​ trend​​​​ ─ ​​ ​Y​ ​A​ trend​​​​​​ ​​	 (14)

where ​​  ​Y​ A​​​​ is the adjusted hindcast ensemble mean value, X′ (​​​ ​Y​ A​ ′ ​​​​) is 
the SD of X′ and ​​Y​ A​ ′ ​​, ​R(X′, ​Y​ A​ ′ ​)​ is the correlation coefficient between 
X′ and ​​Y​ A​ ′ ​​, and Xtrend (YAtrend

) is the SD of the Xtrend and YAtrend.
The variance adjustment to the ensemble members’ variance 

about the adjusted ensemble mean is as follows

	​​  ̃  ​Y​ k​​​  = ​ Y​ k​ ′ ​ ⋅ ​ ​​ ​X ′ ​​​ ​√ 
______________

  [1 − ​R​​ 2​(​X ′ ​, ​Y​ A​ ′ ​ ) ] ​  ──────────── ​​ noi​​  ​ + ​ ̃  ​Y​ A​​​​	 (15)

where ​​  ​Y​ k​​​​ is the adjusted ensemble member value and noi is the SD 
of the noise, which is written as follows

	​​ ​ noi​​  =  variance(​Y​ k​ ′ ​ − ​Y​ A​ ′ ​ ) = variance(​Y​ k​​ − ​Y​ A​​)​	 (16)

For the real-time predictions, the uncertainty is defined as the 
range between the minimum and maximum values.

Eddy geopotential height
To verify the mid-latitude wave-like pattern more clearly, the eddy 
geopotential height anomalies (50) are shown in Fig. 4 and fig. S5, 
which are defined as the deviation of the height anomalies from the 
zonal mean.

Wave activity flux
We use the WAF (51) to measure the wave propagation. The WAF 
represents the horizontal propagation of the quasi-stationary Rossby 
waves. Its horizontal components in pressure coordinates are 
as follows

     ​​WAF  = ​ 
p
 ─ 2  ∣​   u​∣ ​​{​​​

​   u ​(​ψ′​x​ 2​ − ​ψ′ψ′​ xx​​ ) + ​   v ​(​ψ​ x​ ′ ​ ​ψ​ y​ ′ ​ − ​ψ′ψ′​ xy​​)
​   

​   u ​(​ψ​ x​ ′ ​ ​ψ​ y​ ′ ​ − ​ψ′ψ′​ xy​​ ) + ​   v ​(​ψ′​y​ 2​ − ​ψ′ψ′​ yy​​)
 ​​}​​​​	 (17)

Here, overbars and primes denote mean states and low pass–
filtered anomalies, respectively. The quantity ​∣​   u​∣​ denotes the mag-
nitude of the climatological wind. u and v represent the zonal and 
meridional wind, respectively.  is the stream function, and p is the 
normalized pressure (pressure/1000 hPa). The subscripts x and y 
represent the zonal and meridional gradients, respectively.

Maximum covariance analysis
The Silk Road pattern can be defined as the first empirical orthogonal 
function mode of the summer mean 200-hPa meridional wind over 
the Eurasian continent (52). To extract the coordinated interdecadal 
variation of SSTA over the SPG region and the atmospheric distur-
bances over the downstream regions, we use the MCA (53, 54) to 
the SSTA over the SPG region (50° to 65°N, 60° to 10°W; Fig. 4D, 
blue box) and the summer 200-hPa meridional wind anomalies over 
the mid-latitude regions of Eurasia (20° to 70°N, 50°W to 100°E; 
Fig. 4C, blue box). For the first MCA mode in the observation, the 
value of squared covariance fraction is 86%, and the correlation 
coefficient between two expansion coefficients of the first MCA is 
0.89, indicating that the SSTAs over SPG region and Silk Road 
pattern are tightly coupled on the interdecadal time scale.

Statistical analysis
The significance levels of the skill (ACC or MSSS) and RPC are tested 
by a nonparametric bootstrap approach (30, 33, 55), as shown in 
Figs. 2 and 4 (E and F). For uncertainties of the values, a finite 
ensemble size (E) and a finite number of validation points (N) are 
taken into account. The detailed steps are as follows:

1) Randomly sample with replacement N validation cases. To take 
autocorrelation into account, every five consecutive years of the 
observations and predictions are composed as a block to conduct 
resampling and replacement.

2) For each case, randomly sample with replacement E ensemble 
members.

3) Compute the statistic for the ensemble mean (e.g., ACC, 
MSSS, or RPC).

4) Repeat (1) to (3) 1000 times to create a probability distribution.
5) Obtain the significance level based on a two-tailed test of the 

hypothesis that skill (ACC or MSSS) is zero or RPC is one.
For skill as a function of ensemble size, we randomly sample 

without replacement to obtain the required number of ensemble 
members and compute the average for all possible combinations. 
Uncertainties in Fig. 3D are computed on the basis of single mem-
bers because the samples are not independent for larger ensembles. 
To test the significance of regression analysis, Student’s t test was 
used in Fig. 4 and fig.S5.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/24/eabf9395/DC1
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