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Abstract

Cytolytic T-cells play an essential role in the adaptive immune system by seeking out, binding and killing cells that present
foreign antigens on their surface. An improved understanding of T-cell immunity will greatly aid in the development of new
cancer immunotherapies and vaccines for life-threatening pathogens. Central to the design of such targeted therapies are
computational methods to predict non-native peptides to elicit a T-cell response, however, we currently lack accurate
immunogenicity inference methods. Another challenge is the ability to accurately simulate immunogenic peptides for
specific human leukocyte antigen alleles, for both synthetic biological applications, and to augment real training datasets.
Here, we propose a beta-binomial distribution approach to derive peptide immunogenic potential from sequence alone. We
conducted systematic benchmarking of five traditional machine learning (ElasticNet, K-nearest neighbors, support vector
machine, Random Forest and AdaBoost) and three deep learning models (convolutional neural network (CNN), Residual Net
and graph neural network) using three independent prior validated immunogenic peptide collections (dengue virus, cancer
neoantigen and SARS-CoV-2). We chose the CNN as the best prediction model, based on its adaptivity for small and large
datasets and performance relative to existing methods. In addition to outperforming two highly used immunogenicity
prediction algorithms, DeepImmuno-CNN correctly predicts which residues are most important for T-cell antigen
recognition and predicts novel impacts of SARS-CoV-2 variants. Our independent generative adversarial network (GAN)
approach, DeepImmuno-GAN, was further able to accurately simulate immunogenic peptides with physicochemical
properties and immunogenicity predictions similar to that of real antigens. We provide DeepImmuno-CNN as source code
and an easy-to-use web interface.
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INTRODUCTION

Immunotherapy has emerged as a promising strategy to
combat cancer by ‘reprogramming’ a patient’s own immune
system. Effective targeted immunotherapies require accurately
predicting which cancer-specific neo-peptides are most likely
to elicit an immune response. Similar strategies are currently
being designed to target antigens commonly produced by
serious pathogens, such as the SARS-CoV-2 (COVID-19) virus
[1]. Human leukocyte antigens (HLAs) are a polymorphic class
of proteins on the cell surface of all human nucleated cells
that present foreign antigens to T-cell receptors (TCRs). The
process of antigen recognition is the cornerstone of the adaptive
immune system. HLA proteins are encoded by the major
histocompatibility complex (MHC) genes in humans. Predicting
the immunogenicity of MHC-I bound peptides is crucial for
understanding the molecular rules governing T cell-directed
adaptive immunity and creating precision cancer- or pathogen-
targeted vaccines. Cellular antigen recognition is governed by a
series of carefully orchestrated molecular interactions between
cell surface-presented antigens and T cells of the immune
system. MHC-I proteins are responsible for the presentation
of short peptides on the cell surface and mediating interactions
with TCRs on CD8+ T cells. A T cell-specific immune response
will be triggered if a peptide is capable of binding with a cognate
MHC molecule, and the resultant peptide–MHC complex can
further interact with selected TCR sequences. Peptides that
meet these criteria are referred to as immunogenic peptides. The
exposure of ‘foreign’ signals triggers immunoreceptor tyrosine-
based activation motifs on the T cell to be phosphorated and
activates an immune response [2]. The process ultimately results
in targeted cell death of the antigen-expressing cell by the
CD8+ T cell. Hence, the identification of immunogenic epitopes
that can trigger T-cell responses is central to developing new
cancer immunotherapies and vaccines. Because thousands of
potential disease-associated antigens can be presented in innate
or foreign cells [3], it is necessary to prioritize which candidates
are most likely to induce a T-cell response prior to experimental
validation.

The accurate prediction of immunogenicity requires knowl-
edge of (i) which peptides are likely to bind MHC and (ii)
which peptide–MHC pairs will activate an immune response.
A plethora of HLA-peptide binding prediction tools has been
developed to predict which peptides will bind to specific cognate
HLA alleles (donor-specific). However, MHC-binding prediction
alone is insufficient to infer immunogenicity as such tools do
not model which peptides will trigger a T-cell response [2, 4–
6]. To fill the gap and complement the current MHC-binding
prediction tools, in silico methods have been developed to predict
antigen immunogenicity. POPI [7] was developed as the first
automated computational immunogenicity prediction tool. POPI
used a selected subset of physicochemical features identified
by a bi-objective algorithm for support vector machine (SVM)-
based classification. An updated version POPISK [8] further
considers MHC binding properties to improve its prediction
ability. PAAQD [9] was later developed to consider amino acid
pairwise contact potential and quantum topological molecular
similarity for feature selection. Subsequently, a machine
learning-based immunogenicity predictor NeoPepsee [10] was
developed that integrated 14 independent features to infer
peptide immunogenicity. These initial methods paved the way
for more advanced algorithms; however, the applicability of
such methods has historically been challenging due to small
training datasets and limited consideration of HLA alleles.
A significant advance in the field came with the introduction

of the immune epitope database (IEDB) and associated immuno-
genicity prediction tools [5]. This invaluable resource continues
to systematically characterize the biochemical properties of
over 30 000 MHC-I-bound immunogenic peptides. IEDB further
includes a suite of algorithms to predict binding affinity and
immunogenicity, including a position-weighted calculated
schema by considering Kullback–Leibler divergence and amino
acid preference (default method). More recently, algorithms with
improved reported accuracy have been described, including
a Random Forest-based approach called INeo-Epp [11], which
uses a customized immunogenic score, and the recurrent
neural network-based deep learning approach DeepHLApan [12].
While promising, a potential limitation of these approaches is
that the prediction of immunogenic epitopes is treated as a
binary classification problem using predefined hard cutoffs, in
which each peptide–MHC pair will be considered immunogenic
or non-immunogenic, even though the immunogenicity of a
certain peptide–MHC will vary substantially depending on the
subject’s immune profile and TCR repertoire [2]. Further, while
DeepHLApan [12] applies a well-rationalized deep learning
approach, its encoding of the amino acid sequence does not
incorporate physicochemical or other amino acid parameters
(one-hot encoding). As a result, the outputs from these methods
might not fully reflect the ability of the peptide–MHC to trigger
a T-cell response.

A secondary, but important challenge in the field of immuno-
genicity prediction, is to learn the rules that govern which pep-
tides are immunogenic and why. Understanding these rules
could be used to develop improved prediction models or produce
large synthetic datasets for training more accurate predictive
models or conversely identify peptides with a low likelihood
of inducing an immune response in engineered genomes. Deep
generative models [13] are a newly emerging area in artificial
intelligence that can be applied to diverse research problems. In
effect, such methods allow for the creation of accurate synthetic
models from limited existing training data. Such methods take
random noise to create new datasets that reflects the original
training data and that contains unique informative features.
Generative adversarial networks (GANs) are widely used in com-
puter vision [14] and synthetic biology [15] to generate new
images or sequences of interest (i.e. antimicrobial peptides)
but have not previously used to produce synthetic models of
immunogenic peptides.

To overcome the aforementioned limitations, we propose a
new convolutional neural network (CNN) [16] approach called
DeepImmuno-CNN. Rather than predict MHC–peptide interac-
tions, this tool predicts immunogenicity of MHC–peptide pairs.
During the training, a beta-binomial probabilistic model is fitted
to the training dataset to derive a continuous immunogenic
score. Unlike other immunogenicity prediction methods, this
score differentially weights each peptide–MHC complex in the
model based on the strength of available experimental immuno-
genicity evidence in our training dataset (high confidence or low
confidence). Each amino acid sequence is additionally encoded
using a reduced principal component analysis (PCA) feature
space of 566 well-curated amino acid physicochemical features
from the AAindex1 database [17] to overcome sparsity issues
related to one-hot encoding [18]. Diverse machine learning and
deep learning approaches exist, which have potential strengths
and weaknesses for this problem (e.g. performance, accuracy,
flexibility to dataset size). To ensure the rigor of this approach,
we performed a systematic comparison of five traditional
machine learning algorithms [ElasticNet, K-nearest neighbors
(KNN), SVM, Random Forest and AdaBoost] and three deep
learning models [CNN, graph neural network (GNN), Residual
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Net (ResNet)]. This benchmarking further supports the use of
a CNN for this problem. In addition, an evaluation of different
encoding schemas confirms that our AAindex1 PCA encoding
strategy provides excellent performance relative to alternative
methods. When benchmarked against two state-of-the-art
workflows for immunogenicity prediction (DeepHLApan and
IEDB), DeepImmuno-CNN was able to significantly increase
both precision and recall for different HLA genotypes using
diverse real-world testing datasets (dengue, cancer neoantigen
and SARS-CoV-2). To further explore the dependent peptide
features for immunogenicity prediction, we developed a GAN
model [15, 19], which mimics the salient features of validated
immunogenic peptides. These data support the hypothesis that
immunogenic peptides are learnable as a possible future source
for high-quality synthetic training data.

METHODS
Datasets

For initial training and validation, we analyzed >9000 tested
immunogenicity molecular assays from the Immune Epitope
Database, IEDB database (13 August 2020). We restricted this
dataset to peptides with metadata that matched the follow-
ing keywords: (i) linear epitope, (ii) T-cell assay, (iii) MHC class
I, (iv) human and (v) any disease. To only consider informa-
tive predictions, we applied a rigorous data cleaning strategy.
First, data instances without explicit 4-digit MHC alleles were
discarded. Second, all redundant peptide–MHC allele instances
were discarded (the same peptide with different HLA alleles
were considered different instances). Third, all negative pep-
tides, without explicit experimental information (number of
subjects tested, number of subjects responded) or with less than
four tested subjects were removed (likely not informative at a
human population level). Fourth, peptides of lengths 9 and 10
were retained for training. 9-mer and 10-mer peptides cover
97.5% of all data instances and are also the dominant length for
MHCI-bound peptides [20]. Finally, we separated out 408 dengue
virus positive instances from Weiskopf et al. [21] for the purpose
of initial validation of different prediction methods. Specifically,
8971 data instances were retained in the final dataset, among
which 4059 were positive reactive instances and the remaining
4912 were negative. We used 10-fold cross-validation for initial
benchmarking to avoid overfitting, in which we split the datasets
into 10 rotating subsets—9 for training and 1 for validation in
each run. At the end of cross-validation, the scores for each
evaluation metric were averaged over the 10 testing subsets
as the model’s performance. We selected two independent test
datasets for further evaluation: (i) 608 experimentally tested
tumor-specific neoantigens from the Tumor Neoantigen Selec-
tion Alliance (TESLA) [22] and (ii) 100 SARS-CoV-2 peptides [1, 22]
tested for their immunogenicity in convalescent and unexposed
subjects, respectively. The detailed descriptions for each valida-
tion dataset and the experiments used for generating them are
shown in Supplementary Table S3 available online at https://aca
demic.oup.com/bib.

Additional algorithm, evaluation and website development
details are provided in Supplemental Methods available online
at https://academic.oup.com/bib.

RESULTS
DeepImmuno-CNN was developed with the primary objective
of improving immunogenicity predictions, separate from MHC

binding, for relevant disease antigens identified from diverse
upstream approaches. To this end, we set out to systemati-
cally evaluate existing as well as potential machine and deep
learning strategies. This benchmarking was performed on mul-
tiple recently described high-quality experimentally validated
immunogenic peptides, after carefully excluding low-confidence
experimental results (Methods).

Evaluation criteria

We used different evaluation metrics depending on the charac-
teristics of each testing dataset. For the tumor neoantigen test
dataset, we considered a restricted dataset of the (i) top 20 or (ii)
top 50 immunogenic peptides predicted by each algorithm or (iii)
overall sensitivity. The top 20 or 50 immunogenic peptides were
purposely selected as these are the same number of peptides
considered in prior reports [22]. For the sensitivity analysis, a
threshold of 0.5 was used for DeepImmuno-CNN and DeepHLA-
pan and a threshold of 0 for the IEDB default classification
algorithm, which has a distinct scoring range. Since an absolute
threshold is not used for DeepImmuno-CNN, which outputs a
score based on the trained binomial distribution, this threshold
was only used for comparative benchmarking purposes. It is
worth noting that we do not consider specificity in the validated
neoantigen dataset because each peptide has only been tested in
a single cancer patient and hence it is highly likely that a certain
peptide can be immunogenic in a larger population with more
diverse TCR repertoires.

For antigens from a recent COVID-19 study, we considered
recall and precision as the primary criteria due to a much higher
number of observed negative versus positive immunogenic anti-
gens (imbalanced). For initial evaluation, we used 10-fold cross-
validation to assess the effectiveness of DeepImmuno-CNN. In
each iteration, the area under the receiver operating character-
istic curve (auROC) and area under the precision-recall curve
(auPR) were computed to compare performance at different
selected cutoffs. auPR is more informative than auROC in an
imbalanced scenario due to the incorrect interpretation of speci-
ficity [23]. For the five evaluated machine learning algorithms,
we tuned the major hyperparameters based on 10-fold cross-
validation with root mean square error (RMSE) as the evaluation
criterion.

Comparison of immunogenicity prediction models

To account for the variable immunogenic potential for each eval-
uated peptide, we fitted a beta-binomial probabilistic model in
the training dataset to derive a continuous immunogenic score
(Figure 1A and B and Methods). For instance, the peptide RPID-
DPFGL for the HLA allele HLA-B∗0702 was tested in 40 subjects
and triggered a T-cell response in all 40 subjects, whereas the
peptide KTWGQYWQV in conjunction with HLA-A∗0201 elicited
a T-cell response in only 1 out of 6 subjects, even though both
are ‘immunogenic’. While this score does not reflect the gen-
uine biochemical immunogenicity strength, it does reflect the
statistical confidence in our model based on the relative experi-
mental evidence in our training dataset. Additionally, it does not
consider MHC binding, as the training dataset is biased towards
already predicted MHC-bound peptides. Given that significant
biases exist in the training data, in terms of how many times
a peptide was tested in different contexts or with different
assays, increased modeling confidence will exist for peptides
most similar to those with high-quality data during training.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 1. The DeepImmuno model. (A, B) In DeepImmuno, to assess the probability that a given antigen is immunogenic, variable peptide immunogenic potential is

computed by sampling from a posterior beta distribution of well-defined true-positive and true-negative immunogenic antigens to produce a continuous immunogenic

score. The posterior distribution is derived using a subset of T-cell immunogenic assay results from the Immune Epitope Database (binomial) and a prior beta distribution

of either (A) negative or (B) positive assay results. (C) The DeepImmuno-CNN architecture is shown to predict immunogenicity for each peptide–MHC complex. In this

model, each peptide–MHC pair is subjected to two consecutive convolutional layers, followed by two fully connected dense layers to output a predictive value for each

pair. (D) The DeepImmuno-GAN architecture is depicted for simulating immunogenic peptide sequences using only random sequences as an input. The GAN model

is composed of a generator and a discriminator. This learning generator produces pseudo-sequences to artificially convince the discriminator that the immunogenic

sequences are real, while the discriminator uses real peptide sequences along with generated pseudo-sequences to distinguish the difference.

To select the best predictive model, we constructed five
traditional machine learning regressors (ElasticNet, KNN, SVM,
Random Forest and AdaBoost) and critical hyperparameters
were tuned via cross-validation (Supplemental Methods avail-
able online at https://academic.oup.com/bib). In addition, we
explored the potential of three deep learning models (CNN,
ResNet and GNN). We systematically gauged their performance
in three testing datasets (dengue virus [21], tumor neoantigens
[22] and SARS-CoV-2 [1]) (Supplementary Table S2 available
online at https://academic.oup.com/bib). The Random Forest-
based regressor had a slightly better RMSE in the nested 10-
fold validation than other models, and AdaBoost regression
performed the best in the dengue virus dataset with average
accuracy = 0.91. However, the CNN model achieved superior
performance in the neoantigen dataset, where it predicted
2.9 and 5.9 immunogenic epitopes on average in its top 20
and top 50 predictions, respectively. All the models achieved
similar results on the SARS-CoV-2 dataset with an average
recall of around 0.72 in convalescent patients and 0.81 in the
unexposed groups. Given that it is able to mimic the interaction
between peptide and MHC, we designed a graph CNN model;
however, it suffered from ‘shortcut learning’ [24] such that all
the predictive values are around 0.5, in order to achieve a lower
loss during the training stage. This can be attributed to the
fact that the explicit weight assignments in the graph may
not entirely reflect the real peptide–MHC interactions, which
in turn can lead to ambiguous results. To explore whether
increasing the complexity of the neural network architecture
can boost performance, we constructed a ResNet model, with
12 layers and skip connections. As ResNet did not increase
the performance and had inferior results in eight out of nine
evaluation criteria across three testing datasets, we surmise

that a more complex model is not required. Considering its
performance overall and in human disease datasets, adaptability
to training datasets of variable size and the complexity of the
model, we chose CNN as the optimal prediction model for further
analysis, which we call hereafter DeepImmuno-CNN. As a final
consideration, we attempted to validate our proposed amino
acid encoding strategy, which considers both indices derived
from amino acid physicochemical properties (AAindex) and
HLA allotype information (paratopes). While the use of these
algorithms did not result in significant performance boosts with
neural network-based approaches over alternative strategies,
our selected encoding methods did not decrease performance
and did offer a performance boost for specific machine learning
methods (Random Forest) for specific test datasets, suggesting
its benefits may be situation-dependent (Supplementary Table
S2 and Supplementary Figure S3 available online at https://aca
demic.oup.com/bib).

To validate the effectiveness of the DeepImmuno-CNN
model, we conducted 10-fold cross-validation in the IEDB
dataset, on its own (Figure 2A and B). As noted above, an absolute
threshold is required (0.5) for certain tested algorithms to predict
if a peptide is immunogenic or non-immunogenic. We found
DeepImmuno-CNN to be highly stable with a high average
auROC (0.85) and auPR (0.81) for each fold. We next compared
the performance of this CNN model relative to other prior
described immunogenicity prediction methods, specifically
DeepHLApan and IEDB (default algorithm), as these methods are
well validated and have easy-to-use interfaces. When evaluated
in the tumor neoantigen dataset, DeepImmuno-CNN found
an impressive 29 out of 35 (83%) immunogenic neoantigens,
relative to IEDB which found 63%, and DeepHLApan which only
found (34%) out of a total of 608 antigens experimentally tested

https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 2. DeepImmuno-CNN produces stable predictions and outperforms existing methods. The (A) ROC curve and (B) precision-recall curve of only DeepImmuno-

CNN on 10-fold validation of the IEDB training dataset. Here, 0.5 is used as the threshold to discriminate between positive and negative instances. (C) Comparison of

immunogenicity predictions from an experimentally validated tumor neoantigen dataset (608 tested), with the number of true-positive predictions overlapping with

each algorithm’s top 20 or top 50 predictions (left), or the sensitivity of each algorithm using a 0.5 scoring threshold (right). (D) In the COVID-19 study, recall (left) and

precision (right) of each algorithm in convalescent COVID-19 patients and the unexposed individuals using a 0.5 scoring threshold.

(Figure 2C). For the same neoantigen dataset, DeepImmuno-
CNN predicts 4 in the top 20 and 8 in the top 50 neoantigens,
while IEDB performed relatively poorly (1 in the top 20 and 4 in
the top 50), with DeepHLApan producing intermediate results
(Figure 2C). To compare these results to random, we shuffled
the labels during training and found that all nine evaluated
metrics performed lower with these prediction algorithms
(Supplementary Figure S4 available online at https://academi
c.oup.com/bib).

We further evaluated DeepImmuno-CNN using a recently
published COVID-19 study, where immunogenic peptides were
validated from two groups of subjects. Convalescent patients
have already been infected by SARS-CoV-2 and are in the process
of recovering, while unexposed patients have not been infected.
In both convalescent and unexposed groups, DeepImmuno-CNN
achieved the highest sensitivity (68% in convalescent, 88% in
unexposed) compared to IEDB (52% in convalescent, 38% in
unexposed) and DeepHLApan (40% in convalescent, 14% in unex-
posed) (Figure 2D). DeepImmuno-CNN also achieved the highest
precision (0.28 in convalescent, 0.11 in unexposed), with an
overall low precision due partially to the fact that COVID-19
patients are a highly selective group and their unique immune

profile might not be representative of the whole population. To
determine if increasing the training time improves overall per-
formance, we further tested epochs beyond the original default
upper limit (64, 100, 150). While all models produce consistent
results in the datasets tested (Supplementary Figure S4 available
online at https://academic.oup.com/bib), increasing the training
time reduced the false-positive and false-negative rates when
running DeepImmuno-CNN on the entire IEDB training dataset
(Supplementary Figure S4 available online at https://academi
c.oup.com/bib). Hence, we use an epoch of 150 as the revised
DeepImmuno-CNN default to minimize underfitting observed at
lower epochs.

We next looked for potential immunodominant regions in the
SARS-CoV-2 proteome, which can be exploited for T-cell vaccine
development. Our results suggest that both 9-mers and 10-mers
do not predict immunodominant regions in general (Supple-
mentary Figure S5 available online at https://academic.oup.co
m/bib). To understand how evolving mutations in SARS-CoV-2
may enhance viral transmission, we compared DeepImmuno-
CNN predictions in these variants [25–27]. Our analysis finds
that while CD8+ T-cell immunogenicity is position- and HLA-
dependent for D614G and E484K, the N501Y mutation shows

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 3. Identification of salient immunogenic features of peptide–TCR interactions. (A) Schematic overview of the occlusion sensitivity technique to determine the

relative contribution of each antigen residue for the DeepImmuno-CNN model predictive score. (B) Ascending importance rank of each position, with the position with

the largest performance drop receiving the highest ranking across 100 simulations. Dot size corresponds to the frequencies of each position assigned the denoted rank,

with different colors indicating different amino acid positions. (C) Performance decrease for the occlusion of P4 + P5 with occlusion of P3 + P1. One-sided Mann–Whitney

U test P-value (P = 7.94e−209).

a widespread increase in immunogenicity (Supplementary
Figure S6 available online at https://academic.oup.com/bib).
These findings present new possible avenues for T cell-based
vaccine approaches for emerging SARS-CoV-2 variants.

DeepImmuno-CNN reveals salient positions interacting
with the TCR

To understand the molecular underpinnings of DeepImmuno-
CNN’s predictions, we examined the dependency of this model
on each residue position using occlusion sensitivity. The largest
decrease in performance corresponds to the most important
position across the peptide as shown in a saliency heatmap
(Figure 3A). The saliency of positions can be attributed to
both peptide–HLA interaction and peptide–TCR interaction. We
simulated this process 100 times and an ascending ranking was
performed each time to highlight the most salient positions,
as shown in (Figure 3B). This analysis reveals that amino acid
positions P4 (residue 4), P5 and P6 are consistently the most
dependent positions, followed by P2, P8 and P9. Occlusion of
the first and second most dependent positions (P4 and P5)
compared to the least (P3 and P1) resulted in a significant
performance drop of every single positive instance (One-sided
Mann–Whitney U test, P-value = 7.9e−209; Figure 3C). These
results support prior structural prediction studies, which show
that P4–6 interacts with the TCR with the greatest frequency
[28, 29], whereas P2 and P9 serve as anchor points for binding of
the peptide–MHC complex [5] and mirrors other computational
predictions [8].

To assess the rules governing T-cell immunogenicity for dif-
ferent HLA alleles, we next evaluated MHC allele dependence
on specific amino acid preferences. To perform this analysis, we
collected all immunogenic peptides bound with each allele and
derived a motif matrix based on the inferred position importance
weight in the model (Supplemental Methods and Supplemen-
tary Figure S7 available online at https://academic.oup.com/bib).
For example, when examining the allele HLA-A∗0201, we find
leucine is the most abundant amino acid in position 2 from
the model, which is consistent with prior structural evidence
[30]. Similarly, Hu et al. [31] found that positions 2 and 9 were
predicted to act as anchor points for interactions with this
specific HLA allele. Our motif matrix additionally suggests that
positions 4 and 5 interact with the TCR on the other side. We

conducted the same analysis on three other HLA alleles (HLA-
A∗2402, HLA-B∗0702 and HLA-B∗0801). These alleles were cho-
sen because the number of associated immunogenic peptides
bound to these three alleles is greater than 150, suggesting that
the immunogenic motif matrix for these alleles is stable. As
expected, position 4 also shows a stronger pattern across these
three alleles, compared to other positions, supporting a similar
model of HLA–TCR interactions.

DeepImmuno-GAN accurately mimics immunogenic
peptide sequences

To better understand the molecular interactions and biochem-
ical properties of T-cell immunogenicity, we attempted to
generate de novo immunogenic peptides using a GAN-based
approach. Successful creation of such peptides would indicate
that immunogenic sequence motifs are learnable, potentially
paving the way for direct synthesis and optimization of pep-
tides for diverse applications (e.g. enhanced immunogenicity,
non-reactive peptides) [32].

As a proof-of-concept, we collected all immunogenic pep-
tides known to bind to HLA-A∗0201 (the most abundant allele
in the training database) for training the deep GAN model. We
trained a Wasserstein GAN model for 100 epochs (Supplemen-
tal Methods available online at https://academic.oup.com/bib)
and extracted the generative pseudo-sequences from every 20
epochs. We utilized the same encoding schema we used in the
prediction model to perform dimension reduction using PCA and
visualized the distribution of generative and real immunogenic
sequences (Figure 4A and B; Supplementary Figure S8A available
online at https://academic.oup.com/bib). When viewed as a PCA
projection, we find that random peptide sequences significantly
deviate from the experimentally validated immunogenic peptide
sequences, prior to GAN model training. However, after GAN
model training, the generative pseudo-sequence maps to a com-
mon coordinate embedding within the PCA projection to that of
real immunogenic peptide sequences. These data suggest that
the GAN model is able to extract high-level features from real
instances and teach the generator to output similar immuno-
genic peptides built from the random sequence as a starting
input. The same distribution shifts were observed with tSNE
dimensionality reduction (Supplementary Figure S8B available
online at https://academic.oup.com/bib).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
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Figure 4. DeepImmuno-GAN is able to learn and produce synthetic immunogenic pseudo-sequences. PCA of the distribution of real sequences (blue dots) and random

generative sequences (red dots) (A) prior to training and (B) after training (100 epochs). The degree of common embedding is considered an indicator of prediction

similarity. (C) The number of DeepImmuno-CNN predicted immunogenic peptides, produced from noise in different GAN training epochs. (D) Example generative

pseudo-sequences and their most similar counterparts in experimentally observed HLA-A∗0201 immunogenic peptides.

To further assess the immunogenicity of these generative
sequences, we submitted all generated sequences at different
epoch points to our DeepImmuno-CNN model. In the beginning,
the 1024 random sequences were found to only contain 40% of
the immunogenic sequence (predictive score >0.5). As training
progresses, the fraction of immunogenic peptides gradually
increases to 67%, which translates to 265 more immunogenic
peptides generated during training (Figure 4C). We compared
each generative pseudo-sequence to their most similar real
counterparts (Figure 4D). The similarity was defined as the total
longest contiguous matching subsequence between the real and
pseudo-sequence, with 87% (891/1024) of all pseudo-sequences
having >60% similarity to their matched real immunogenic
peptides (Supplemental Methods and Supplementary Figure S9
available online at https://academic.oup.com/bib) [33]. Hence,
immunogenic peptides can be learned and produced when
sufficient training data exist. To ensure that the GAN-based
model is not simply overfitting its own discriminator, we
increased the training time to 100 to 1000 epochs. This analysis
finds that the GAN model does not learn to simply reproduce
the original training data but rather gets closer to the training
probability distributions (Supplementary Figure S9 available
online at https://academic.oup.com/bib). Finally, application
of our occlusion analysis to GAN-generated immunogenic
data (epoch 1000) finds that, similar to DeepImmuno-CNN
predictions, P4 and P2 are the most salient positions for
HLA-A∗0201 immunogenic epitopes (Supplementary Figure S9
available online at https://academic.oup.com/bib).

Online web interface

We developed an easy-to-use web interface allowing users to
quickly query peptide sequences to predict immunogenicity
potential for given HLA alleles. Additionally, this service allows
a user to query for which HLA allele would yield the highest
immunogenicity and hence which patients might benefit most
from an immunogenic therapy. Additionally, users can deter-
mine which peptide a specific HLA allele will prefer or disfavor.
This analysis will return the immunogenicity score, top five
combinations for different HLA alleles and a weblogo view of all
immunogenic and non-immunogenic peptides associated with
a certain HLA allele (Figure 5). Moreover, the DeepImmuno web
portal allows users to perform multiple queries by specifying an
input file with peptide sequence information. Finally, to deter-
mine which peptides will both bind MHC and are immunogenic,
we incorporated the open-sourced HLA-binding prediction tool
MHCflurry [34] to provide coincident prediction of MHC binding.

DISCUSSION
The accurate identification of potential immunogenic epitopes
remains a significant challenge for understanding the molecular
mechanisms underlying host immune response and designing
effective targeted therapies. Given the fact that millions of pos-
sible peptides can be generated from human protein-coding
genes [3], experimentally validating all possibilities is simply
not yet feasible. Effective computational models can largely

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab160#supplementary-data
https://academic.oup.com/bib
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Figure 5. The DeepImmuno web interface. An easy-to-use web interface for querying peptide and HLA sequence pairs. The three primary outputs of the interface are

(1) immunogenicity score and MHC-binding potential (optional) for queried peptide-HLA combination, (2) the top five HLA combinations that will yield the highest

immunogenicity score for each queried peptide, and the (3) preferential motif of the queried HLA allele.

accelerate this process by providing a pre-screening platform to
find high-confidence immunogenic epitopes or to eliminate low
confidence predictions. While current HLA-binding prediction
tools have greatly aided in this effort, peptide–MHC binding
is insufficient to predict which peptides will produce down-
stream immune responses [35]. Hence, integrated approaches
are required to predict which peptides will bind MHC and acti-
vate an immune response. Machine learning and deep learning
algorithms have been shown to provide increased performance
in a wide spectrum of bioinformatics applications [36, 37]. How-
ever, comprehensive benchmarking and the selection of an opti-
mal encoding strategy are required to develop improved models
that can be applied to diverse testing datasets.

In this manuscript, we developed a beta-binomial model
to generate more accurate immunogenicity potential by
considering the overall quality of each experimentally tested
antigen in the training dataset. Using these optimized training
datasets, we systematically benchmarked well-established
machine learning and deep learning, and encoding strategies
on independent immunogenic disease datasets, to understand
the different situations in which these methods boost, decrease
or do not impact overall classification performance. From this
extensive comparison analysis, we found that a CNN model in
combination with a psychometric-aware encoding strategy
balanced performance across diverse test datasets while staying
robust for different training dataset sizes. Indeed, we found that
increasingly complex deep learning models, such as ResNet,
could result in overfitting in this specific application. Our
DeepImmuno-CNN model was able to significantly outperform
two existing highly used immunogenicity prediction workflows,
in terms of overall sensitivity and the top-ranked hits, when
applied to diverse real-world immunogenic antigen datasets,

including cancer and COVID-19 infection. From a neoantigen
pre-screening perspective, DeepImmuno-CNN is most likely
to increase the sensitivity for detection of valid neoantigens,
such as tumor-specific mutations or splicing neojunctions, from
large-scale genomics assays to be tested in downstream assays.
Using this optimized model, we were able to effectively identify
the most salient residues for interactions between peptide–
MHC and TCR, which were recapitulated and added to prior
knowledge. Moreover, we developed a GAN modeling approach
to accurately generate immunogenic peptides from random
noise and demonstrated that the biochemical interactions were
learnable given sufficient training data.

Despite these advances described herein, several challenges
remain in the field of immunogenicity prediction. While our
model significantly improves upon existing approaches in
terms of sensitivity, precision and recall, it is noteworthy
that all existing approaches remain challenged by lower than
preferred specificity to select immunogenic antigens with high
confidence. We further note that DeepImmuno-CNN yields
a 0.12 false-positive rate and 0.05 false-negative rate in the
training dataset and an artificially higher immunogenicity
score in certain cases (i.e. KTWGQYWQV, with more sparse
experimental evidence, receives a score of 0.8). This limitation
could be due to the fact that few disease antigens have been
thoroughly tested for their ability to mount a T-cell response
in large patient cohorts to ensure reproducibility and HLA
allele coverage. However, it is noteworthy that an indispensable
component of epitope recognition is the sequence of the TCR,
which has not been taken into consideration due to the fact
that there exist few matched TCR sequencing data for forming
a sufficiently powered training set [38, 39]. Although new high
throughput methods for single-cell TCR sequencing have been
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developed, such techniques are still infrequently performed
in research and clinical settings. The increased use of such
techniques is likely to aid in the development of more accurate
predictive models. In addition, neoantigen T-cell responses
can significantly vary from patient-to-patient, due to a variety
of factors including immune cell repertoire differences that
impact the diversity of activated T-cell clones [40–42]. Hence,
validated immunogenic epitopes may be ineffective in a subset
of patients. Limited experimental data will account for some
false-positive predictions, which may indeed be immunogenic
in a subset of patients. Quantitative data on a patient’s TCR
repertoire and associated immune responses are likely to
significantly improve existing models. We note that currently
DeepImmuno-CNN is not capable of discriminating between
HLA-bound and unbound peptides. To enable such predictions in
the future, we require more unambiguous experimental training
data that consider binding strength, stability, immunogenicity
and TCR sequences. Beyond providing a rubric for the design
of peptide-related models, we believe our approach can be
significantly extended to encode additional variables, such as
TCR sequence heterogeneity, and can be generalized to address
diverse sequence-predictive analyses, beyond immunogenicity.

Key Points
• Systematic benchmarking of peptide immunogenic-

ity prediction demonstrates vastly improved perfor-
mance with DeepImmuno-CNN.

• Generative adversarial network approach to accu-
rately simulate immunogenic peptides.

• Prior-reported salient peptide positions and motifs
can be predicted from this CNN.

• Online interface for automated prediction of peptide
immunogenicity with DeepImmuno.

Data Availability

DeepImmuno Python3 code is available at https://github.
com/frankligy/DeepImmuno. The DeepImmuno web portal
is available from https://deepimmuno.research.cchmc.org.
The data in this article are available in GitHub and supple-
mentary materials. The source code for reproducing all fig-
ures is provided at https://github.com/frankligy/DeepImmu
no/tree/main/reproduce/fig.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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