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Objective: This study aimed to analyze the cerebrospinal fluid (CSF) parameters

a�ecting the outcomes of patients with tuberculous meningitis (TBM).

Methods: This is a multi-center, retrospective, cohort study involving 81

patients who were diagnosed with TBM and treated in Haihe Clinical College

of Tianjin Medical University, Tianjin Medical University General Hospital, and

General Hospital of Air Force PLA from January 2016 to December 2019.

Baseline data, Glasgow Coma Scale (GCS) score, and clinical presentations

of all patients were collected at admission. CSF samples were collected at

48h, 1, 2, and 3 weeks after admission. CSF lactate, adenosine deaminase,

chloride, protein, glucose levels and intracranial pressure were measured.

After a follow-up of 16.14 ± 3.03 months, all patients were assessed using

the modified Rankin Scale (mRS) and divided into good (mRS scores of

0–2 points) and poor outcome groups (mRS scores of 3–6 points). The

di�erences in patients’ baseline data, GCS score, clinical presentations, and

levels of CSF parameters detected at 48h, 1, 2, and 3 weeks after admission

between two groups were compared. Statistically significant variables were

added to the binary logistic regression model to identify the factors impacting

the outcomes of patients with TBM. Receiver operating characteristic

(ROC) curve was used to assess the predictive ability of the model.
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Results: The CSF lactate level exhibited a decreasing trend within 3 weeks

of admission in the two groups. For the within-group comparison, statistically

significant di�erences in the lactate level was found in both groups between

four di�erent time points. A binary logistic regression model revealed that CSF

lactate level at 48h after admission, age, and GSC score on admission were

independently associated with the outcomes of patients with TBM. ROC curve

analysis showed that the area under the ROC curve (AUC) was 0.786 for the

CSF lactate level (48 h), 0.814 for GCS score, and 0.764 for age.

Conclusion: High CSF lactate level at 48h after admission is one of the

important factors for poor outcomes in patients with TBM.

KEYWORDS

tuberculous meningitis, cerebrospinal fluid examination, lactate level, prognostic

factors, retrospective study

Introduction

In 2020, there were 842,000 new cases of tuberculosis (TB)

in China, with an incidence rate of 59/100,000. China has the

world’s second largest TB cases, accounting for 8.5% of the global

incidence cases. The number of TB deaths among HIV-negative

people was about 30,000, and the TB mortality rate was 2.1

deaths per 100,000 persons (1). Tuberculous meningitis (TBM)

is a non-suppurative inflammation of membranes (meninges)

surrounding the brain or spinal cord caused by Mycobacterium

tuberculosis, accounts for about 1–5% of TB cases, approximately

one half of patients with TBMdie or suffer severe disability (2, 3).

Mycobacterium tuberculosis can spread through

hematogenous route, produce the formation of granulomas

within the ventricles or subarachnoid spaces, and secrete

gelatinous exudates (4). The gelatinous exudates can not only

block the circulatory path of cerebrospinal fluid (CSF), affect

CSF absorption, leading to the formation of hydrocephalus, but

also trigger an intense inflammatory response in the middle

cerebral artery, vertebrobasilar artery and circle of Willis,

which is the main cause of neurological deficits due to cerebral

ischemia in patients with TBM (5–7).

The CSF lactate test is a rapid and inexpensive test and

good indicator to differentiate bacterial meningitis from aseptic

meningitis (8, 9). A prospective cohort study of 176 patients

with neurological infections showed CSF lactate had the best

diagnostic value, with an area under the curve (AUC) of 0.976, a

sensitivity of 96%, and a specificity of 85%. CSF lactate can not

only assist physicians in diagnosis but also serve as a predictor

to assess patient prognosis (8). CSF lactate is elevated in patients

with TBM in the early stage of disease. Therefore, attention

should be paid to the changes in CSF lactate and its relationship

with patient prognosis. CSF lactate concentration depends on

the extent of anaerobic glycolysis in the central nervous system,

and has been used to predict the severity of brain parenchymal

injury caused by cerebral ischemia and hydrocephalus. The

purpose of this study was to analyze the CSF parameters affecting

the outcomes of patients with TBM.

Materials and methods

Subjects

This is a multicenter, retrospective, cohort study involving

81 patients who were diagnosed for the first time with TBM and

treated in Haihe Clinical College of Tianjin Medical University,

Tianjin Medical University General Hospital, and General

Hospital of Air Force PLA from January 2016 to December 2019.

There were 43males and 38 females, with an average age of 43.04

± 17.46 years.

The study protocol was approved by the Ethics Committee

of our hospital (No. 2022HHWZ-003) and written informed

consent was obtained from all patients.

Inclusion and exclusion criteria

Inclusion criteria were: (1) patients who were aged ≥15

years old; (2) patients who were diagnosed with confirmed TBM

according to the TBM diagnostic criteria, i.e., Mycobacterium

tuberculosis was detected in CSF, or nucleic acid amplification

test was positive for Mycobacterium tuberculosis; in the absence

of evidence of pathogens in the CSF, patients were diagnosed

with TBM based on a combination of clinical manifestations,

CSF examination, and brain imaging examination (diagnostic

score of ≥6), and had a positive result from the T-SPOT.TB

test (10–12).
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Exclusion criteria were: (1) patients who were HIV positive;

(2) female patients who were pregnant; (3) patients who

were diagnosed with suppurative, cryptococcal, viral, syphilitic,

brucella meningitis, brain parasites, malignant tumors, and

autoimmune diseases; (4) patients who failed to complete the

1-year follow-up.

Follow-up and grouping

All patients were followed up for an average of 16.14 ± 3.03

months. The modified Rankin Scale (mRS) was used to assess

the outcomes of patients at 1 year after disease onset. All patients

were assessed face to face by two senior neurologists who were

trained in the use of the mRS. Patients were divided into a good

outcome group (mRS scores of 0–2 points) and a poor outcome

prognosis group (mRS scores of 3–6 points) (13, 14).

Sample collection

2ml of CSF samples were collected by lumbar puncture at

48 h, 1, 2, and 3 weeks after admission, which was then sent

to the laboratory of our hospital immediately. Samples were

centrifuged at 1,300 g for 10min, and analyzed with a Beckman

Coulter AU5800 chemistry analyzer (Brea, CA USA), and

reagents from Beckman Coulter (Brea, CA USA). The levels of

CSF parameters lactate, adenosine deaminase (ADA), chloride,

protein, glucose were detected, and intracranial pressure (ICP)

was measured simultaneously.

Treatment

All patients were treated according to the guidelines for

the treatment of TBM, i.e., the duration of intensive-phase

treatment for TBM should be > 2 months, the total duration of

treatment should be at least 12 months. Patients should receive

at least four antitubercular medications during the intensive

phase, isoniazid, rifampicin, and pyrazinamide should be used as

the preferred antitubercular medications. During consolidation

phase, at least two effective antitubercular medications should be

given, with isoniazid and rifampicin being used as the preferred

medicines (15, 16).

Statistical analysis

Statistical analysis and graphing were conducted using SPSS

24.0 software, and GraphPad Prism version 9.0. Continuous

variables were expressed as mean ± standard deviation (SD),

and categorical variables were expressed as number and

percentage (%). Continuous variables were compared using

the independent or paired t-tests, and categorical variables

were compared using the Chi-square test or Fisher’s exact

test. Statistically significant variables were added to the binary

logistic regressionmodel. The predictive ability of the model was

verified by the receiver operating characteristic (ROC) curve. A

P-value of <0.05 was considered statistically significant.

Results

The baseline characteristics and clinical
manifestations of patients with TBM in
the two groups

The average age of patients in the good and poor outcome

groups was 54.2 ± 17.6 years old and 38.1 ± 15.1 years

old, respectively. Patients in the poor outcome group was

significantly older than those in the good outcome group (P

< 0.001).

In terms of clinical manifestations of TBM, patients in the

poor outcome group had a significantly lower Glasgow Coma

Scale (GCS) score compared to the good outcome group (P <

0.001), and were more likely to present with limb weakness and

neck stiffness (P < 0.05, Table 1).

Di�erences in the levels of CSF
parameters between the two groups

At 48 h, 1, 2, and 3 weeks after admission, CSF lactate level

was significantly higher in the poor outcome group than in the

good outcome group (P < 0.05, Table 2). The lactate level in

the two groups both decreased gradually over time, the decrease

was more obvious in the poor outcome group than in the good

outcome group within 1 week, whereas the decreasing trend was

approximately the same in the two groups after 1 week. For the

within-group comparison, statistically significant differences in

the lactate level was found in both groups between four different

time points (P < 0.05, Figure 1).

At 48 h, 1, 2, and 3 weeks after admission, CSF ADA

level was higher in the poor outcome group than in the good

outcome group. Statistically significant differences in the ADA

level between the two groups were found at 48 h and 1 week

after admission (P < 0.05, Table 2). The ADA level reached its

maximum at 1 week of admission, and gradually decreased after

1 week in the poor prognosis group (Figure 1).

At 48 h, 1, 2, and 3 weeks after admission, CSF chloride level

was lower in the poor outcome group than in the good outcome

group. Statistically significant differences in the chloride level

was found between the two groups at 1 week after admission (P

< 0.05, Table 2). Chloride level gradually increased in the two

groups over time (Figure 1).
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TABLE 1 Baseline characteristics and clinical manifestations of patients with TBM in the two groups.

Good outcome (n = 56) Poor outcome (n = 25) P-value

Mean/n SD/% Mean/n SD/%

Demographic characteristics

Age (years) 38.1 15.1 54.2 17.6 <0.001

Gender (male) 33 58.9% 10 40.0% 0.115

Symptoms

GCS score 14.3 1.3 11.7 2.7 <0.001

Fever 55 98.2% 24 96.0% 0.525

Headache 51 91.1% 21 84.0% 0.580

Nausea 27 48.2% 14 56.0% 0.517

Limb weakness 38 67.9% 24 96.0% 0.006

Neck rigidity 28 50.0% 20 80.0% 0.011

Cranial nerve palsy 10 17.9% 7 28.0% 0.300

TBM, tuberculous meningitis; GCS, Glasgow Coma Scale.

CSF protein level was similar in the two groups at 1

week after admission, which was higher in the poor outcome

group than in the good outcome group at 48 h, 2 and 3

weeks after admission (Table 2). The CSF protein level in the

two groups gradually decreased with time. For the within-

group comparison, statistically significant differences in the CSF

protein level was found in both groups between four different

time points (P < 0.05, Figure 1).

Within 3 weeks of admission, the pressure measured by

lumbar puncture in the two groups was higher than the normal

pressure. The pressure gradually decreased over time, which was

higher in the good outcome group than that in the poor outcome

group (Figure 1).

As shown in Figure 2, differences in the CSF lactate level

between poor and good outcome groups gradually decreased

over time, with a maximum difference of 2.45 mmol/L at

48 h, and a minimum difference of 0.43 mmol/L at 3 weeks.

Statistically significant differences were found between the two

groups at 48 h, 1 and 2 weeks (P < 0.05), whereas no statistically

significant difference was found at 3 weeks (P > 0.05, Figure 2).

Independent factors a�ecting outcomes
in patients with TBM

Statistically significant factors that were shown in Tables 1,

2 were included in the binary logistic regression model. Finally,

the results showed that age, GCS score on admission, and CSF

lactate levels at 48 h after admission were independent factors

associated with the outcomes of TBM patients (Figure 3).

ROC curve analysis showed that the area under the ROC

curve (AUC) for the CSF lactate level (48 h) was 0.786, with a

sensitivity of 76.0%, and a specificity of 76.8%. The AUC value

for GCS score was 0.814, with a sensitivity of 72.0%, and a

specificity of 82.1%. The AUC value for age was 0.764, with a

sensitivity of 60.0%, and a specificity of 83.9%. The ROC curves

indicated that the model can accurately predict the outcomes of

patients with TBM (Figure 4).

Discussion

A series of previous studies have demonstrated that TBM

had a mortality approaching 20–50% (17–20). A randomized,

double-blind, controlled study of adjunctive dexamethasone

for the treatment of TBM conducted in Vietnam showed

that 50% of patients with TBM died and 14% of survivors

presented had severe disability during a 5-year follow-up

(21). The neurological sequelae of TBM are mainly caused

by hydrocephalus, cerebral ischemia, and tuberculoma (22).

About 20–30% of TBM survivors suffer some form of

nerve damage, including cranial nerve palsy, ophthalmoplegia,

epilepsy, hemiplegia, blindness, deafness, ataxia, psychiatric

disorders, and unresponsiveness (17–20).

CSF lactate can be used as a diagnostic tool for many

CNS disorders, such as intracranial infections, epileptic seizures,

cerebral infarction, and mitochondrial diseases, which is more

accurate, and has a higher accuracy than conventional CSF

parameters (23, 24). There is no correlation between blood

and CSF lactate, because lactate in its ionized state crosses

the blood-brain barrier at a very slow rate, which needs to be

transported by Monocarboxylate transporters, so CSF lactate is

a good metabolic indicator (25–27). Elevated CSF lactate level

in patients with TBM is due to increased anaerobic glycolysis

caused by cerebral ischemia. Most patients with TBM can

experience increased ICP, cerebral blood flow is drastically

reduced when the compensation of the ICP reaches its limit.

Elevated ICP in patients with TBM is multifactorial, with
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TABLE 2 Comparison of cerebrospinal fluid parameters between the two groups at four di�erent time points after admission.

Good outcome (n = 56) Poor outcome (n = 25) P-value

Mean SD Mean SD

CSF parameters (48 h)

Lactate (mmol/L) 4.57 1.55 7.02 2.44 <0.001

ADA (U/L) 5.64 3.62 7.45 3.97 0.047

Chloride (mmol/L) 112.8 7.5 110.0 6.9 0.121

Protein (g/L) 1.68 0.85 2.06 1.33 0.193

Glucose (mmol/L) 2.22 1.18 2.14 1.05 0.786

Pressure (mmH2O) 246.7 64.5 213.4 81.7 0.052

CSF parameters (1 week)

Lactate (mmol/L) 3.75 1.04 4.67 1.47 0.008

ADA (U/L) 5.01 2.69 7.63 3.32 <0.001

Chloride (mmol/L) 115.8 5.3 111.4 6.2 0.001

Protein (g/L) 1.23 0.69 1.24 0.51 0.914

Glucose (mmol/L) 2.76 1.04 2.62 0.87 0.545

Pressure (mmH2O) 217.5 62.3 206.5 70.3 0.482

CSF parameters (2 weeks)

Lactate (mmol/L) 3.33 1.00 4.08 1.22 0.005

ADA (U/L) 4.14 2.19 4.88 2.83 0.200

Chloride (mmol/L) 117.1 5.0 114.8 6.2 0.085

Protein (g/L) 0.94 0.37 1.14 0.67 0.177

Glucose (mmol/L) 2.91 1.22 2.91 1.00 0.985

Pressure (mmH2O) 210.6 62.6 189.0 58.0 0.147

CSF parameters (3 weeks)

Lactate (mmol/L) 3.07 0.96 3.50 1.01 0.069

ADA (U/L) 3.33 1.92 4.35 2.61 0.052

Chloride (mmol/L) 118.7 5.0 116.4 5.8 0.075

Protein (g/L) 0.87 0.37 1.09 0.58 0.095

Glucose (mmol/L) 2.80 0.83 2.83 1.02 0.903

Pressure (mmH2O) 203.2 60.6 182.4 57.4 0.150

TBM, tuberculous meningitis; CSF, cerebrospinal fluid; ADA, adenosine deaminase.

hydrocephalus, hydrocephalus, and tuberculoma being the most

common causes (28, 29). Magnetic resonance spectroscopy

demonstrated increased lactate level in the ischemic region in

patients with acute cerebral ischemia (30, 31). Microdialysis

revealed increased lactate concentration in the extracellular fluid

in the ischemic core region, the increase in lactate concentration

was low in the peri-ischemic region, whereas increased lactate

concentration was not found in the non-ischemic region

(32, 33). Lactate can spread from ischemic brain tissues to

surrounding normal tissues, which can cause deleterious effects

on peripheral nerve cells, and impair cerebral autoregulation,

leading to cerebral edema and cerebral ischemia (34). A linear

relationship between CSF lactate levels and ischemic edema was

found on CT imaging in patients with middle cerebral artery

ischemia, lactate level reached its maximum after 3 days of

cerebral ischemia. Cerebral edema is more severe when CSF

lactate concentration exceeds 4 mmol/L, which is less severe

when CSF lactate concentration is below 2.5 mmol/L (35).

CSF lactate level is correlated with the time since onset of

cerebral ischemia, which reaches a maximal level at 48 h after

onset of cerebral ischemia (36). Previous studies have also

demonstrated that CSF lactate level was an independent risk

factor for the prognosis in patients with TBM, and the CSF

lactate concentration was significantly higher in patients with

poor prognosis than those with good prognosis (37–39).

Among the prognostic factors of TBM, previous studies have

demonstrated that patients’ age and GCS score on admission

were prognostic factors in patients with TBM (40–44). Results

of the present study were consistent with above-mentioned

findings, which verified the reliability of the model. The GCS

score is a reliable, widely used scale for objectively evaluating the

level of consciousness in patients. The GCS is comprised of three
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FIGURE 1

Changes in cerebrospinal fluid parameters over time in the two groups. (A) CSF lactate level. (B) CSF adenosine deaminase level. (C) CSF

chloride level. (D) CSF protein level. (E) CSF glucose. (F) The pressure measured by puncture. The letters a, b, c, d indicate within-group

comparison between four di�erent time points (values without a common letter are significantly di�erent, values with a common letter are not

significantly di�erent); N indicates statistically significant di�erences between the two groups at the same time point. Good outcome was

defined as a modified Rankin scale (mRs) score of 0–2; poor outcome was defined as a mRS score of 3–6.

components (eye-opening, motor, and verbal responses), has

uniform evaluation criteria, and acceptable inter-rater reliability

for experienced users. The advantages of GCS score include

simplicity, ease of use, without the need for auxiliary diagnostic

tools. In the present study, the ROC analysis showed that GCS

score on admission had the highest AUC, suggesting that GCS

score on admission was the most accurate predictor of outcomes

in patients with TBM.

ADA, an enzyme that is widely distributed in tissues and

body fluids, has been routinely used to detect Mycobacterium

tuberculosis. A previous meta-analysis has shown that ADA

test is a method for rapid diagnosis of TBM with high
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FIGURE 2

Di�erences in the CSF lactate level between poor and good outcome groups at four di�erent time points (48 h, 1, 2, 3 weeks) after admission.

(A) The CSF lactate level in poor and good outcome groups at 48h after admission. (B) The CSF lactate level in poor and good outcome groups

at 1 week after admission. (C) The CSF lactate level in poor and good outcome groups at 2 weeks after admission. (D) The CSF lactate level in

poor and good outcome groups at 3 weeks after admission. Good outcome was defined as a modified Rankin scale (mRs) score of 0–2; poor

outcome was defined as a mRS score of 3–6.

sensitivity and specificity, the pooled sensitivity and specificity

were 89 and 91%, respectively, indicating that ADA test had

adequate accuracy for diagnosing TBM (45). However, the

diagnostic value of CSF ADA test remains to be explored.

CSF ADA test results can be interpreted in the context of

patients’ clinical symptoms and laboratory findings, significantly

obviously elevated lactate and ADA levels were suggestive of

slower clinical recovery and prolonged hospital stay (39, 46).

Elevated CSF protein level is one of the main presentations

of TBM. Abnormal protein level in the CSF is associated with

the severity of meningeal inflammation and blood-brain barrier

dysfunction (47, 48). High protein level in the CSF may cause

more formation of basal exudates, leading to cranial nerve

involvement (49). CSF proteinmay serve as a predictor of cranial

nerve involvement (50). However, a recent study demonstrated

that CSF protein level was usually normal in patients with TBM

without clinical presentations such as vomiting and low serum

glucose (51).

The results of the present study showed that the ICP

assessed by lumbar puncture was lower in the poor outcome

group than that in the good outcome group. A previous study

showed that there was no correlation between ICP changes
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FIGURE 3

Association between GCS score, age, CSF lactate levels at 48h after admission and outcomes of patients with TBM. Independent factors

associated with the outcomes of TBM patients were GCS score on admission (OR 0.323, 95% CI 0.147–0.711, P < 0.05), age (OR 1.212, 95% CI

1.061–1.385, P < 0.05), and CSF lactate levels at 48h after admission (OR 2.914, 95% CI 1.143–7.432, P < 0.05). GCS score, Glasgow Coma

Scale score; CSF, cerebrospinal fluid; OR, odds ratio; 95% CI, confidence interval.

FIGURE 4

Receiver operating characteristic (ROC) curve analysis shows

the accuracy of GCS score, age, and CSF lactate levels at 48h

after admission in predicting prognostic outcomes of patients

with TBM. GCS score, Glasgow Coma Scale score; AUC, area

under the ROC curve; CSF, cerebrospinal fluid.

and prognosis in patients with TBM (52). The most common

cause of elevated ICP in TBM is hydrocephalus (communicating

hydrocephalus caused by impaired CSF absorption via the

arachnoid granulations, or non-communicating hydrocephalus

caused by the obstruction of themesencephalic aqueduct and the

fourth ventricle outlets) (53). The pressure measured by lumbar

puncture cannot truly reflect ICP, and the use of a transducer

placed in the intraventricular, intraparenchymal, and epidural

sites is considered the gold standard for ICP monitoring (54).

However, this invasive procedure carries the risks of intracranial

hemorrhage and infection, and there are no clear guidelines on

when ICP monitoring can be performed in patients with TBM

and elevated ICP.

A limitation of this study is the small sample size, which can

result in wide confidence intervals. Despite these limitations, we

believe that early detection of CSF lactate level is important for

predicting the outcomes in patients with TBM.

Conclusion

The present study demonstrated that the levels of CSF

parameters at different time points after admission in patients

with TBM, especially CSF lactate level at 48 h of admission, are

important indicators for predicting the outcomes in patients

with TBM. High CSF lactate level at 48 h of admission is an

important factor for poor outcomes in patients with TBM.
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