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Stride intervals in human walking fluctuate from one stride to the next, exhibiting

statistical persistence. This statistical property is changed by aging, neural disorders, and

experimental interventions. It has been hypothesized that the central nervous system is

responsible for the statistical persistence. Human walking is a complex phenomenon

generated through the dynamic interactions between the central nervous system and

the biomechanical system. It has also been hypothesized that the statistical persistence

emerges through the dynamic interactions during walking. In particular, a previous

study integrated a biomechanical model composed of seven rigid links with a central

pattern generator (CPG) model, which incorporated a phase resetting mechanism as

sensory feedback as well as feedforward, trajectory tracking, and intermittent feedback

controllers, and suggested that phase resetting contributes to the statistical persistence

in stride intervals. However, the essential mechanisms remain largely unclear due

to the complexity of the neuromechanical model. In this study, we reproduced the

statistical persistence in stride intervals using a simplified neuromechanical model

composed of a simple compass-type biomechanical model and a simple CPG model

that incorporates only phase resetting and a feedforward controller. A lack of phase

resetting induced a loss of statistical persistence, as observed for aging, neural

disorders, and experimental interventions. These mechanisms were clarified based on

the phase response characteristics of our model. These findings provide useful insight

into the mechanisms responsible for the statistical persistence of stride intervals in

human walking.

Keywords: human walking, stride interval fluctuation, neuromechanical model, central pattern generator, phase

resetting, statistical persistence

1. INTRODUCTION

Human walking is not perfectly periodic. The stride interval fluctuates from one stride to the next,
exhibiting statistical persistence (Hausdorff et al., 1995; West and Griffin, 1998, 1999; Dingwell
and Cusumano, 2010), which indicates that deviations in a time series are statistically more
likely to be followed by subsequent deviations in the same direction. Although the stride interval
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fluctuations change depending on the gait speed and during
development from childhood to adulthood, the statistical
persistence remains unchanged (Hausdorff et al., 1996,
1999). However, the stride interval fluctuations for elderly
subjects (Hausdorff et al., 1997) and patients with Huntington’s
disease (Hausdorff et al., 1997) or Parkinson’s disease (Frenkel-
Toledo et al., 2005) become uncorrelated. Experimental
interventions for walking, such as the use of a metronome, also
make the stride interval fluctuations uncorrelated (Hausdorff
et al., 1996). It is largely unclear why statistical persistence
appears in stride intervals in human walking and why this
statistical property is changed by aging, neural disorders, and
experimental interventions.

It has been hypothesized that the central nervous system
has an underlying persistence and is responsible for the
statistical persistence in stride intervals. This is supported by
the finding that statistical persistence remains in patients
with significant peripheral nerve degeneration (Gates
and Dingwell, 2007). Various neural system models have
been developed to reproduce the statistical persistence and
investigate the associated mechanisms. Hausdorff et al. (1995)
developed a model of the central pattern generators (CPGs)
in the spinal cord and introduced “memory” into the CPG
model by allowing transitions from frequency to frequency.
Ashkenazy et al. (2002) extended this model by introducing
a random walk for the signal transmission of neural circuits.
West and Scafetta (2003) developed a “Super CPG” model
that introduces external interventions via a forced van der
Pol oscillator.

Human walking is a complex phenomenon generated
through dynamic interactions between the central nervous
system and the biomechanical system. It has also been
hypothesized that the statistical persistence in stride intervals
emerges through complex interactions during walking. Fu
et al. (2020) integrated a biomechanical model composed of
seven rigid links with a CPG model, which incorporated
a phase resetting mechanism as sensory feedback as well
as feedforward, trajectory tracking, and intermittent feedback
controllers, to reproduce statistical persistence. They showed
that a lack of phase resetting induces a loss of statistical
persistence. However, it is difficult to fully understand the
essential mechanisms responsible for generating and changing
this statistical property because of the complexity of the neural
and biomechanical models.

In human walking, the stance leg, which is almost straight,
rotates around the foot contact point like an inverted pendulum.
To investigate the essential mechanisms responsible for
generating human walking from a dynamic viewpoint, simple
compass-type mechanical models have been used (Kuo,
2001; Donelan et al., 2002; Kuo et al., 2005; Bruijn et al.,
2011; Okamoto et al., 2020). Gates et al. (2007) and Ahn
and Hogan (2013) reproduced the statistical persistence
in stride intervals using simple compass-type models with
sensory feedback controllers. However, they did not investigate
the contribution of the feedback controllers to changes in
the statistical persistence; thus, the essential mechanisms
remain unclear.

FIGURE 1 | Neuromechanical model of human walking composed of CPG

model with phase resetting and compass-type biomechanical model.

The aim of this study is to clarify the contribution of
phase resetting to the generation and change in the statistical
persistence using a simple model. Specifically, we used a
simplified neuromechanical model composed of a simple
compass-type biomechanical model and a simple CPG model
that incorporates phase resetting and a feedforward controller.
Our model reproduced the statistical persistence in stride
intervals. A lack of phase resetting induced a loss of statistical
persistence, as observed in Fu et al. (2020). Furthermore, we
clarified themechanisms responsible for changes in this statistical
property caused by phase resetting based on the phase response
characteristics. Our findings provide important insights into
the mechanisms underlying the generation and change of the
statistical persistence in the stride intervals in human walking.

2. METHODS

2.1. Mechanical Model
We used a simple compass-type model (Figure 1). This model
has two legs (swing and stance legs), the lengths of which are both
l, connected by a frictionless hip joint. The masses are located
at the hip and on the legs at a distance b from the hip joint;
M is the hip mass and m is the leg mass. θ1 is the angle of
the stance leg with respect to the vertical, and θ2 is the relative
angle between the stance and swing legs. The tip of the stance
leg, which corresponds to the ankle, is fixed on the ground. The
stance leg rotates freely without friction. This model walks on
level ground via joint torques u1 (at the ankle) and u2 (at the hip).
g is the acceleration due to gravity. We used the following model
parameters based on Winter (2004): M = 50 kg, m = 11 kg,
l = 1 m, b = 0.4 m, and g = 9.8 m/s2.

When the tip of the swing leg is in the
air, the equations of motion for our model are
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[

Ml2 +m{l2 + (l− b)2} − 2mlb cos θ2 +mb2 mlb cos θ2 −mb2

mlb cos θ2 −mb2 mb2

] [

θ̈1
θ̈2

]

+

[

−mlb(θ̇2 − 2θ̇1)θ̇2 sin θ2
−mlbθ̇21 sin θ2

]

+

[

−{gm(2l− b)+ gMl} sin θ1 − gmb sin(θ2 − θ1)
gmb sin(θ2 − θ1)

]

=

[

u1
u2

]

(1)

The tip of the swing leg touches the ground (touchdown) when
the following conditions are satisfied:

2θ1 − θ2 = 0 (2)

θ1 < 0 (3)

2θ̇1 − θ̇2 < 0 (4)

We used condition (3) so that touchdown occurs only in front
of the model to move forward, and condition (4) to ignore the
scuffing of the leg tip on the ground when the swing leg is swung
forward. We assumed that touchdown is a fully inelastic collision
(no slip, no bounce) and that the stance leg lifts off the ground
just after touchdown. Because the roles of the swing and stance
legs are reversed just after touchdown, we obtain

θ+1 = −θ−1 (5)

θ+2 = −θ−2 (6)

where ∗− and ∗+ are the state ∗ just before and after
touchdown, respectively. Due to this collision, the angular
velocities discontinuously change. We assumed that when the
stance leg leaves the ground, it does not interact with the ground
and the work of the joint torques can be neglected. These
assumptions yield

[

θ̇+1
θ̇+2

]

= {Q+(θ−1 )}−1Q−(θ−1 )

[

θ̇−1
θ̇−2

]

(7)

where

Q+(θ−1 ) =
[

−Ml2 − 2m(l− b)2 − 2mlb(1− cos 2θ−1 ) mb(b− l cos 2θ−1 )

−ml(b− l cos 2θ−1 ) mlb

]

Q−(θ−1 ) =

[

2m(l− b)(b− l cos 2θ−1 )−Ml2 cos 2θ−1 −m(l− b)b

ml(l− b) 0

]

2.2. CPG Model
The CPGs in the spinal cord are largely responsible for
rhythmic leg movements, such as during locomotion (Grillner,
1975; Shik and Orlovsky, 1976; Orlovsky et al., 1999). They
can produce oscillatory behavior even in the absence of
rhythmic input and sensory feedback. However, sensory feedback
is crucial for producing adaptive locomotor behavior. To
investigate the contribution of CPGs to adaptive locomotion
in humans, various oscillator models, such as the van der Pol
oscillator (Dutra et al., 2003; West and Scafetta, 2003), Matsuoka

oscillator (Matsuoka, 1987; Taga et al., 1991; Taga, 1995a,b;
Ogihara and Yamazaki, 2001; Hase et al., 2003; Kim et al., 2011),
and phase oscillator (Yamasaki et al., 2003; Aoi et al., 2010, 2019;
Dzeladini et al., 2014; Aoi and Funato, 2016; Fu et al., 2020;
Tamura et al., 2020; Owaki et al., 2021), have been developed.

In this study, we used a phase oscillator, whose phase is φ

(0 ≤ φ < 2π), to generate the motor commands for our model.
The oscillator phase follows the dynamics expressed by

φ̇ = ω (8)

where ω is the basic frequency. We determined the joint torques
u1 and u2 as

u1 = A1 cosφ + σ1 (9)

u2 = A2 cos(φ + 1)+ σ2 (10)

where A1 and A2 are the amplitudes, σ1 and σ2 are noise terms,
and 1 is the phase difference between u1 and u2.

It has been reported that locomotion rhythm and phase are
regulated by the production of a phase shift and rhythm resetting
(phase resetting) for periodic motor commands in response to
sensory feedback (Lafreniere-Roula and McCrea, 2005; Rybak
et al., 2006). Cutaneous feedback has been observed to contribute
to phase shift and rhythm resetting behavior (Duysens, 1977;
Schomburg et al., 1998). Phase resetting has thus been modeled
so that the oscillator phase is reset based on foot contact
information (Yamasaki et al., 2003; Aoi et al., 2010; Aoi and
Funato, 2016; Fu et al., 2020; Tamura et al., 2020). In this study,
we used the following relationship at touchdown:

φ+ = φ0 (11)

where φ0 is a constant. When phase resetting is not applied, φ

is not regulated at touchdown. However, because the roles of
the swing and stance legs are reversed just after touchdown so
that θ+i = −θ−i (i = 1, 2), we used the following relationship
at touchdown:

φ+ = φ− − π (12)

so that u+i = −u−i (i = 1, 2) when the noise
terms σ1 and σ2 are neglected. We designated φ0 as the
value to which φ+ converged during steady walking (limit
cycle) for the model without phase resetting and noise.
Therefore, steady walking is identical between the models
with and without phase resetting in the absence of noise.
This allows us to clearly investigate the difference in the
response to torque noise between cases with and without
phase resetting.
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This CPG model has four parameters, namely ω, A1, A2,
and 1. We used ω = 4.8 rad/s based on Hausdorff et al.
(1996). Without noise (σ1 = σ2 = 0), we first investigated the
dependence of gait speed during steady walking on A1, A2, and
1, and then calculated the energy cost ε =

∫

(u21 + u22)dt for
one step cycle for A1, A2, and 1. We determined the parameter
set (A1,A2,1) required to minimize ε for each gait speed. When
phase resetting was used, we determined φ0 for each gait speed
using the obtained parameter set.

2.3. Torque Noise
To simulate the stochastic fluctuation of the gait, we used two
independent series of white Gaussian noise for torque noise terms
σ1 and σ2 in (9) and (10), respectively, as follows:

σi = ξUi i = 1, 2 (13)

where ξ is the amplitude of the noise, and U1 and U2 are
independent white Gaussian noise with standard deviation 1.
This torque noise never induces consecutive touchdowns at
extremely short intervals because of discontinuous and large
changes in the state variables (5)–(7) at touchdown. We
numerically solved the governing equations using the Euler-
Maruyama method (Higham, 2001) with a time step of 10−5 s.

To be consistent with previous experiments on
humans (Hausdorff et al., 1995, 1996, 1997), a stride was
defined as two consecutive steps. Stride intervals were calculated
based on the time difference between every other touchdown
(strides did not overlap). Each simulation trial required the
model to walk 1300 steps (650 strides). The first 150 strides were
omitted from the analysis to remove transient behavior due to
initial conditions.

2.4. Detrended Fluctuation Analysis
We used detrended fluctuation analysis (DFA) to determine the
statistical persistence in the time series of stride intervals for
each trial of the computer simulation. This method decreases the
effect of noise and removes local trends, making it less affected
by non-stationarities. The details of the method can be found
elsewhere (e.g., Peng et al., 1993, 1994a,b; Hausdorff et al., 1995;
Hardstone et al., 2012; Ihlen, 2012). Briefly, the feature amount
F(n) constructed from segments of length n of the time series
exhibits a power-law relationship, indicating the presence of
scaling as F(n) ∼ nα . We investigate the scaling exponent α to
determine the statistical persistence for the time series data.

In this study, we first formed the following accumulated sum
using the sequence of stride intervals x(i) for i = 1, 2, . . . ,N,
where N is the total number of strides (N = 500):

y(i) =

i
∑

k=1

[x(k)− x̄] i = 1, 2, . . . ,N (14)

where x̄ is the mean stride interval from x(1) to x(N). We then
divided the integrated series y(i) into segments of length n (n <

N), yj(s) (j = 1, 2, . . . ,N/n, s = 1, 2, . . . , n), so that each segment
is equal in length and non-overlapping. We next detrended each
segment yj(s) by subtracting a least squares linear regression line

ŷj(s) fit to yj(s), and averaged the squares of the detrended data
(i.e., the residuals). We thus obtained the standard deviation
F(n) as

F(n) =

√

√

√

√

1

n

n
∑

s=1

[

yj(s)− ŷj(s)
]2

(15)

We used a set of n distributed equally on a logarithmic scale
between 4 and N/4 (Jordan et al., 2006), specifically, n =

4, 5, 6, . . . , 87, 104, and 125 (sample size is 20).
In general, F(n) increases with increasing n and a graph of

log F(n) vs. log n exhibits a power-law relationship, indicating the
presence of scaling as F(n) ∼ nα . We fit log F(n) vs. log n plots
with a linear function using a standard least squares regression
approach, and obtained the scaling exponent α from the slope of
this line. In particular, α = 0.5 indicates that the stride intervals
are completely uncorrelated (i.e., white noise). That is, DFA will
still produce α = 0.5 even if the time series is rearranged in any
manner (through surrogate data analysis). In contrast, α < 0.5
indicates statistical anti-persistence in stride intervals and 0.5 <

α ≤ 1.0 indicates statistical persistence. When α > 1.0, the
time series is brown noise (i.e., integrated white noise) (Hausdorff
et al., 1995).

3. RESULTS

3.1. Determination of Parameters for Each
Gait Speed
Without noise (ξ = 0), our model achieved stable walking with
a gait speed v of 0.25 to 0.6 m/s depending on the parameters
A1, A2, and 1. Figure 2A shows the contour of the evaluation
criterion ε for A1, A2, and 1, which generated v = 0.3, 0.4, and
0.5 m/s. Figure 2B shows the parameter sets (A1,A2,1), each of
which minimized ε for a given gait speed v. The use of phase
resetting did not affect these results. We use the parameter set
A1 = A1(v),A2 = A2(v), and1 = 1(v) in the following sections.

3.2. Stride Interval Fluctuations
Figure 3 compares the simulation results between the models
with and without phase resetting at a walking speed of 0.4 m/s
(A1 = 4.9, A2 = 10, 1 = 0.47) using the noise amplitude
ξ = 1. Figures 3A,B show the angles θ1 and θ2 and the
stride intervals, respectively, during 500 strides. Although ξ is
identical between the models, the model without phase resetting
has larger stride interval fluctuations than those for the model
with phase resetting. Figure 3C shows a plot of log F(n) for
log n and the scaling exponent α obtained from the slope of
the fitted line. The model with phase resetting exhibits statistical
persistence in stride intervals (0.5 < α ≤ 1.0), which is
consistent with observations of healthy adults (Hausdorff et al.,
1995). Furthermore, the standard deviation of stride interval
fluctuations of the model with phase resetting is 0.03, which is
also consistent with observations of healthy adults (Hausdorff
et al., 1995). In contrast, the model without phase resetting
exhibits statistical anti-persistence in stride intervals (α < 0.5).
Figure 4 shows the dependence of α on ξ . The models with and
without phase resetting, both of which kept walking when ξ ≤ 1,
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FIGURE 2 | Dependence of gait performance on parameters A1, A2, and 1

without noise. (A) Contour of evaluation criterion ε for parameters that

generate gait speed v = 0.3, 0.4, and 0.5 m/s. Data point indicates the

parameter set that minimizes ε. (B) Parameter sets that minimize ε for each

gait speed v.

FIGURE 3 | Comparison of gait fluctuations between models with and without

phase resetting at gait speed v = 0.4 m/s using noise amplitude ξ = 1 (see

Supplementary Movie). (A) Angles θ1 and θ2. Black lines and colored areas

indicate the average and standard deviation, respectively. (B) Stride intervals.

(C) Plot of log F (n) for log n and scaling exponent α obtained from slope of

fitted line.

exhibited statistical persistence and anti-persistence, respectively,
regardless of ξ .

Figure 5 compares the simulation results for the models with
and without phase resetting for various values of gait speed v
using ξ = 10−2. Figures 5A,B show the stride intervals and
log F(n) plot, respectively, for v = 0.3 m/s (A1 = 1.3, A2 = 6.1,
1 = 0.57), 0.4 m/s (A1 = 4.9, A2 = 10, 1 = 0.47),
and 0.5 m/s (A1 = 14, A2 = 15, 1 = 0.37). Figure 5C
shows the dependence of α on v. The model with phase resetting
exhibits statistical persistence regardless of v, which is consistent
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FIGURE 4 | Comparison of scaling exponent α for noise amplitude ξ between

models with and without phase resetting at gait speed v = 0.4 m/s. Data

points and error bars correspond to the means and standard deviations,

respectively, of the results of 10 simulations.

with observations of healthy adults (Hausdorff et al., 1996). In
contrast, the model without phase resetting exhibits statistical
anti-persistence regardless of v.

4. DISCUSSION

4.1. Mechanisms for Statistical Persistence
and Anti-persistence of Stride Intervals
In this study, the model with phase resetting exhibited statistical
persistence in stride intervals (0.5 < α ≤ 1.0), whereas
the model without phase resetting exhibited statistical anti-
persistence (α < 0.5) (Figure 3), as observed in a previous
modeling study (Fu et al., 2020). Statistical anti-persistence is
characterized by the alternation of large and small values. Fu
et al. (2020) performed a linearized stability analysis on a model
without phase resetting and noise, and showed that the dominant
mode (least stable mode) characterized by Floquet multipliers
was a pair of complex conjugates whose amplitude was less than
but close to unity and whose argument was greater than π/2.
This suggests that the fluctuation ξn of the stride number n
can be approximately written as ξn = (−r)nξ1, where r ∼ 1
(r < 1) and ξ1 is an initial deviation, corresponding to a slowly
damped period-2 oscillation. They explained that this period-
2 oscillation induced the alternation of long and short stride
intervals and statistical anti-persistence. Although we performed
the same stability analysis for our model, the dominant mode
of our model without phase resetting and noise was positive
real, whose amplitude is less than 1, indicating that the initial
deviation monotonically decreases. In addition, our model with
phase resetting had almost the same dominant mode as that for
our model without phase resetting and it is difficult to conclude
that these stability characteristics explain the difference in the
statistical properties in stride intervals between the models with
and without phase resetting. Furthermore, the amplitude of our
dominant mode was 0.65 and the damping was relatively fast.

Next, we directly consider the difference in the response of
the stride interval to disturbances. Specifically, we focus on the

phase response curve in phase reduction theory (Winfree, 1980;
Kuramoto, 1984), which explains how the phase of a limit cycle
oscillator shifts by a perturbation at an arbitrary phase (Figure 6).
The model with phase resetting shows a shift of the locomotion
phase after the recovery due to phase resetting in (11) at foot
contact, whereas the model without phase resetting shows no
phase shift (Tamura et al., 2020). Furthermore, the phase shift for
the model with phase resetting varies depending on the timing
of the disturbance. Therefore, the accumulated sum y of stride
intervals in (14) tends to move to the cumulative sum of the
amount of phase shifts induced by input noise in the model
with phase resetting, which results in a relatively smooth signal
with large low-frequency components, as shown in Figure 7.
In contrast, y tends to converge to 0 in the model without
phase resetting, which results in a rough signal with large high-
frequency components. Because the scaling exponent α increases
with the degree of smoothness (Eke et al., 2000), this difference
induces the difference in the scaling exponent α and statistical
properties between the models with and without phase resetting.

4.2. Biological Relevance of Our Findings
The scaling exponent α greatly decreases during walking to
a metronome in humans (Hausdorff et al., 1996), where the
stride interval is constrained by an external cadence (i.e.,
metronome). This corresponds to the walking of the model
without phase resetting, where the stride interval is constrained
by the frequency ω in (8) of the phase oscillator. Therefore, the
locomotion phase remains almost unchanged during walking to
a metronome, and α decreases as in the model without phase
resetting (Figure 3), as discussed in Section 4.1. It has been
reported that α also greatly decreases for the stride interval
fluctuations of elderly subjects (Hausdorff et al., 1997) and
patients with Huntington’s disease (Hausdorff et al., 1997) or
Parkinson’s disease (Frenkel-Toledo et al., 2005). Although the
phase response characteristics have been clarified during walking
for healthy adults (Yamasaki et al., 2003; Funato et al., 2016;
Nessler et al., 2016), those during walking for elderly subjects and
patients with neural disorders remain unclear. Investigating them
would help clarify the mechanisms responsible for changes in the
statistical persistence caused by aging and neural disorders.

Although stride interval fluctuations change depending
on gait speed in humans, the statistical persistence remains
unchanged (Hausdorff et al., 1996). Our model with phase
resetting also exhibited statistical persistence regardless of the
gait speed (Figure 5). The constraint on gait rhythm seems more
crucial for the statistical persistence than the constraint on gait
speed, as observed for walking to a metronome (Hausdorff et al.,
1996).

The standard deviation of stride interval fluctuations is about
0.04 s in human walking, which is 3% of the mean stride
interval (Hausdorff et al., 1995). It was difficult for previous
studies (Gates et al., 2007; Fu et al., 2020) using biomechanical
models to reproduce a magnitude of stride interval fluctuations
similar to that for humans. Although Gates et al. (2007)
reproduced statistical persistence in stride intervals (0.5 < α ≤

1.0) using a simple biomechanical model as in this study, their
model was not robust and the noise amplitude was limited.
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FIGURE 5 | Comparison of stride interval fluctuations for various values of gait speed v between models with and without phase resetting using noise amplitude

ξ = 10−2. (A) Stride intervals and (B) plot of log F (n) for log n for gait speed v = 0.3, 0.4, and 0.5 m/s. (C) Scaling exponent α vs. gait speed v. Data points and error

bars correspond to the means and standard deviations, respectively, of the results of 10 simulations.

Therefore, their stride interval fluctuations were much smaller
than those in humans. Furthermore, the scaling exponent α was
sensitive to the noise amplitude, and the fluctuations exhibited

brown noise at high noise levels (α > 1.0). In contrast, phase
resetting made our model robust, which allowed a magnitude
of stride interval fluctuations similar to that for healthy adults
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FIGURE 6 | Phase shift caused by disturbance to limit cycle of walking. After recovery, locomotion phase is shifted (x1 + · · · + xN > Nτ ).

(Figure 3). Furthermore, α was 0.5 to 1.0, which is consistent
with observations of healthy adults, and was not sensitive to the
noise amplitude (Figure 4), but sensitive to the controller (i.e.,
whether phase resetting was used).

Previous studies (Yamasaki et al., 2003; Aoi et al., 2010;
Fujiki et al., 2018; Tamura et al., 2020) have shown that phase
resetting contributes to adaptive walking. In this study, we found
that it also contributes to the statistical persistence of gait. In
addition to the fact that statistical persistence is impaired by
aging (Hausdorff et al., 1997), central nervous system diseases,
such as Parkinson’s disease (Frenkel-Toledo et al., 2005) and
Huntington’s disease (Hausdorff et al., 1997), and experimental
intervention for walking (Hausdorff et al., 1996), it has been
suggested that statistical persistence is linked to important
characteristics of gait. Bohnsack-McLagan et al. (2016) suggested
that fluctuation persistence leads to redundancies in gait and
helps predict and prevent fall risk. Ahn and Hogan (2013) and Fu
et al. (2020) showed that fluctuation persistence appears in gait
with low gait stability. Gates et al. (2007) showed that a decrease
in the ability to perform finely controlled movements leads to
an increase in motor output noise and impairs the persistence
of fluctuations.

Many studies have reported long-range correlations in
stride intervals in human walking based on the results
of DFA (Hausdorff et al., 1995, 1996, 1997; Ashkenazy
et al., 2002), which indicates that stride-to-stride correlations
decay in a scale-free (fractal-like) power-law fashion and
suggests that each stride depends explicitly on many previous
strides. However, DFA is highly sensitive to yielding false
positive results (Maraun et al., 2004; Höll and Kantz, 2015),
and it is difficult to conclude the presence of long-range
correlations from DFA alone. Instead, DFA provides a valid
indicator of statistical persistence and anti-persistence in a time
series (Maraun et al., 2004). In this study, we used statistical
persistence instead of long-range correlations to interpret the
results of DFA, as discussed in Dingwell and Cusumano
(2010).

FIGURE 7 | Comparison of accumulated sum y of stride intervals between

models with and without phase resetting at gait speed v = 0.4 m/s and using

noise amplitude ξ = 1 in Figure 3.

4.3. Limitations of Our Model and Future
Work
Based on the hypothesis that the statistical persistence in stride
intervals emerge through dynamic interactions between the
neural and biomechanical systems, we integrated a simple neural
model and a simple biomechanical model to reproduce statistical
persistence in stride intervals and change in this statistical
property. However, our model is very simple and has limitations
with regard to replicating many aspects of human walking. In
particular, because the feedforward torques (9) and (10) were
simply composed of a sinusoidal wave, the gait speeds of our
model were slower than those of healthy adults (Figure 2). In
addition, although statistical persistence could be associated with
low gait stability (low convergence speed to the limit cycle) (Ahn
and Hogan, 2013; Fu et al., 2020), our model had higher stability
than that of complicated models due to its simplicity. The high
stability of our model with phase resetting might have caused the
scaling exponent α to be ∼ 0.6, which is smaller than that (∼ 1)
in healthy adults (Hausdorff et al., 1995). Furthermore, stochastic
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noise is ubiquitous in the central nervous system and peripheral
sensory-motor systems (Jones et al., 2002; van Beers et al., 2004;
Churchland et al., 2006). However, our model used only torque
noise, which may result in the difference between the statistical
anti-persistence in the model without phase resetting and the
white noise in walking to a metronome in humans (Hausdorff
et al., 1996; Bohnsack-McLagan et al., 2016).

Based on the findings in this study, it is important to verify
the essential mechanisms responsible for changes in the statistical
persistence by using biologically detailed neuromusculoskeletal
models. In a previous study (Tamura et al., 2020), we integrated
a musculoskeletal model composed of seven rigid links and
18 muscles with a CPG model with a muscle synergy-based
controller to investigate the contribution of phase resetting to
the phase response characteristics during walking. In another
previous study (Fujiki et al., 2019), we used a half-center type
CPGmodel composed of a rhythm generator network, which was
modeled using neuron populations of flexor and extensor centers
based on Danner et al. (2016, 2017) and Rybak et al. (2006),
to clarify the mechanisms responsible for the CPG responses
to afferent stimulation using dynamic systems theory based on
nullclines. We plan to incorporate these biologically detailed
models to further investigate the mechanisms responsible for
changes in the statistical persistence.

5. CONCLUSION

In this study, we clarified the contribution of phase resetting to
the generation and change of statistical persistence using a simple
neuromechanical model. Specifically, our model reproduced
the statistical persistence in stride intervals. A lack of phase

resetting induced a loss of statistical persistence. Furthermore,
we clarified the mechanisms responsible for changes in statistical
persistence caused by phase resetting based on the phase response
characteristics. Our findings provide important insight into
the mechanisms underlying the generation and change of the
statistical persistence in the stride intervals in human walking.
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