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Background
In most countries, cancer is the first or second cause of death [1]]. Thus, it is a hot 
topic to prevent and cure cancer effectively in the medical field. Genes can regulate 
critical movements of organisms, even including the emergence of cancer [2]. As the 
improvement of gene sequencing technology, plenty of genomic data are available, 
which is conducive to researching the pathogenesis of cancer [3]. However, the major-
ity of genomic data have the features of high dimension and small sample, which 
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hinders the advances in medicine studies [4, 5]. Evidently, data dimension reduction 
acts a momentous role in the process of genomic data analysis.

Data dimension reduction aims to get a significant low-dimensional representation 
of high-dimensional data, remove redundant features and prevent overfitting. There-
fore, it has achieved great successes in many areas, such as characteristic gene selec-
tion [6], image analysis [7], and text documents [8]. Principal Component Analysis 
(PCA) is one of the most classic linear dimension reduction methods [9]. Based on 
the high efficiency of PCA, it has been widely used on different kinds of data and 
developed in many fields [5, 10, 11]. To boost the robustness of PCA, Candès et  al. 
developed a new PCA in [10], called Robust PCA (RPCA), which is exploited for 
background modeling from video and analyzing face images. Moreover, in [5], RPCA 
is exploited for discovering differentially expressed genes by Liu et  al. Though, the 
above PCA methods all have obtained excellent results, the performance of these 
methods is corrupted with the noisy observation data.

In [12], Wright et al. introduced a low-rank matrices recovery approach for remov-
ing the noise of data. Then, PCA is applied to the low-rank matrix. The robustness of 
data processing is enhanced significantly through the approach in [12].

The experimental data X are usually obtained from a union of multiple subspaces 
S =

∑

S1, S2, . . . , Sk rather than a single space, where Si indicates low-dimensional 
space hidden in high-dimensional space [13–15]. Since these methods related to 
PCA prefer to research the data obtained from a single low-dimensional space, Liu 
et  al. proposed a low-rank representation (LRR) model that can excavate the global 
distribution between data points to study X [16]. LRR strives to look for the lowest 
rank matrix representation about original data and has got brilliant results in several 
applications [16, 17]. However, LRR still exists a few shortages, for instance it cannot 
reveal the local manifold structures of data obtained from a non-linear low-dimen-
sional manifold. Joyfully, various manifold learning models have been put forward, 
such as ISOMAP [18], Laplacian Eigenmap (LE) [19], Locally Linear Embedding 
(LLE) [20], and graph-Laplacian regularization [21].

A graph-Laplacian regularized LRR (LLRR) model [14] was developed, which 
introduces the graph regularization into LRR. In LLRR model, the useful rules hid-
ing among the data points including the global geometric structure and the internal 
similarity information are all seized. LLRR only exploits one view of data, i.e. data 
manifold for data analysis. Contrasted with LLRR, Latent LRR (LatLRR) model adds 
another view, i.e. feature manifold to do image processing [22]. For solving these 
minimization problems of LRR, LLRR and LatLRR, the common point is to use the 
nuclear norm to approximate the rank operator. Given a data matrix X, the nuclear 
norm means that the sum of all singular values belonging to X. Since the nuclear 
norm minimizes the sum of all singular values for accomplishing the minimization 
problem, all non-zero singular values have different influences for the rank [23]. Thus, 
the nuclear norm maybe not the best way to approximate the rank of the matrix. To 
better approximate the rank and handle the non-convex optimizing problems, the 
truncated nuclear norm (TNN) was proposed in [24] and attracted much attention 
[13, 23, 25, 26]. The TNN that is the sum of few smallest singular values of a matrix 
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can dispel the harm of shrinkage of the leading singular values, so it may be a more 
robust regularization to get the rank of a matrix than the nuclear norm.

To strengthen the efficiency and robustness of the model, in our paper, a novel LRR 
method is developed, named Truncated nuclear norm and graph-Laplacian regular-
ized Low-Rank Representation model (TGLRR). In the objective function of TGLRR, 
the nuclear norm is replaced by the TNN for reaching the robust approximation of rank 
function, a graph-Laplacian regularization is imposed to find the local manifold struc-
ture, and the L1-norm is used for realizing the sparse constraints of outliers. The main 
contributions of our paper are showed as follows. Firstly, compared with the popular 
LRR model regularized by the nuclear norm, our TGLRR method can obtain a better 
performance by the TNN, and solve the non-convex and discontinuous issues. Secondly, 
the TGLRR method can seize the valuable information lying in data manifold and fea-
ture manifold simultaneously. Finally, the TGLRR method can capture the internal simi-
larity information and some underlying affinity among data points by incorporating a 
graph regularization term and utilizing a linear association of some bases to represent 
each data point.

The remainder of this article is organized as follows. In the Results section, TGLRR 
is exploited for clustering and feature selection on integrated gene expression data. In 
Conclusions section, conclusions and the future work are given. In Methods section, our 
TGLRR method is put forward and the optimization problem is resolved through an effi-
cient framework based on LADMAP [27].

Results
Integrative gene expression datasets

To validate the performance of TGLRR model, six clustering experiments and a feature 
selection experiment are conducted. The experimental data are integrative cancer gene 
expression data instead of single cancer data for avoiding sample imbalance problem. 
Seven different datasets are produced via integrating five different single gene expres-
sion data downloaded from The Cancer Genome Atlas (TCGA, https:// www. cancer. gov/ 
about- nci/ organ izati on/ ccg/ resea rch/ struc tural- genom ics/ tcga). The pertinent informa-
tion about the seven integrative datasets is listed in Table 1.

PAAD, ESCA, COAD, CHOL and HNSC are the abbreviations of Pancreatic Ductal 
Adenocarcinoma, Esophageal Carcinoma, Colorectal Adenocarcinoma, Cholangiocarci-
noma, Head and Neck Squamous Cell Carcinoma, respectively. Taking PAAD-COAD 

Table 1 Description about seven integrative gene expression datasets

Datasets Genes Samples Samples 
classes

PAAD-COAD 20502 176-262 2

HNSC-ESCA 20502 398-183 2

CHOL-HNSC-ESCA 20502 36-398-183 3

COAD-PAAD-ESCA 20502 262-176-183 3

PAAD-ESCA-HNSC 20502 180-192-418 3

HNSC-PAAD-CHOL-ESCA 20502 398-176-36-183 4

ESCA-COAD-CHOL-PAAD 20502 183-262-36-176 4

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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dataset for example, it is only composed of the tumor samples of PAAD and COAD 
data, in which PAAD data are made up of 176 tumor samples and 4 normal samples, 
and COAD data consist of 262 tumor samples and 19 normal samples. HNSC-ESCA, 
CHOL-HNSC-ESCA, COAD-PAAD-ESCA, HNSC-PAAD-CHOL-ESCA and ESCA-
COAD-CHOL-PAAD datasets are also made in the production way of PAAD-COAD 
dataset. But PAAD-ESCA-HNSC dataset is composed of the whole samples of PAAD, 
ESCA and HNSC.

To eliminate redundant features and avoid over-fitting, the dimension of data matrix 
X is reduced before clustering and feature selection experiment, which can also greatly 
abate the computational cost. PCA is chosen for dimension reduction experiments in 
our paper. In addition, 2000-dimensional data X are obtained after dimension reduction.

Parameters selection

There are three important parameters, i.e. regularization terms � , β and r of the TNN 
in our TGLRR model. The grid search is used to pick up the values of � , β and r. Fig-
ure 1 shows that clustering results are varied with the parameters � and β on three 
distinct integrative datasets of tumor gene expression.

X-axis represents the values range of � , Y-axis represents the values range of β , and 
Z-axis represents the clustering accuracy in Fig. 1. It can be distinctly found that the 
effect of clustering accuracy stems from β that is greater than the effect from � , espe-
cially in HNSC-PAAD-CHOL-ESCA dataset. Finally, it can be found that TGLRR 
performs well when � = 10 and β = 104 on PAAD-COAD dataset, � = 10−2 and 
β = 10 on HNSC-ESCA dataset, � = 10−2 and β = 102 on CHOL-HNSC-ESCA data-
set, � = 10−1 and β = 104 on COAD-PAAD-ESCA dataset, � = 10−2 and β = 1011 
on HNSC-PAAD-CHOL-ESCA dataset, and � = 102 and β = 1010 on ESCA-COAD-
CHOL-PAAD dataset, respectively.

Different from the method in [25] that tries all the possible values to seek the opti-
mal value of r, the method in [28] is used to choose the optimal value of r. A curve 
graph showing the singular values needs to be drawn. Figure 2 shows the summary 
curve graph on six datasets applied in clustering experiments.

X-axis indicates the number and Y-axis denotes the singular values in Fig.  2. The 
value of the first inflection point in each curve is chosen as the value of r correspond-
ing to each dataset. The principle of selecting r is that the singular values before 

Fig. 1 The clustering performance of TGLRR model versus parameter � and β . a the clustering results on 
PAAD-COAD dataset, b the results on COAD-PAAD-ESCA dataset, c the results on HNSC-PAAD-CHOL-ESCA 
dataset
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inflection point are bigger than the singular values after inflection point. Therefore, 
the values of r on PAAD-COAD, HNSC-ESCA, CHOL-HNSC-ESCA, COAD-PAAD-
ESCA, HNSC-PAAD-CHOL-ESCA and ESCA-COAD-CHOL-PAAD datasets are set 
as 2, 3, 3, 2, 2 and 3, respectively.

Convergence analysis

Since Algorithm  1 is a practical application based on LADMAP framework whose 
convergence has been proved in [27], Algorithm 1 should also be convergent. Many 
approaches are able to demonstrate the convergence property of algorithms [23, 29]. 
In our paper, an efficient approach in [29] by means of auxiliary function is exploited 
to validate the convergence property of TGLRR method. The results are exhibited in 
Fig. 3.

The abscissa in Fig. 3 indicates the iteration number and the ordinate denotes the loss 
function value. As shown in Fig. 3, our model is convergent. The TGLRR method begins 
to converge after 30 iterations on two datasets, such as HNSC-ESCA and CHOL-HNSC-
ESCA. On other four datasets, the TGLRR method converges in 40 iterations. Here, the 
HNSC-ESCA dataset may be easily addressed, so our method begins to converge on the 
two datasets after 30 iterations while it needs 40 iterations on the other four datasets.

Clustering results

In this subsection, the TGLRR is applied for clustering, and compared with K-means, 
LLRR [14], LRR [30], RPCA [5], DGLRR [31], and LatLRR [22].

In respect of the dictionary matrix X, the optimal solution Z∗ to TGLRR is able to 
symbolize “the minimum rank representation” of the data matrix X. What’s more, the 
i-th column about Z could be regarded as a “better” reflection of the i-th column about 
X so as to make the subspace structure more easily detectable [31]. Namely, the optimal 

Fig. 2 The singular values on six distinct matrices
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solution Z∗ could include almost all the sample information about integrative gene 
expression data X. Therefore, Z∗ can be used for clustering experiments by K-means.

To measure the performance of our approach, three quantity metrics are adopted in 
this paper, i.e., accuracy (ACC), normalized mutual information (NMI) and F-measure. 
As a widely used metric in machine learning field, ACC can be defined as follows:

where n indicates the total number of tumor samples in an integrated data, δ
(

x, y
)

 is a 
delta function set to 1 only when x = y and 0 otherwise, L̂(i) denotes true class label of 
the i-th sample, and li represents the cluster label produced by the algorithms. Map(li) is 
a mapping function permuting every li to match real sample label.

The second index of NMI is defined by

where T and T̂  denote two different tumor index sets separately. H(T) and H
(

T̂
)

 rep-

resent the entropy in T and T̂  , respectively. And 
MI

(

T, T̂
)

=
∑

t∈T

∑

t̂∈T̂

P
(

t, t̂
)

log P
(

t, t̂
)/(

P(t)P
(

t̂
))

 where P(t) is the marginal probability 

distribution function, namely, the probabilities that a tumor sample arbitrarily chosen 
from an integrated dataset belongs to cluster T. In addition, MI

(

T, T̂
)

 indicates the joint 

probabilities that a tumor sample belongs to the two clusters T and T̂ simultaneously.
F-measure is the comprehensive evaluation index considering both precision and 

recall, and written as:

(1)
ACC =

∑n
i=1 δ

(

∧

L (i),Map(li)

)

n
,

(2)NMI
(

T, T̂
)

= MI
(

T, T̂
)/

max
(

H(T), H
(

T̂
))

,

Fig. 3 Convergence curves of TGLRR on gene expression data
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where recall = TP
/

(TP+ FN) and precision = TP
/

(TP+ FP) . TP, FP, TN and FN indi-
cate the true-positive, false-positive, true-negative and false-negative, respectively.

To prove the effectiveness of TGLRR, the detailed clustering results of these methods 
on integrative tumor gene expression data are listed by three tables. In tables, the val-
ues about ACC, NMI and F-measure are the average of 100 clustering results of each 
approach, and the values on the right of ± are the variance of 100 results.

Table  2 reports the clustering results on PAAD-COAD and HNSC-ESCA datasets. 
Obviously, our TGLRR method exceeds other six comparison methods on PAAD-
COAD dataset. TGLRR is more robust than other six methods on PAAD-COAD dataset 
from the point of the variance values. HNSC-ESCA data are extraordinary and may be 
easily addressed, in which the clustering results about all algorithms are good and par-
ticularly the evaluation indices of RPCA and TGLRR are 1.

The clustering results on two integrated datasets containing three types of tumors are 
exhibited in Table 3. It can be seen that the clustering performance of TGLRR model 
outperforms other models on COAD-PAAD-ESCA dataset. On CHOL-HNSC-ESCA 
dataset, TGLRR’s ACC, NMI and F-measure values are higher than values obtained 
via other five models except for LRR. Consequently, it still can be said that the TGLRR 
method outstrips other methods on CHOL-HNSC-ESCA dataset.

From Table 4, our TGLRR method outmatches other six methods on HNSC-PAAD-
CHOL-ESCA and ESCA-COAD-CHOL-PAAD datasets.

(3)F−measeure = 2 · (recall · precision)
/

(recall+ precision),

Table 2 The clustering results on PAAD-COAD and HNSC-ESCA integrative data

PAAD-COAD HNSC-ESCA

ACC(%) NMI(%) F-measure(%) ACC(%) NMI(%) F-measure(%)

K-means 91.57 ± 0.89 68.77 ± 4.24 91.62 ± 1.01 99.36 ± 0.05 98.00 ± 0.50 98.81 ± 0.18

LLRR 93.95 ± 0.29 71.59 ± 1.29 93.83 ± 0.26 99.83 ± 0.00 98.07 ± 0.00 99.80 ± 0.00

LRR 93.63 ± 0.57 70.70 ± 2.52 93.64 ± 0.51 99.83 ± 0.00 98.07 ± 0.00 99.80 ± 0.00

RPCA 93.81 ± 0.46 71.09 ± 2.27 93.81 ± 0.42 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

DGLRR 94.14 ± 0.40 71.98 ± 1.80 94.13 ± 0.47 99.83 ± 0.00 98.07 ± 0.00 99.80 ± 0.00

LatLRR 93.76 ± 0.33 71.46 ± 1.50 93.77 ± 0.29 99.83 ± 0.00 98.07 ± 0.00 99.80 ± 0.00

TGLRR 95.15 ± 0.00 74.44 ± 0.00 95.10 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Table 3 The clustering results on CHOL-HNSC-ESCA and COAD-PAAD-ESCA data

CHOL-HNSC-ESCA COAD-PAAD-ESCA

ACC (%) NMI (%) F-measure (%) ACC (%) NMI (%) F-measure (%)

K-means 83.49 ± 1.77 76.23 ± 3.47 77.05 ± 3.42 83.61 ± 3.25 76.11 ± 2.85 81.95 ± 4.28

LLRR 96.73 ± 0.80 94.80 ± 1.26 94.69 ± 2.09 87.07 ± 2.23 79.50 ± 1.46 86.19 ± 2.94

LRR 97.13 ± 0.42 95.32 ± 0.61 96.16 ± 0.82 88.16 ± 1.98 80.27 ± 1.48 87.47 ± 2.53

RPCA 85.40 ± 2.64 81.43 ± 4.16 81.26 ± 4.59 85.59 ± 2.72 78.85 ± 2.39 83.98 ± 3.49

DGLRR 94.70 ± 1.03 92.33 ± 1.78 91.63 ± 2.62 86.14 ± 2.38 78.67 ± 1.82 84.93 ± 3.11

LatLRR 93.94 ± 1.57 91.37 ± 2.46 91.57 ± 3.32 87.16 ± 2.52 79.33 ± 1.93 86.16 ± 3.30

TGLRR 98.37 ± 0.00 90.58 ± 0.03 96.09 ± 0.01 92.82 ± 0.77 79.51 ± 0.93 92.62 ± 0.91
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Feature selection

Cancers are commonly relevant to gene mutation or abnormal expression of genes. 
Thus, in this subsection, the TGLRR method is used to identify co-feature genes of 
PAAD, ESCA and HNSC from PAAD-ESCA-HNSC dataset.

From the formula (14), a minimum solution G∗ can be got from an integrative gene 
expression data X via TGLRR scheme. G∗ can obtain the feature manifold structure lying 
in data. As a result, it can be applied in feature gene extraction. From the view of cancer, 
its pathogenesis may be related to gene mutation [32]. It is extremely meaningful to find 
out the feature genes inducing cancers from gene expression data.

Similar to the subsection of Parameters Selection,  10−2,  103 and 4 are assigned to � , β and r.
Table 5 exhibits the top 10 co-feature genes with the mean of highest relevance score 

distinguished by the TGLRR method from PAAD-ESCA-HNSC dataset. The related 
diseases, related pathways and coded proteins about these genes are gotten from Gene-
Cards (https:// www. genec ards. org/). These genes are most likely to lead to PAAD, ESCA 
and HNSC simultaneously.

From Table 5, clearly, CDH1 gene with the highest relevance score can result in a host 
of cancers, which indicates that CDH1 may be a dangerous co-feature gene. What’s 
more, PAAD, ESCA and HNSC are all correlative with CDH1 and RHOA, which can be 
affirmed from [33–38]. It is a verifiable fact that TGFB1 and RELA all serve as a predic-
tor for PAAD and ESCA via consulting some literatures. Some data show that PTPN11 
may induce HNSC and PAAD. From [39, 40], it can be seen that ESCA is relevant to 
IGF2R and RUNX1. In addition, the related pathways of RUNX1 and EWSR1 include 
transcriptional misregulation in cancer. So, RUNX1 and EWSR1 may be co-characteris-
tic genes of PAAD, ESCA and HNSC.

All in all, the TGLRR method is successful in identifying co-characteristic genes on the 
integrative gene expression datasets.

Discussions
The TGLRR method is applied to the tumor clustering and gene selection, and superior 
to the other methods. Based on above results, it can be affirmed that the TNN could 
capture more valuable information existed in data than the nuclear norm from data. By 
comparing the results of DGLRR, a conclusion can be drawn that the graph Laplacian 
regularization imposed on feature manifold may cause adverse effects for clustering 

Table 4 The clustering results on HNSC-PAAD-CHOL-ESCA and ESCA-COAD-CHOL-PAAD data

HNSC-PAAD-CHOL-ESCA ESCA-COAD-CHOL-PAAD

ACC (%) NMI (%) F-measure (%) ACC (%) NMI (%) F-measure (%)

K-means 78.42 ± 0.94 71.34 ± 1.03 72.19 ± 1.92 82.49 ± 2.15 77.01 ± 1.76 75.71 ± 3.30

LLRR 87.66 ± 0.94 75.56 ± 0.40 86.90 ± 2.04 84.41 ± 2.07 80.24 ± 1.22 82.60 ± 2.73

LRR 88.63 ± 0.39 75.89 ± 0.21 89.16 ± 0.81 87.40 ± 2.05 82.52 ± 1.20 87.62 ± 2.17

RPCA 84.85 ± 1.54 80.29 ± 1.50 81.72 ± 2.57 83.39 ± 1.73 79.28 ± 1.31 76.86 ± 3.10

DGLRR 86.68 ± 0.85 75.22 ± 0.41 84.99 ± 1.94 85.99 ± 2.26 81.52 ± 1.39 84.01 ± 3.13

LatLRR 85.14 ± 1.02 73.96 ± 0.43 84.26 ± 2.21 86.04 ± 1.85 81.49 ± 1.14 82.37 ± 1.94

TGLRR 93.46 ± 0.93 82.83 ± 0.75 90.90 ± 1.20 90.62 ± 1.53 79.87 ± 1.49 90.34 ± 1.64

https://www.genecards.org/
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on our integrative datasets. The TGLRR method has some limitations. For example, on 
HNSC-PAAD-CHOL-ESCA dataset, the variance values of TGLRR is larger than LRR. It 
may be caused by the integrated datasets and its stability needs to be improved in future.

In a word, these improvements to the prevenient LRR model can help TGLRR catch 
more useful information concealed in the low-dimensional manifold structure.

Conclusions
The paper proposes a Low-Rank Representation approach called TGLRR. It can capture 
the global and local geometric structures in data manifold via using the raw data matrix as 
the dictionary matrix and introducing the graph-Laplacian regularization term. Further-
more, TGLRR can gain a better approximation to the rank operator than the approaches 
regularized by the nuclear norm. The objective function of TGLRR is perfectly resolved 
through an iterative algorithm based on LADMAP framework. The efficiency and robust-
ness of our TGLRR method are testified through the encouraging experimental results.

Methods
Related LRR methods

Based on the assumption that the observation data X are sampled from a union of several 
low-dimensional subspaces S =

∑

S1, S2, . . . , Sk located in a high-dimensional spaces, LRR 
was raised in [16]. If data are noiseless, the rank minimization problem of LRR is written into

Table 5 The top 10 genes selected via TGLRR on PAAD-ESCA-HNSC

Take the contents in the second column of the second row as an example, the first, second and third numeral are the 
relevance score of CDH1 gene to PAAD, ESCA and HNSC, respectively, and the fourth is the mean

Gene ED Relevance score Related diseases Coded proteins

CDH1 101.03, 96.95, 124.3, 107.43 Gastric, breast, colorectal, thyroid 
and ovarian cancer

Cadherin superfamily

TGFB1 73.21, 44.14, 76.66, 64.67 Camurati-Engelmann disease, 
Encephalopathy, Inflammatory 
Bowel Disease and Immunode-
ficiency

Transforming Growth Factor-Beta 
Superfamily of Proteins

RELA 27.63, 11.33, 41.36, 26.77 Mucocutaneous Ulceration, 
Chronic and Ependymoma

Transcription Factor

ANXA5 26.80, 10.31, 42.30, 26.47 Pregnancy Loss, Recurrent 3 and 
Antiphospholipid Syndrome

Calcium-Dependent Phospholipid 
Binding Proteins

RHOA 27.48, 11.81, 31.46, 23.58 Adenocarcinoma and Peripheral 
T-Cell Lymphoma

Rho Family of Small GTPases

PTPN11 13.04, 13.56, 43.23, 23.28 Noonan Syndrome 1 and Juvenile 
Myelomonocytic Leukemia

Protein Tyrosine Phosphatase

CTNNA1 20.94, 19.40, 24.80, 21.71 Macular Dystrophy, Patterned, 2 
and Butterfly-Shaped Pigment 
Dystrophy

Cell Adhesion Process Protein

IGF2R 13.40, 19.07, 25.26, 19.24 Hepatocellular Carcinoma and 
Inclusion-Cell Disease

Receptor for Both Insulin-Like 
Growth Factor 2 and Mannose 
6-Phosphate

RUNX1 10.85, 12.97, 25.61, 16.48 Platelet Disorder, Familial, with 
Associated Myeloid Malignancy, 
leukemia and Isolated Delta-
Storage Pool Disease

Transcription Factor

EWSR1 12.55, 9.19, 27.33, 16.36 Ewing Sarcoma and Desmoplastic 
Small Round Cell Tumor

Multifunctional Protein
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where X = [x1, x2, · · · , xn] ∈ Rm×n is the original data matrix and Z ∈ Rn×n is a low-
rank matrix recovered from X via LRR. D ∈ Rm×n is a basis matrix (or named dictionary 
matrix), which spans the whole data space linearly. The observation data generally exist 
more or less noise in real life, so the optimization problem (4) may be impracticable. The 
LRR model with noise is

where P ∈ Rm×n is the reconstruction errors matrix (or called noise matrix). � is a pen-
alty parameter aiming to adjust the sparsity of matrix P and the reconstruction fidelity 
of data matrix X damaged by errors matrix P. ‖P‖0 is the  L0-norm of matrix P, which 
indicates the number of non-zero elements in matrix P.

Since the rank function is discrete, the problem (5) may have multiple solutions and 
the L0-minimization is non-convexity and intractable. Usually, solving the problem (5) 
is NP-hard [41]. To better solve the above rank minimization problem, the nuclear norm 
is imposed on the low-rank matrix, and the L0-norm is replaced with the L2,1-norm [17]. 
The convex optimization problem about LRR model is written as follows:

where �Z�∗ =
∑min (m,n)

i σi(Z)(δi(Z) is the i-th largest singular value of Z) denotes the 
nuclear norm of matrix Z, and �P�2,1 =

∑m
i=1

(

∑n
j=1 m

2
ij

)1/2
 denotes the L2,1-norm of 

matrix P. To get a self-expression model, the observation data X are generally installed 
as the dictionary matrix [13, 14, 22]. The final LRR model becomes

For low-rank matrix Z = [z1, z2, · · · , zn] , its each element zij can reflect the manifold 
information, i.e. the similarity between the data point xi and the data point xj . There-
fore, matrix Z can be seen as an affinity matrix [14]. LRR is devoted to seek the lowest 
rank representation of the observation data. With the help of an appropriate dictionary 
matrix, the underlying row space can be recovered via the lowest rank representation 
such that the true segmentation of data can be correctly revealed. Thus, LRR method 
can manage the data extracted from a union of multiple subspaces well [17].

Nevertheless, LRR method has to face two issues owing to the raw data X that are 
used as the basis. First, LRR method requires that the basis contains adequate data sam-
ples from the subspaces so as to possess the capacity of representing the underlying sub-
spaces. Second, LRR method demands that noise of data X is little, i.e. only a part of X is 
corrupted. To remedy these two shortcomings of LRR, Liu et al. proposed the following 
convex optimization LRR problem [22]:

(4)min
Z

rank(Z), s. t.X = DZ,

(5)min
Z,P

rank(Z)+ ��P�0, s. t.X = DZ+ P,

(6)min
Z,P

�Z�∗ + ��P�2,1, s. t.X = DZ+ P,

(7)min
Z,P

�Z�∗ + ��P�2,1, s. t.X = XZ+ P.

(8)min
Z,G,P

�Z�∗ + �G�∗ + ��P�1, s. t.X = XZ+GX + P,
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where �P�1 =
∑n

i=1

∑m
j=1

∣

∣

∣
pij

∣

∣

∣
 is the L1-norm of matrix P and G is the feature matrix 

separated from the original X. Equation  (8) is a state-of-the-art LRR-based subspace 
learning model, named LatLRR. By means of LatLRR model, the observed sampling can 
be expressed via many unobserved sampling effectively [42]. In practical application, Z 
and G are applied in cluster analysis and feature selection, respectively.

Truncated nuclear norm (TNN)

The TNN is the summation of a few smaller singular values, i.e. the sum of some largest 
singular values is subtracted from the nuclear norm [24]. As an approximation of a rank 
operator, the largest r-th singular values could produce minor amount of information, 
meanwhile, the minimal (min (m, n)− r)-th singular values act a crucial role [23]. Com-
pared to the nuclear norm, the TNN may be a better approximation to the rank operator. 
Its mathematical formula is

where δi(Z) denotes the i-th largest singular value belongs to Z and r is a nonnegative 
integer and r ≤ min(m, n).

Since the minimization of Eq. (9) is not convex, it cannot be directly resolved through the 
approaches. For overcoming this issue, Hu et al. come up with a theorem [25]. According to 
the Theorem, the equivalent transformation of Eq. (9) is achieved.

Graph-Laplacian regularization

Graph-Laplacian regularization is an outstanding manifold learning method, which can 
uncover the internal geometrical structures among the data points. As a result, naturally, 
appears a number of LRR models regularized by graph embedding manifold regularization 
[13, 43].

Given a k-nearest-neighbor graph G, suppose it has n vertices, and each vertex denotes a 
data point hidden in an underlying sub-manifold M [11]. Then, a symmetric weight matrix 
W ∈ Rn×n is constructed, where wij expresses the i weight of the edge linking vertices i and 
j. The value of every wij can be calculated via

where Nk

(

dj
)

 indicates the k-nearest-neighbors of data point dj.
Next, a diagonal matrix O, termed a degree matrix, need to be established. The value of 

the i-th member of O can be calculated by the sum of all the similarities associated with 
vertex dj , i.e. oii =

∑

j wij . The graph-Laplacian matrix L can be obtained by

Finally, the graph embedding regularization term can be formulated by

(9)�Z�r =
∑min (m,n)

i=r+1
δi(Z),

(10)�Z�r =
∑min (m,n)

i=r+1
δi(Z) = �Z�∗ − max

AAT=I,BBT=I
Tr

(

AZBT
)

.

(11)wij=

{

1, if yi ∈ Nk

(

dj
)

or yj ∈ Nk(di),
0, otherwise,

(12)
L = O−W.



Page 12 of 17Liu  BMC Bioinformatics          (2021) 22:436 

Truncated nuclear norm and graph-Laplacian regularized low-rank representation method

Motivated by strengthening the robustness of LRR, our method (TGLRR) is put forward. 
Considering that some data may exist nonlinear geometric structure [14] and the disadvan-
tages about the nuclear norm, the TNN and graph embedding manifold learning are intro-
duced into our rank minimization problem to extract more essential information hidden in 
data. The objective function of TGLRR is formulated as follows:

where β ≥ 0 and � ≥ 0 are the regularization parameters for balancing the contribu-
tion of each term.

Essentially, TGLRR can get a more precise approximation to the rank function with 
the help of the TNN than the nuclear norm. And the underlying low-dimensional 
structures of data could be captured by the aid of the graph-Laplacian regularization 
and the basis matrix X.

Optimization solution

To correctly solve the optimization problem of (14), an efficient iterative algo-
rithm based on LADMAP framework is designed. The algorithm (Algorithm  1) is 
implemented via alternating two iterative procedures till Eq.  (14) converges to the 
minimum.

The first step is to determine matrix A and B.
Step 1: Given Zk (k indicates the k-th updating), the SVD (Singular Value 

Decomposition) of Zk need to be conducted. [Uk ,�k ,Vk ] = SVD(Zk) , where 
Uk = (u1,u2, . . . ,um) ∈ Rm×m , �k ∈ Rm×n and Vk = (v1, v2, . . . , vm) ∈ Rn×n . Ak and 
Bk are calculated via Ak = (u1,u2, . . . ,ur)

T  and Bk = (v1, v2, . . . , vr)
T .

The second step is to resolve the following convex optimization problem:

Step 2: To achieve the separation of objective function (15), an auxiliary variable F 
is introduced. Equation (15) is rewritten as follows:

Equation  (16) can be solved through LADMAP method, which introduces two 
Lagrangian multipliers Y1 and Y2. Thus, the augmented Lagrangian function can be 
defined as

(13)Tr
(

ZLZT
)

.

(14)
min �Z�∗ − max

AAT=I,BBT=I
Tr

(

AZBT
)

+ �G�∗ +
β

2
Tr

(

ZLZT
)

+ ��P�1,

s. t.X = XZ+GX + P,

(15)
[Z,G,P] = arg min

Z,G,P
�Z�∗ − Tr

(

AZBT
)

+ �G�∗ +
β

2
Tr

(

ZLZT
)

+ ��P�1,

s. t.X = XZ+GX + P.

(16)
min �Z�∗ − max

AAT=I,BBT=I
Tr

(

AFBT
)

+ �G�∗ +
β

2
Tr

(

ZLZT
)

+ ��P�1,

s. t.X = XZ+GX + P,Z = F.
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where µ is the penalty parameter and �·�2F  denotes the Frobenius norm of a matrix 
that is �X�2F =

∑m
i=1

∑n
j=1

∣

∣xij
∣

∣

2.
Next, the alternating minimization strategy is adopted to compute Z, F, G and P. 

In the iterative procedure, Z, F, G or P is updated when the other three variables are 
fixed, respectively.

Updating Z
To get the solution of Z, the below minimization objective w.r.t. Z needs to be solved.

Equation (18) has a closed-form solution:

where �(·) indicates the Singular Value Thresholding operator (SVT), 
∇zq(Zk) =

β
2

(

ZL
T + ZL

)

+ µk

(

Z− Fk +
Y
2

k
/

µk

)

 + µkX
T
(

XZ− X +GkX + Pk − Y1
k

/

µk

)

 

and η1 = β�L�2 + µk

(

1+ �X�22
)

.

Updating G
Similar to the solution of Z, the SVT operator is employed in computing G. The opti-

mal solution G∗
k+1 is

where ∇gq(Gk) = µk

(

XZk+1 − X +GkX + Pk − Y2
k

/

µk

)

XT and η2 = µk�X�
2
2.

Updating F
The below sub-problem w.r.t. F is

Equation (21) is the smooth convex planning problem. Different to the solving rules of 
Z and G, we can differentiate Eq. (21) and set it to zero to gain the answer of F. Its opti-
mal solution is

Updating P

(17)

L
(

Z, G, F, P, µ, Y1, Y2
)

= �Z�∗ − Tr
(

AFBT
)

+ �G�∗

+
β

2
Tr

(

ZLZT
)

+ ��P�1 +
〈

Y1, X − XZ−GX − P
〉

+
〈

Y2, Z− F
〉

+µ
/

2�X − XZ−GX − P�2F + µ
/

2�Z− F�2F ,

(18)

Zk+1 = arg min
Z

L
(

Z, Gk , Fk , Pk , µk , Y
1
k
, Y2

k

)

= arg min
Z

�Z�∗ +
β

2
Tr

(

ZLZT
)

+
〈

Y1
k , X − XZ−GkX − Pk

〉

+
〈

Y2
k
, Z− Fk

〉

+µk

/

2�X − XZ−GkX − Pk�
2
F + µk

/

2�Z− Fk�
2
F .

(19)Z∗
k+1 = �1/η1µk

(

Zk − ∇zq(Zk)
/

η1
)

,

(20)G∗
k+1 = �1/η2µk

(

Gk − ∇zq(Gk)
/

η2
)

,

(21)
Fk+1 = arg min

F
L
(

Zk+1, Gk+1, F, Pk , µk , Y
1
k
, Y2

k

)

= arg min
F

−Tr
(

Ak+1FBk+1

)

+
〈

Y2
k
, Zk+1 − Fk

〉

+µk

/

2
∥

∥Zk+1 − Fk
∥

∥

2

F
.

(22)Fk+1 = Ak+1B
T
k+1

/

µk + Zk+1 + Y2
k
.
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Calculating P has to optimize the following objective:

The optimal solution to the above sub-problem w.r.t. P can be formulated by

S�/µk
(·) is the shrinkage operator defined as S�/µk

(·) = U��/µk
VT , 

��/µk
= diag

(

max
{

σi − �
/

µk

}

, 0
)

.
Updating µk, Y1

k
 and Y2

k

After computing the above variables, two Lagrange multipliers Y1
k
 and Y2

k
 are given by

The iteration rule about µk is

The detailed algorithm about TGLRR model is showed in Algorithm 1.

Input: Data matrix X and parameters 0 ,    ,max 1 2,λ, β µ , µ ε ε .
Output: ,  ,  Z F G and P .
While not converged do
Step 1:

Compute [ ] ( )1 1 1,  ,  SVDk k k k+ + + =U Σ V Z , ( )1 1 2= , , , T
rk+A u u uL and 

( )1 1 2= , , , T
rk+B v v vL .

Step 2:
1) Update 

1k+
Z by Eq.(19)

2) Update 
1k+

G by Eq.(20)
3) Update 1k+F by Eq.(21)
4) Update 1k+P by Eq.(24)
5) Update 1

+1kY and 2
+1kY by Eq.(25)

6) Update 1kµ + by Eq.(26)
7) Verifying convergence, if

1 1 1k k ε+ +− − <X XZ G X X and

{ }1 1 1 2 1 1 1max , , ,k k k k k k k k k 2+ + + + +µ ⋅ η − η − − − ≤ εZ Z G G F F P P

End While

(23)

Pk+1 = arg min
P

L
(

Zk+1, Gk+1, Fk+1, P, µk , Y
1
k
, Y2

k

)

= arg min
P

��P�1 + µk
/

2

∥

∥

∥

∥

∥

P−

(

X − XZk+1 −Gk+1X +
Y1

k

µk

)
∥

∥

∥

∥

∥

2

F

.

(24)Pk+1 = S�/µk

(

X − XZk+1 −Gk+1X + Y1
k

/

µk

)

.

(25)

{

Y1
k+1 = Y1

k + µk+1

(

X − XZk+1 −Gk+1X − Pk+1

)

,

Y2
k+1 = Y2

k + µk+1

(

Zk+1 − Fk+1

)

.

(26)

µk+1 = min (µmax, ρkµk).

ρk =







ρ0, if µk ·max

�

η1
�

�Zk − Zk+1

�

�, η2
�

�Gk −Gk+1

�

�

�

�Fk − Fk+1

�

�,
�

�Pk − Pk+1

�

�

�

≤ ε2,

1, otherwise.
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Time complexity

In this subsection, the time complexity about TGLRR is discussed. Clearly, the main 
running time of TGLRR is expended on calculating the matrices Z, F, G and P. For the 
m× n input data matrix X, it has m genes and n samples. The time complexity of SVD 
method with respect to Z is O

(

rZn
2
)

 ( rZ is the lowest rank of Z decided by algorithm 1). 
For the same activity, the time complexity of SVD decomposition of G is O

(

rGm
2
)

 . The 
optimal solution of F can be obtained in O(rmn) . In the resolving procedure of P, Y1 also 
needs to be updated. The computational cost of P and Y1 needs O

(

mn2 +mrPn
)

 and 
O
(

nm2
)

 , respectively. Since, m >> n in our dataset, the total time cost of algorithm 1 is 
O
(

nm2
)

.
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