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Abstract MicroRNAs (miRNAs) are a class of non-coding RNA molecules with presumed post-

transcriptional regulatory activity in various biological processes, such as development and

biomineralization. Pinctada martensii is one of the main species cultured for marine pearl produc-

tion in China and Japan. In our previous research, 258 pm-miRNAs had been identified by solexa

deep sequencing in P. martensii, while it is far from the number of miRNAs found in other species.

In this study, based on the transcriptome database of pearl sac, we identified 30 candidate pm-

miRNAs by computational prediction. Among the obtained 30 pm-miRNAs, 13 pm-miRNAs were

generated from the complementary strand of protein-coding mRNAs, and 17 pm-miRNAs could

not be annotated using blastx and tblastn analysis. Notably, 10 of the 30 pm-miRNAs, such as

pm-miR-1b, pm-miR-205b and pm-miR-375b, were homologous with the reported pm-miRNAs,

respectively. To validate the existence of the identified pm-miRNAs, eight randomly selected

pm-miRNAs were tested by stem loop quantitative RT-PCR analyses using 5.8S as the internal

reference gene. Target prediction between the obtained pm-miRNAs and biomineralization-related

genes by microTar, miRanda and RNA22 indicated pm-miR-2386 and pm-miR-13b may be the key
ngdong
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factors in the regulation network by regulating the formation of organic matrix or the differentia-

tion of mineralogenic cell during shell formation. Thus, this study enriched miRNA databases of

pearl oyster and provided a new way to understand biomineralization.

ª 2015 TheAuthors. Production and hosting by Elsevier B.V. on behalf ofKing SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

MicroRNAs (miRNAs) are a class of about 18–24 nucleotide
non-coding RNA molecules that are negative regulators of tar-
get genes via complementary base-pair interactions in a variety
of eukaryotic organisms (Yu et al., 2012). MiRNAs originate

from the primary transcripts (pri-miRNA), which were tran-
scribed by polymerase II or III and then processed by
RNAase-III-like enzyme (Drosha) to produce hairpin precur-

sor miRNAs (pre-miRNA). Pre-miRNAs are then exported
into the cytoplasm, wherein pre-miRNAs are further cleaved
by a second RNAase-III-like enzyme (Dicer) to form mature

miRNA (Hinske et al., 2010).
In order to identify newer miRNAs, direct cloning, solexa

deep sequencing and computational techniques have been
widely used in many species. The direct cloning method is con-

sidered as an efficient way to obtain highly expressed miRNAs,
while it is difficult to find miRNAs expressed at a low level.
Solexa deep sequencing is preferably used to find lowly

expressed miRNAs and species-specific miRNAs, while some
miRNAs are hard to sequence due to their physical properties
or post-transcriptional modifications, such as editing or

methylation. It is well known that many miRNAs are evolutio-
narily conserved from species to species. This suggests a
powerful strategy for identifying miRNAs in specific species

through the computational technique based on the highly con-
served sequences in mature miRNAs. And many miRNAs in a
variety of species have been successfully identified by com-
putational searches (He et al., 2008a; Huang et al., 2010;

Sheng et al., 2011; Zhang et al., 2012b).
Pinctada martensii, one of the most important components

of molluscan mariculture, was primarily cultured for pearl

production in China and Japan. It is an outstanding
model organism for elucidating the mechanism underlying
biomineralization. In our previous research, using deep solexa

sequencing technology, 258 P. martensii miRNAs (pm-
miRNA) were identified (Jiao et al., 2014). However, the
number of the identified pm-miRNA was still less than in other

animal species. In this study, we hope to get more candidate
pm-miRNAs using computational technology based on the
transcriptome database of pearl sac from P. martensii in our
previous research (Zhao et al., 2012). Furthermore, we

assessed the potential function of the predicted pm-miRNAs
in biomineralization. This study provided insights into the
mechanism underlying biomineralization in pearl and shell for-

mation of pearl oyster P. martensii.

2. Materials and methods

2.1. Experimental samples and RNA extraction

Pearl oyster P. martensii (about 2 years of age) were collected
from Liushagang, Zhanjiang, Guangdong Province of China.
The pearl sacs were collected from pearl oyster and
immediately stored in liquid nitrogen until used. Total RNAs
were extracted using Trizol reagent. The integrity of RNA

was determined by 1.2% formaldehyde-denatured agarose
gel and staining with ethylene bromide. The quantity of
RNA was determined by measuring OD260/OD280 with

NanoDrop ND1000 Spectrophotometer.

2.2. Reference sequence data and employed software

The animal mature miRNAs were downloaded from
miRNA database (http://www.mirbase.org/, released 20).
Biomineralization-related genes were downloaded from NCBI
GenBank. Comparative software (BLASTN) was downloaded

from NCBI GenBank. The secondary structures of miRNA
precursors were processed by Mfold (http://mfold.rna.albany.
edu/?q=mfold/RNA-Folding-Form). Target analyses between

miRNAs and biomineralization-related genes were analyzed by
microTar (http://tiger.dbs.nus.edu.sg/microtar /running.html),
miRanda algorithm (http://www.microrna.org/microrna/

getDownloads.do) and RNA22 (https://cm.jefferson.edu/
rna22v2/).

2.3. Prediction of miRNAs

The sequences used for pm-miRNA prediction were derived
from the transcriptome database of pearl sac from P. martensii
(Zhao et al., 2012). Procedures of searching for candidate

pm-miRNAswere performed as described previously with some
modification. Five criteria were used to predict mature
pm-miRNAs and pre-pm-miRNAs: (1) predicted mature pm-

miRNAs were allowed to have only 0–4 bp mismatches in
sequence with known animal mature miRNAs; (2) the mis-
matched nucleotides were not permitted in the miRNA seed

sequence (2–8 bp); (3) pre-pm-miRNAs sequence can fold into
an appropriate hairpin secondary structure that contains
mature pm-miRNA sequence within one arm of the hairpin
and have the smallest folding energy; (4) the predicted

pm-miRNA hairpin is on the same stem of the hairpin as the
blast source of the candidate miRNA hairpin; (5)
miRNA::miRNA* duplex mismatches were restricted to eight

or fewer.

2.4. Identification of pm-miRNAs using stem-loop qRT-PCR

Stem loop qRT-PCR analysis was employed to validate and
determine the specific expression of pm-miRNAs with 5.8S
as the internal control (Kolachala et al., 2010). Stem-loop

RT primers, real-time PCR primers were designed as pre-
viously described (Chen et al., 2005a). All the primers used
in this study are listed in Table 1. The relative expression of
mature pm-miRNAs was calculated with the 2(Dct), and the

relative expression of primary miRNAs was represented with
reads per kilo bases per million reads (RPKM) calculated by
reads in pearl sac transcriptome.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2.5. Target prediction for biomineralization-related genes

Biomineralization-related genes in P. martensii were down-
loaded from NCBI GenBank. Target analysis between the
candidate pm-miRNAs and the biomineralization-related

genes was performed using microTar (Thadani and Tammi,
2006), miRanda (Enright et al., 2004) and RNA22
(Miranda et al., 2006). When used microtar algorithm, the
dimer–monomer energy difference (g) was used to estimate

the necessary in duplex formation. It was considered as the
functional targets only when g 6 �5. Functional target genes
of miRNAs using the miRanda algorithm were restricted

with score P100 and free energy 6�10 kcal/mol. And the
RNA22 was used to determine the most favorable hybridiza-
tion site between miRNA and mRNA with sensitivity of

63%, specificity of 61%, and seed size of 7, allowing the
maximum of 1 un-paired bases in the seed, the minimum
number of paired-up bases in heteroduplex P12, the maxi-

mum folding energy for heteroduplex 6�12 kcal/mol.

3. Results

3.1. Identification of candidate pm-miRNAs

After eliminating the reported pm-miRNAs, a total of 30 pm-

miRNAs were identified according to the criteria described in
Section 2. The length range of the predicted pm-miRNAs was
17–25 bp. The number of sequences with 19 bp and 22 bp was

significantly higher than others (Fig. 1). The free energies of
the secondary hairpin structures ranged from �13.20 to
�30.0 kcal/mol. The hairpin structures of those are shown

in Fig. S1. Among the identified 30 pm-miRNAs, 13 pm-
miRNAs were generated from the complementary strand of
protein-coding mRNAs by blastx analysis (Table S1), indicat-

ing the potential origination of some pm-miRNAs. And the
other 17 pm-miRNAs could not be annotated using blastx
and tblastn analysis. Notably, 10 of the 30 pm-miRNAs were
homologous with those reported in our previous research. To

discriminate these pm-miRNAs from the reported ones, we
designated these pm-miRNAs as pm-miR-1b, pm-miR-13b
and pm-miR-138b, pm-miR-205b, pm-miR-1638b, pm-miR-

989b, pm-miR-4039b, pm-miR-135b, pm-miR-375b and
pm-miR-1892b. The remaining 20 miRNAs were novel pm-
miRNAs without identity to the reported pm-miRNAs.
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Figure 2 Expression Levels of eight randomly selected pm-

miRNAs. Mature pm-miRNAs were detected by stem loop qRT-

PCR using 5.8S as the internal reference gene. Pri-pm-miRNAs

were validated by the RPKM of the unigenes in the transcriptome

database of pearl sac in P. martensii.
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3.2. Validation of pm-miRNAs by stem-loop qRT-PCR

In order to validate the presence of the candidate pm-miRNAs
in this study, we randomly selected eight pm-miRNAs and per-
formed stem loop qRT-PCR analyses using 5.8S as the internal

reference gene. All of the selected pm-miRNAs could be
detected easily with the maximal CT = 30. Pm-miR-1b
(CT = 13) and pm-miR-669n (CT = 14) showed the highest
expression levels compared with other pm-miRNAs.

All the obtained pm-miRNAs were predicted from the uni-
genes in the transcriptome database of pearl sac in P. martensii,
thus the RPKMof the unigenes represented the expression level

of pri-miRNAs. To investigate the expression correlation
between the pri-pm-miRNA andmature pm-miRNA, we calcu-
lated the proportion of each pri-pm-miRNA or mature

pm-miRNA in the correspondent aggregate sum of pri-pm-
miRNAs or mature pm-miRNAs, respectively. Results showed
only two relatively highly expressed miRNA, pm-miR-135 and

pm-miR-748, had some expression correlation between the
pri-pm-miRNA and mature pm-miRNA (Fig. 2). This result
suggested that the consistency of the expression profile between
pri-miRNA and mature miRNA might be presented in some

highly expressed miRNAs, an indicator of a complex process
of miRNA accumulation and degradation.
3.3. Functional prediction of pm-miRNAs in biomineralization

To elucidate the function of the obtained pm-miRNAs in
biomineralization, the putative target associations between

pm-miRNAs and the reported biomineralization related-genes
were analyzed by microtar, mirRanda and RNA22. Sixty
biomineralization related-genes with completed 30 UTR
sequences were downloaded from NCBI database. All of three

programs were used to predict the miRNA-mRNA interaction
sites. As shown in Table S2, hundreds of miRNA–mRNA
interaction sites were obtained by only one program, respec-

tively. And the interaction sites vary widely based on different
prediction programs. For example, by miRanda, N14 family
genes were predicted to be regulated by pm-miR-2386 with

the same target site (GAACGAAAC, Fig. 3a), while, by
microTar, five of the six N14 family genes were potentially
regulated by pm-miR-1892 with the common target site

(UCUCAGA, Fig. 3b) and low dimer-monomer energy differ-
ence (no more than �5). Both results seemed interesting while
they need further experimental elucidation.

Among these interaction sites, only thirteen biomineraliza-

tion-related genes that are potentially regulated by multiple
pm-miRNAs were predicted by three tools simultaneously
(Table S2). Even so, a complex multi-gene regulation system

existed between pm-miRNAs and the biomineralization
related-genes. For example, pm-miR-2386 was indicated to
regulate five genes, such as pearlin, N16-7 and chitin synthase.

The Glycine-rich protein named insoluble protein (ISP), one
molluscan shell framework proteins, could be regulated by
two miRNAs, pm-miR-1719 and pm-miR-669n (Fig. 4).

In addition, analyzing these interactions, we found the
interactive sites predicted by different programs even between
the same miRNA–mRNA, such as pm-miR-13a-BMP2, were
different, as shown in Fig. 5, indicating the striking difference

in algorithm of three programs.
4. Discussion

Increasing evidence has demonstrated that miRNAs partici-
pate in various biological processes by negatively regulating
the target mRNA. As their prominent functions, hundreds of

miRNAs have been identified in recent years, while only a very
small amount of miRNAs in invertebrate especially in pearl
oyster has been discovered and functionally identified.

Computational strategy for discovery of miRNA is an efficient
method that identifies miRNA in species without genome
sequence and has been successfully applied to many species,

such as insects, elegance and humans (De Souza Gomes
et al., 2013; Grad et al., 2003; He et al., 2008b; Lai et al.,
2003). Using deep solexa sequencing, 258 pm-miRNAs were
identified in our previous research (Jiao et al., 2014). In this

study, a total of 30 candidate pm-miRNAs were identified
using computational technology based on the transcriptome
database of pearl sac from P. martensii (Zhao et al., 2012).

To validate the existence of the predicted pm-miRNAs, we
performed stem-loop qRT-PCR, which is a reliable method to
detect and measure the expression levels of pm-miRNAs. All

the selected pm-miRNAs could be easily detected. Pm-miR-
1b was presented with the most expression level, similar to
the tested pm-miR-1a by deep sequencing in our previous
research (Jiao et al., 2014). In mammals, miR-1 was specifi-

cally-expressed in muscle and involved in regulating muscle
proliferation and differentiation (Chen et al., 2005b). It was
reported that miR-1 could regulate calcium signaling pathways

by targeting calmodulin (Ikeda et al., 2009). Here, we also
found interaction between pm-miR-1b and calmodulin by
microTar program, indicating its functions in calcium

signaling pathway in P. martensii.
We also compared the expression correlation between the

pri-pm-miRNA and mature pm-miRNA. Results showed only

two relatively highly expressed pm-miRNAs showed some
consistency between primary and mature type. As is illustrated
in the introduction, the maturation of miRNA required to
undergo the process from the pri-miRNA to precursor by

Drosha, and then by Dicer to the mature miRNA. And stabil-
ity and decay of miRNAs were also affected by cell-cycle
regulation, target binding and uridylation modifications



Figure 3 The target sites of pm-miR-2386 and pm-miR-1892b in the N14 family genes. The target sites of pm-miR-2386 (a) and pm-

miR-1892b (b), indicated by black box, in the 30 UTR regions of six of N14 family genes were predicted by miRanda and microTar,

respectively.
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Figure 4 The target genes of pm-miR-2386, pm-miR-1719 and

mir-669n. These target interactions were predicted by three

programs, including microTar, miRanda and RNA22, simultane-

ously. TYR-like protein 1 represents tyrosinase-like protein 1;

PfCHS1 represents the chitin synthase 1 of P. fucata; MSI60RP

represents MSI60-related protein; ISP represents the gene named

insoluble protein.
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(Zhang et al., 2012c). These intricate processes may be
responsible for the inconsistency between primary and mature
miRNAs. Therefore, the expression level from RNA-seq

representing primary miRNAs cannot display the final
expression of mature miRNAs. The regulation of miRNA
accumulation and decay needs to be unveiled.

In biominerals, the small amount of organic components,
including polysaccharides, proteins, glycoproteins and proteo-
glycans, exerts crucial rules in crystal morphology, crys-

tallographic orientation, and the superior material property
of the formed crystal (Marin et al., 2012). Meanwhile,
biomineralization is a very complex and precise process in

which the expression of each related protein is subject to fine
regulation. Consequently, the regulators involved in
biomineralization should also be paid attention. Generally,
the function of miRNA is mediated by silencing gene
expression of the targeted mRNAs. Target prediction tools
were used to predict the functions of miRNAs and had been
widely used in many reports especially in the initial research
when you have little information about the miRNAs in this

species (Rajewsky, 2006). To illustrate the potential function
of the pm-miRNAs in biomineralization, we analyzed the
interaction site between the obtained pm-miRNAs and the

reported biomineralization-related genes by target prediction
programs. As the difference in algorithm of different pro-
grams, the predicted interaction sites by different programs
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vary widely, which could be seen in our results. To reduce the
false positive site, we screened the interaction site by three pro-
grams, including microTar, miRanda and RNA22. All of those

tools were not relying on evolutionary conservation to discern
functional targets, which made it possible to predict both con-
served and non-conserved targets.

A total of thirteen biomineralization-related genes, pre-
dicted by three tools simultaneously, were potentially regulated
by multiple pm-miRNAs. Both of pearlin and N16, belonging

to the N16 family (Fang et al., 2011), were matrix proteins iso-
lated from the nacre of the molluscan shell. Pearlin, with a high
proportion of Gly, Tyr, Asn and Cys, was presumed to bind to
calcium as a template for nucleation during nacre formation

(Samata et al., 1999). In vitro studies indicated N16 could
induce the formation of aragonite crystals (Miyashita et al.,
2000). Our results indicated pearlin andN16-7 were both poten-

tially targeted by pm-miR-2386, implying a critical role of miR-
2386 in the regulation of biomineralization. Previous studies
showed that chitin was not only one of the important compo-

nents of the periostracum but also one abundant organic matrix
in the nacre and prismatic layer (Levi-Kalisman et al., 2001;
Suzuki et al., 2007). The chitin synthase, as the vital enzyme

to synthesize the chitin (Suzuki et al., 2007; Weiss et al.,
2013), was also inferred to be targeted by pm-miR-2386. In
addition, the tyrosinase-like protein 1, as a member of the
tyrosinase family which has been declared to be potentially

essential for shell matrix maturation (Aguilera et al., 2014;
Zhang et al., 2012a), was also predicted to be negatively regu-
lated by pm-miR-2386. Therefore, we presumed that pm-miR-

2386 may be as the hub gene in the regulation network during
shell formation by directly and indirectly controlling the
organic matrix formation.

Generally speaking, matrix proteins were secreted from the
epidermic cells of mantle tissue in the shelledmollusk. And simi-
lar to vertebrates, cell proliferation and differentiation in inver-

tebrates also need the regulation of growth factors. Previous
studies showed that bone morphogenetic protein 2 (BMP2),
belonging to the transforming growth factor type beta super-
gene family, may have a key role in nacre formation. It was

pointed out that the function of BMP2 in the formation of hard
tissues was conserved from species to species (Miyashita et al.,
2008; Takami et al., 2013). Our results showed BMP2 was pre-

dicted to be regulated by pm-miR-13b. These results suggested
that pm-miRNAs were involved in the biomineralization pro-
cess not only through targeting the biomineralization-related

proteins, but also through the controlling of cell proliferation
and differentiation of biomineralization-related cells.
5. Conclusion

A total of 30 pm-miRNAs and their precursors were identified
based on the transcriptome data of P. martensii. Eight ran-
domly selected pm-miRNAs were confirmed by stem-loop

qRT-PCR. Some of the pm-miRNAs, such as pm-miR-2386
and pm-miR-13b, were predicted to participate in biomineral-
ization by regulating the expression of biomineralization-

related genes and the cell proliferation and differentiation of
biomineralization-related cells. Therefore, this study enriched
the miRNA databases of pearl oyster and provided an over-

view of the conserved pm-miRNAs as well as their potential
functions in biomineralization.
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