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Abstract: Exosomes are extracellular nanovesicles between 30 and 150 nm that serve as essential
messengers for different biological signaling and pathological processes. After their discovery,
a wide range of applications have been developed, especially in therapeutic drug delivery. In
this context, the aim of this work was to test the efficiency of exosome-mediated human insulin
delivery using exosomes extracted from three different cell lines: hepatocellular carcinoma (HepG2);
primary dermal fibroblasts (HDFa) and pancreatic β cells (RIN-m); all are related to the production
and/or the ability to sense insulin and to consequently regulate glucose levels in the extracellular
medium. The obtained results revealed that the optimal insulin loading efficiency was achieved by a
200 V electroporation, in comparison with incubation at room temperature. Moreover, the maximum
in vitro exosome uptake was reached after incubation for 6 h, which slightly decreased 24 h after
adding the exosomes. Glucose quantification assays revealed that exosome-mediated incorporation
of insulin presented significant differences in HDFa and HepG2 cells, enhancing the transport in
HDFa, in comparison with free human insulin effects in the regulation of extracellular glucose levels.
No significant differences were found between the treatments in RIN-m cells. Hence, the results
suggest that exosomes could potentially become a valuable tool for stable and biocompatible insulin
delivery in diabetes mellitus treatment alternatives.
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1. Introduction

Intercellular communication is essential to maintain cellular and tissue functions and
homeostasis in multicellular organisms. This coordinated cellular activity is mediated by
direct cell–cell contact or through the transfer of secreted molecules. Even in the most essential
pathways, a wide range of cells release different types of vesicles, such as microvesicles
(MVs) and a smaller nanosized population called exosomes. The release of exosomes to the
extracellular medium occurs by inward budding and fusion of multivesicular bodies (MVBs)
with the plasma membrane [1,2]. These extracellular vesicles (EVs) play an important role as
carriers for the transfer of proteins, lipids, DNA and RNA between cells [1].

Exosomes have been successfully isolated and purified from cell cultures and body
fluids [3]. Specifically, exosomes are membrane vesicles with an average size from 30 to
150 nm and, structurally, their membrane is composed of proteins and lipids [4]. Moreover,
exosomes normally contain specific proteins in their membrane, such as CD9, CD63, CD81
and CD82 tetraspanins, which are often used as markers for exosomal detection [5]. Exoso-
mal tetraspanin complexes facilitate vesicular fusion and fission [6], probably modulated
by cellular integrins [7]. The biological functions of EVs directly depend on their ability to
interact and deliver their content inside the target cell. Exosomes are involved in diverse
biological functions, such as tumor progression by promoting angiogenesis and cancer-
ous cell migration [8], delivery of antigenic molecules during the immune response [9],
membrane exchange between cells and miRNA transfer in regulation pathways [10].
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Consequently, the discovery of different types of exosomes, exosomal cargo, ways of
transportation and biological functions for these EVs determined that exosomes act as es-
sential messengers for numerous biological signaling processes, as well as in a large group
of pathological processes [11], some of them as complex as metabolic pathways. For exam-
ple, Tan et al. collected mesenchymal stem cell-derived (MSC) exosomes and introduced
them to a mouse model treated with different xenobiotic compounds, concluding that
MSC-derived exosomes can produce hepatoprotective effects in drug-induced damaged
liver cells, through the activation of regeneration and proliferation signals [12]. Moreover,
it is known that in Type 2 diabetes patients, miRNAs in pancreas-derived exosomes are
implicated in the survival and apoptosis of pancreatic β-cells [13].

Diabetes mellitus (DM), commonly known as diabetes, is a group of metabolic disor-
ders that affect millions of people worldwide. So far, the only effective treatment consists of
daily subcutaneous injections of insulin [14]. Nevertheless, insulin is a therapeutic peptide
hormone characterized by rapid degradation by the enzymes in the gastrointestinal tract
and although oral formulations are available, insulin bioavailability falls to less than 2%
after administration [15]. In this sense, even when drug delivery opportunities are available
in the oral administration pathways, subcutaneous delivery strategies are also available for
optimization. Therefore, the search for novel subcutaneous strategies to deliver it focus on
protecting insulin against proteolytic degradation and, consequently, conserving its native
structure and biological function.

In previous studies, liposomes have been investigated as potential drug delivery sys-
tems for peptide and protein drugs, such as bovine serum albumin (BSA), which has been
successfully loaded in cationic liposomes [16]. Furthermore, it is now known that human
insulin conserves its biological activity after encapsulation in poly(isobutylcyanoacrylate)
nanocapsules obtained by interfacial polymerization [17]. Therefore, the use of nanocarriers
such as polymeric liposomes seem to be a stable and effective delivery alternative for a
variety of therapeutic applications, such as gene therapy, immunotherapy, and diagnosis.
Despite this, several synthetic non-natural nanocarriers do not reach their goal, and they often
produce some toxicity in the recipient cell population or are eliminated by the host’s immune
system [18]. Consequently, exosomes, which present similar properties to liposomes in terms
of their enclosing lipidic bilayer plus their embedded signal proteins and molecules in their
surface, might represent an attractive and efficient insulin delivery system.

In this context, this work was conceived to test and corroborate the potential use
of exosomes for encapsulating and delivering insulin in vitro. The cellular uptake of
insulin-loaded exosomes was determined, quantified, and visualized by labeling human
insulin with fluorescein isothiocyanate (FITC). Therefore, the final aim was to determine the
loading efficiency of FITC-labeled human insulin inside hepatocellular carcinoma, primary
dermal fibroblasts, and pancreatic islet cell tumor-derived exosomes, and, subsequently,
to evaluate exosome-mediated incorporation of insulin and its effect on the regulation of
glucose levels compared with free human insulin in the same cell lines exposed to a high-
glucose medium. It should be noted that even when insulin exerts its glucose-regulating
function extracellularly, a delivery system such as exosomes might provide a suitable
option for its release near the target tissue, considering that part of the loaded molecule
will be internalized, as will be shown in this work.

2. Materials and Methods
2.1. Cell Lines and Reagents

Hepatocellular carcinoma (HepG2) (ATCC HB-8065™), primary dermal fibroblasts
(HDFa) (ATCC PCS-201-012™) and pancreatic islet cell tumor (RIN-m) (ATCC CRL-2058™)
cell lines were obtained from the American Type Cell Collection (ATCC, Manassas, VA,
USA). Dulbecco’s modified Eagle medium: Nutrient Mixture F-12 (DMEM-F12) at pH 7.4,
fetal bovine serum (FBS), phosphate-buffered saline (1×) solution at pH 7.4 (PBS) and
trypsin 0.25% EDTA (1×) were purchased from Gibco (Grand Island, NY). FITC-labeled
human insulin, human recombinant insulin, fluorescein-5-isothiocyanate (FITC), dimethyl
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sulfoxide (DMSO), D-(+)-glucose (≥95.5%), 3,5-dinitrosalicylic acid (DNS), potassium
sodium tartrate tetrahydrate, potassium disulfide and phenol were purchased from Sigma-
Aldrich (Saint Louis, MO, USA).

2.2. Cell Culture

All cell lines were maintained independently with DMEM-F12 (DMEM) medium at pH
7.4, supplemented with 10% exosome-free FBS (Gibco, Grand Island, NY, USA) at 37 ◦C and a
5% CO2 humidified atmosphere. For subculturing all cell lines, approximately 1 × 106 cells
were placed in 100 mm × 20 mm tissue-culture treated culture dishes (Corning, NY, USA)
for between 24 and 48 h until they reached an approximate confluence of 80%. During the
subculturing procedures, the maintenance medium which contained the released exosomes
was collected and replaced with 5–6 mL of fresh medium as part of the subculture process.
The maintenance medium was stored at −20 ◦C until use.

2.3. Exosome Isolation

The recollected exosome-enriched maintenance medium was first clarified to remove
cells and debris suspended in the medium. The clarification process consisted of centrifu-
gation at 2100× g for 30 min in an Allegra 64R centrifuge (Beckman Coulter, Brea, CA,
USA). The supernatant was recollected and filtered with a 0.22 µm syringe filter (Corning,
NY, USA). The filtrated medium was later centrifuged in an Optima XPN centrifuge using
a SW 32 Ti rotor (Beckman Coulter, Brea, CA, USA) at a speed of 125,000× g for 90 min
at a temperature of 4 ◦C. All tubes were sealed and kept on ice. After ultracentrifugation,
the supernatant was removed, and the pellet was resuspended in sterile PBS. To be sure
that exosomes were correctly isolated, protein concentration was measured at 280 nm in a
NanoDrop 1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA) with bovine
serum albumin (BSA) as a standard in a previously prepared calibration curve. Once the
presence of exosomes was verified, the samples were stored at −80 ◦C until use.

2.4. Exosome Characterization

Isolated exosomes were characterized by their size and zeta potential and the pres-
ence of the exosomal marker CD63. Average size and zeta potential characterization
were performed by dynamic light scattering (DLS) with Zetasizer Nano ZSP equipment
(Malvern Instruments, Worcestershire, UK). Previously isolated HepG2, HDFa and RIN-m
cell-derived exosomes resuspended in PBS were used and adjusted to present a total pro-
tein concentration between 650 and 1000 µg/mL, for which they were diluted in filtered
Milli-Q water. The samples were introduced in quartz cuvettes for size and zeta poten-
tial measurements. The measurement was conducted at 25 ◦C and at an angle of 175◦.
The exosomal marker CD63 was detected using the ExoELISA-Ultra CD63 Kit (System
Biosciences, Palo Alto, CA) as per the manufacturer’s instructions. The CD63 standard
solution provided by the kit was used to build the calibration curve.

2.5. Human Insulin Labeling and Detection

Human recombinant insulin was labeled with fluorescein isothiocyanate (FITC) accord-
ing to the procedure proposed by Shah et al. [19]. A FITC solution in DMSO (5 mg/mL) was
added dropwise with slow stirring to human insulin (15 mg/mL) in a 0.1 M bicarbonate
buffer at pH 9.5. The molecular ratio of FITC to insulin selected according to the results pre-
sented in this protocol was 3:1. The reaction mixture was kept at room temperature (RT) for
150 min with continuous stirring and protected from light, then the mixture was incubated for
30 min at RT without stirring. To separate free FITC from FITC–insulin conjugates, the reaction
mixture was passed through PD-10 Desalting G25 columns (GE Healthcare, Buckinghamshire,
UK) and eluted using 10 mM PBS at pH 7.4. The eluent was collected in fractions of 0.5 mL
and analyzed in a NanoDrop 1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA)
to measure the absorbance at 280 nm and to determine in which fractions the FITC–insulin
conjugates were present. Protein quantification was performed by a BCA protein assay kit
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and was read in a Synergy HT MultiDetection Microplate Reader (BioTek instruments Inc.,
Winooski, VT, USA). Once the FITC–insulin conjugates were detected, the samples were
stored at −20 ◦C and protected from light until their use.

The fluorescence of several concentrations of FITC–insulin conjugates ws measured on
a Synergy HT MultiDetection Microplate Reader (BioTek instruments Inc., Winooski, VT,
USA). Human FITC–insulin standards were purchased from Sigma-Aldrich (Saint Louis,
MO, USA) and used in known concentrations for quantification purposes. To establish a
correlation between relative fluorescence units (RFU) and protein concentration, standard
dilutions were compared with our FITC–insulin conjugate dilutions in black polystyrene 96-
well microplates (Corning, NY, USA). The fluorescence assay was performed at a maximum
excitation and emission of 485/528 nm.

2.6. FITC–Insulin Exosome Loading

To evaluate the loading properties of the three types of cell-derived exosomes with
human insulin and the possible influence on their structure and physicochemical properties,
the previously obtained FITC–insulin was loaded by electroporation into HepG2-, HDFa-
and RIN-m-derived exosomes. For this, 400 µg/mL of the cell-derived exosomes were
washed with 2 mg/mL of FITC–insulin and sterile PBS to reach a mixture final volume
of 400 µL. The same concentrations were applied for HepG2, HDFa- and RIN-m-derived
exosomes. The loading experiment was performed under two different loading conditions
to evaluate the optimal encapsulation parameters: (a) incubation at room temperature (RT)
for 1 h, (b) electroporation at 200 V and 50 µF in 0.2 cm Invitrogen electroporation cuvettes
(Invitrogen, Carlsbad, CA, USA). Electroporation conditions were selected according to
previous reports generated by our research group [20]. For this, sample mixtures were
electroporated in a Gene Pulser Xcell Electroporation System (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA) and subsequently incubated at 37 ◦C for 1 h for membrane regeneration.
The loading mixtures were then transferred to an Amicon Ultra-0.5 mL 100,000 kDa device
and centrifuged using an Eppendorf 5417R centrifuge at 14,000× g for 5 min. For a total
isolation of the electroporated and loaded exosomes, the ultrafiltration procedure was
repeated four times by washing the retentate with 300 µL of 10 mM filtered PBS. The
remaining retentate was recovered and resuspended with 200 µL of the same PBS solution
and kept for further use.

2.7. Evaluation of Exosome Loading Efficiency

To determine the loading efficiency of the electroporation assay, black polystyrene
96-well microplates (Corning, NY, USA) were prepared with 50 µL of electroporated
exosomes and their collected supernatants, and immediately measured in a Synergy HT
MultiDetection Microplate Reader (BioTek instruments Inc., Winooski, VT, USA), according
to our FITC–insulin fluorescence assay parameters (excitation/emission = 485/528 nm)
to evaluate the loading efficiency. FITC–insulin and non-loaded exosomes were used as
negative and positive controls, respectively.

2.8. In Vitro Exosome Cellular Uptake and Evaluation of FITC–Insulin Cellular Internalization

HepG2, HDFa and RIN-m cells were used for in vitro uptake assays. The cells were
maintained in DMEM supplemented with 10% of exosome-free FBS for at least 24 h before
adding the electroporated exosomes.

Black polystyrene 96-well microplates (Corning, NY, USA) were prepared with a
50 µL suspension containing 1 × 104 cells per well and were incubated at 37 ◦C in a
humidified 5% CO2 atmosphere for 24 h to allow correct attachment of the cells. After
24 h, 50 µL of exosomes was added to each well and incubated at 37 ◦C in a humidified
atmosphere. After 6 and 24 h, the wells were washed three times with 100 µL of 10 mM
PBS to remove the excess exosome in the extracellular medium. The cells were fixed
with a 4% formaldehyde solution (Sigma-Aldrich, Saint Louis, MO, USA) for 20 min
at room temperature and protected from light. Subsequently, the fluorescence intensity
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was measured in a Synergy HT MultiDetection Microplate Reader (BioTek instruments
Inc., Winooski, VT, USA) according to the previous parameters used in the FITC–insulin
fluorescence assays (i.e., excitation/emission = 485/528 nm). Fluorescence images of the
cells were captured using a TwinCam (Cairn Research, Faversham, UK) coupled to a Nikon
Eclipse Ti microscope (Nikon Instruments, Tokyo, Japan) with Nikon S Fluor 10×/0.5 and
20×/0.75 objective lenses.

2.9. In Vitro Evaluation of Glucose Regulation Levels of Exosome-Encapsulated Human Insulin

HepG2, HDFa and RIN-m cells were prepared in a 50 µL suspension containing
1 × 104 cells per well in black polystyrene 96-well microplates (Corning, NY, USA) and
were incubated at 37 ◦C in a humidified 5% CO2 atmosphere for 24 h. The cells were then
transferred to a 30 mM D-(+)-glucose enriched DMEM medium and treated with 10 µg/mL
of FITC–insulin loaded exosomes. Non-treated and 10 µg/mL free FITC–insulin-treated
cells were used as controls.

After 24 h, the supernatants were collected and the glucose levels were quantified
using the dinitrosalicylic acid (DNS) method, which is widely used to estimate the con-
centration of reducing sugars in a variety of samples [21]. The method is based on the
reduction of 3,5-dinitrosalicylic acid to the colored 3-amino-5-nitrosalicylate with maxi-
mum absorption at 540 nm. The optical absorbance is directly proportional to the amount
of reducing sugars [22]. The DNS reagent was prepared according to the protocol described
by Miller [21,23].

Glucose standards were prepared by serial dilutions of 30 mM D-glucose in ultrapure
water to build the calibration curve. The reaction mixture was prepared by adding 60 µL of
each sample to 120 µL of the DNS reagent. The mixture was vortexed and incubated in a
controlled temperature water bath at 95 ◦C for 5 min. Subsequently, the mixture tubes were
cooled at 4 ◦C for a few minutes until the samples reached room temperature. Afterwards,
a 96-well polypropylene microplate (Corning, NY, USA) was prepared by adding 260 µL of
ultrapure water and 36 µL of each reaction mixture. The absorbance of the samples was
recorded at 540 nm against a reagent blank by a Synergy HT Multi-Detection Microplate
Reader (BioTek instruments Inc., Winooski, VT, USA).

2.10. Data Analysis

All experiments were performed at least in triplicate; the data presented in this work
correspond to the average of these replicates with the corresponding estimated error. Data
analysis was performed using the statistical software Minitab 18 (Minitab, Inc., 2017, State
College, PA, USA). All data were analyzed by a one-way ANOVA coupled with Fisher’s
LSD test, and a p-value < 0.05 was established to determine significant differences.

3. Results and Discussion
3.1. Exosome Isolation and Characterization

After isolation, exosomes obtained from HepG2, HDFa and RIN-m cells presented a
narrow size distribution (Figure 1), with average sizes of 153 ± 64, 107 ± 101 and 137 ±
127 nm for the HepG2, HDFa and RIN-m cell-derived exosomes, respectively. Likewise, the
measured zeta potential values were around −8.00 ± −7.18, −2.65 ± −2.07 and −4.13 ±
−2.25, respectively.

The DLS and zeta potential results agree with those of previous studies performed
with adherent cell-derived exosomes, showing an approximate size average of 136 ± 19 nm
for human embryonic kidney cells (HEK 293T), endothelial colony-forming cells (ECFC)
and human mesenchymal stem cells (MSC) [24], which are also comparable with other
reported studies [25]. Furthermore, HepG2 cell-derived exosomes have been characterized
in several studies, obtaining a similar average size, which has been reported to be slightly
variable, depending on the cargo [26]. Regarding the zeta potential measurements, the
results showed negative values between −8.00 mV and −2.65 mV, which are attributed
to the negatively charged anionic phospholipid membrane [24,26]. As pancreatic beta
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cells, RIN-m cells present negatively charged phospholipids, namely phosphatidylserine
and phosphatidylinositol, which have been reported to be in a dynamic state during
insulin exocytosis, playing an important role in enhancing the fusion of lipid layers [27].
It is reported that vesicles with zeta potentials that vary between −30 mV and +30 mV
tend to aggregate, although their stability varies depending on the particle type, nature,
or cell culture. The stability and ability of exosomes to successfully deliver signals and
compounds depends on the zeta potential, the pH and the ionic strength of the surrounding
biological fluid or tissue [28]. Even though the cells used in this study were morphologically
heterogenous, their exosomes showed comparable sizes and zeta potential values, with no
indication of aggregation. To validate the isolation of exosomes, the presence of CD63 was
corroborated in all three samples [29,30].
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3.2. Human Insulin Labeling and Detection

FITC is an amine reactive fluorophore used to fluorescently label proteins through
the amine groups in the protein of interest, displaying a maximum absorption excita-
tion at 495 nm and emission at 525 nm in the visible range of the spectrum [31]. FITC
forms a covalent bond between its isothiocyanate group and the primary and secondary
amine groups of biomolecules [32]. FITC (MW 389.4 Da) labeling of human insulin (MW
5807.57 Da) provides mono-, di- and tri-conjugates of insulin, since insulin presents three
reactive amine sites [32]. It has been reported that conjugation at different sites affects
the biological activity of insulin, as presented in Figure 2. Mono-conjugated FITC–insulin
(bonded to B1 site) has the same biological activity as native insulin. However, when FITC
is tagged at the A1 position, the biological activity shows a 10% decrease. Furthermore,
di- and tri-conjugates show a 100% decrease in the biological activity in comparison with
native insulin [33].
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In this work, the presence of FITC-insulin was confirmed and characterized by a BCA
protein assay kit and revealed in a Synergy HT MultiDetection Microplate Reader. A total
of 26.93 mg/mL of FITC–insulin was quantified as the result of the labeling procedure,
with an expected molecular ratio of 3:1 (MW = 6196.97 Da), according to the results ob-
tained by Shah et al. [19]. It has been reported that lipophilicity and molecular weight
play a crucial role in the passive diffusion and permeability of drug molecules through
a variety of biological membranes [34]. The presence of FITC–insulin mono-conjugates
showed enhanced permeability in comparison with tri-conjugates (MW = 6975.77 Da). As
is known, FITC is much more hydrophobic than insulin [35]. Consequently, the signifi-
cant lipophilicity of FITC–insulin will trigger an increase in the permeability of human
insulin into exosomes. In addition, it has been reported that lipophilic compounds such as
polyphenols are capable of causing interdigitation. An interdigitated structure is formed
when the acyl chains of phospholipids insert into the opposite phospholipid layer, such
as the exosomal membrane. This process causes the failure of the fluidity gradient of the
acyl chains limiting the freedom of movement of the lipid layer, forming the interdigitated
structure. In this regard, the molecular ratio of the incorporated molecule of interest is
essential for the formation of this stable structure [36]. It is important to mention that to
determine FITC–insulin concentrations, a calibration curve was previously prepared using
dilutions of the purchased standard with a known concentration, yielding an extinction
coefficient of 1248.8 with a R2 value of 0.9919.

3.3. Evaluation of FITC–Insulin Loading Efficiency in Exosomes

The total concentration of FITC–insulin loaded in each type of cell-derived exosome
was calculated using the results obtained by a fluorescence measurement, according to our
FITC–insulin fluorescence assay parameters (excitation/emission = 485/528 nm), as shown
in Table 1. The loading properties of HepG2-, HDFa- and RIN-m-derived exosomes were
evaluated through the previously mentioned treatments. The efficiency showed significant
differences (p < 0.05) between the loading conditions, as shown in Figure 3. The highest
loading efficiency was detected with the electroporation at 200 V and 50 µF treatment, with
a total concentration of exosomes of 400 µg/mL (50.75 ± 1.2%, 57.42 ± 5.47% and 49.70
± 4.32% for HepG2, HDFa and RIN-m exosomes, respectively). Although the loading
efficiencies present statistically significant differences, the efficiencies are apparently in
the same range of values, a fact that may be associated with their similar particle size and
zeta potential, as was previously mentioned in this work. These loading efficiencies are
visibly higher than the efficiencies in the RT treatments (3.47 ± 0.56%, 4.98 ± 0.71% and
18.84 ± 0.62% for the HepG2, HDFa and RIN-m exosomes, respectively). As expected, the
electroporation method presented remarkably high efficiency. As has been reported in
previous studies, voltages between 140 V and 200 V show a higher encapsulation efficiency
compared with lower voltages. On the other hand, variation of the capacitance (0–400 µF)
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does not compromise the efficiency of the electroporation procedure [37]. To exemplify this,
Tian et al. [38] previously reported a similar drug loading experiment using human breast
cancer-derived exosomes and doxorubicin (Dox), a well-known chemotherapeutic agent.
To load the exosomes with Dox, they also tested two different methods: electroporation at
350 V and a RT co-incubation at 37 ◦C for 30 min without electroporation. According to
their results, Dox was hardly detectable in the RT incubation sample, demonstrating the
essential role of electroporation in drug loading [38]. Moreover, the electroporation loading
efficiencies were higher than some already reported for the encapsulation of compounds
with a lower molecular weight. In addition, Kim et al. [39] obtained loading efficiencies of
28.29% after a 1000 kV electroporation in paclitaxel encapsulation. Regarding the possible
effect of the electroporation protocol on insulin’s stability, several studies have confirmed
that this electrical protocol is safe and does not fragment the insulin molecule. Moreover,
the same studies suggested that coupling electroporation with electroosmosis techniques
has helped to achieve a greatly increased transport for insulin in in vivo models [40].

Table 1. FITC–insulin concentration in loaded HepG2-, HDFa- and RIN-m- derived exosomes in
the room temperature (RT) and electroporation at 200 V and 50 µF treatments. After both load-
ing procedures, the samples were incubated at 37 ◦C for 1 h to allow membrane regeneration
before analysis.

Cell-Derived Exosomes Room Temperature (mg/mL) Electroporation (mg/mL)

HepG2 0.07 ± 0.08 1.04 ± 0.99
HDFa 0.09 ± 0.05 1.10 ± 1.19
RIN-m 0.38 ± 0.12 0.91 ± 1.09
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The graph shows the loading efficiency obtained with the incubation for 1 h at room temperature (RT)
treatment (blue bars) and the electroporation at 200 V and 50 µF treatment (green bars).

3.4. In Vitro Evaluation of Cellular Exosome Uptake and Cellular Incorporation of FITC–Insulin

Cellular uptake and, consequently, the internalization of compounds of interest is an
essential point to be considered in the search for new drug delivery techniques. Therefore,
the fluorescence intensity of FITC–insulin-loaded exosomes was measured to estimate their
in vitro cellular uptake. The results provided by the FITC–insulin fluorescence signal and
the captured images of the cells 6 and 24 h after adding the exosomes showed significant
differences among the three cell types, as well as time-dependent differences in the cellular
uptake of the recipient cells (p < 0.05) (Figure 4A). Fluorescence intensity reached the
highest point 6 h after adding the exosomes in all cell types, obtaining a remarkably higher
outcome in RIN-m cells (p < 0.05), followed by HepG2 and HDFa cells, with a visibly lower
incorporation of FITC–insulin-loaded exosomes (p < 0.05). This elevated internalization
capacity of RIN-m cells could be justified by the dual secretory exocrine and endocrine
characteristics of the pancreatic beta cells [41]. Thus, HDFa cells could present the lowest
uptake capacity, mainly because dermal fibroblasts are relatively ‘passive’ cells that are
responsible for the synthesis and remodeling of extracellular matrix proteins [42].
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6 h after exosome co-incubation. Loaded exosomes can be visually located inside the cytoplasm, dispersed between the
cytosolic side of the plasma membrane and the perinuclear region.

After 24 h, there was an appreciable decrease in the detected fluorescence intensity
and, in consequence, in the exosome uptake of all cell lines, showing significant differences
(p < 0.05) in the exosome uptake at 6 and 24 h (Figure 4B). These results are congruent with
previous time-dependent uptake assays. Specifically, it has been reported that exosomes
can be detected in a small number (5%) of the cells at 5 min. At 30 min, more exosomes
were internalized by the cells, accumulating in the perinuclear region [43]. Furthermore,
from 30 min to 3 h, a significant number of exosomes accumulated near the nucleus,
which can be visualized as bright spots (Figure 4C). Tian et al. [43] also emphasized that
although exosomes are continually transported to the perinuclear regions, not all the
fluorescent exosomes are accumulated in this region after 24 h, suggesting that the exosome
components and cargo were probably sorted to the perinuclear region and the fluorophore,
followed by a process of degradation and recycling with other membrane proteins and
lipids. Moreover, Obregon et al. [44] demonstrated that dendritic-derived exosomes were
mostly internalized by epithelial cells in the early hours (1–6 h) and decreased by over 24 h
under similar explanations. For instance, after binding the target cells, exosomes can follow
two different pathways: exosomes could remain associated with the cell surface, as has
been observed in follicular dendritic cells [45], or they could be internalized by endocytosis.

Regarding these mechanisms, tetraspanins play an essential role by interacting among
themselves and with other transmembrane and cytosolic proteins [46]. In several studies,
it has been reported that exosomes are highly enriched in tetraspanins such as CD63,
CD81, CD82 and CD37 [47]. However, the tetraspanin internalization mechanism is still
being researched and discussed. According to the endocytosis mechanism, it may involve
clathrin-coated vesicles, whose diameter is similar to or larger (~150 nm) than that of
exosomes, because of specific receptor activation [48].

Furthermore, according to recent publications, engineered exosomes loaded by electro-
poration has shown to be internalized by HepG2 cells via Scavenger receptor class B type 1
(SR-B1) receptor-mediated endocytosis [26]. The SR-B1 receptor, which is highly expressed
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in hepatic carcinoma cells, has been associated with the mediation of phospholipid transfer
between high-density lipoprotein (HDL) and the cell membrane [49]. Furthermore, Zanotti
et al. [50] confirmed exosomal internalization by muscle-derived fibroblasts and suggested
that cellular uptake of the fibroblast-derived exosomes may take place via phagocytosis or
micropinocytosis rather than plasma membrane fusion, as an energy-dependent process
confirmed by a succinate dehydrogenase (MTT) activity assay.

3.5. In Vitro Evaluation Glucose Regulation Levels of Exosome-Encapsulated Human Insulin

In vitro evaluation of the glucose regulation levels of the FITC–insulin-loaded exo-
somes and free FITC–insulin at the same concentration was performed. The results showed
that HepG2-derived exosomes had an appreciable effect on glucose level regulation by
decreasing the glucose concentration in a hyperglycemic medium. Particularly, HepG2
cells treated with free insulin presented lower glucose levels; in consequence, the free
insulin treatment was more effective than the exosome-mediated insulin delivery, showing
significant differences (p < 0.05), as shown in Figure 5A. Additionally, morphological and
cell population changes were observed as result of the different treatments. As shown
in Figure 5D, we can appreciate the cytoplasmic granules in HepG2 cells exposed to a
hyperglycemic medium, a fact that indicates cellular stress and toxicity [51]. Moreover,
in HepG2 cell cultures, we noted signs of cytoplasmic stress granules but only a slightly
visible incidence in the cells treated with the DMEM + 30 mM glucose + free insulin. Thus,
HepG2 cells, as a liver cancer cell line, are natural insulin target cells because of their
essential role in the glucose transport across the plasma membrane associated with the
abundant membrane expression of the GLUT2 glucose transporter [52]. Several studies
have suggested that the exposure of HepG2 cells to elevated glucose levels leads to an
increase in tyrosine phosphorylation of the insulin receptor (IR) [53]. According to the
obtained results, free insulin administration ameliorates hyperglycemia, probably by stimu-
lating IR and, consequently, promoting cellular glucose metabolism. Therefore, in this case,
insulin-loaded exosomes did not enhance the rapid decrease in glucose levels by adding
free insulin only. However, there was a significant effect of the insulin-loaded exosomes,
showing that it could be a promising delivery vehicle that must be optimized.

For their part, HDFa-derived exosomes produced a visible effect in the regulation of
the levels of glucose by decreasing the glucose concentration in a hyperglycemic medium.
Unlike the HepG2 cells, HDFa cells treated with insulin-loaded exosomes were shown to
reduce glucose levels considerably more than the free insulin treatment, also presenting
statistically significant differences (p < 0.05) (Figure 5B). As shown in Figure 5D, cytoplasmic
granules in the HDFa cell culture exposed to a hyperglycemic medium could be noted but,
on the contrary, the signs of cellular stress were less visible in the cells treated with the
DMEM + 30 mM glucose + loaded exosome medium. In this case, it is well known that
skin fibroblasts contain both insulin and insulin growth factor I (IGF-I) receptors, which are
probably hybrid receptors [54]. Although skin fibroblasts are not classic target tissues, some
abnormalities in insulin binding and receptor autophosphorylation found in fibroblasts
have been associated with mutations in the insulin receptor gene [55]. In this work, we
have demonstrated that exosome-mediated delivery of insulin could become an effective
tool in comparison with the administration of free insulin, but the precise point in the
glucose metabolism and transport of HDFa cells that enhances the insulin delivery and,
consequently, effectively decreases hyperglycemia are still unclear.

Finally, the RIN-m-derived exosomes also had an appreciable effect on the regulation
of the levels of glucose by decreasing the glucose concentration in a hyperglycemic medium.
Unlike the other cell lines, RIN-m cells treated with insulin-loaded exosomes and with
free insulin had the same effect on the glucose levels of the extracellular medium. Both
treatments did not present significant differences (p < 0.05), as shown in Figure 5C. In
addition, in Figure 5D, cytoplasmic stress granules were not noted in RIN-m cells in the
high-glucose medium, probably because the short-term high glucose culture potentiates
and improves pancreatic beta function and proliferation [56]. Furthermore, there were no
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appreciable signs of cellular toxicity in the RIN-m cell cultures, although a decrease in cell
density in the DMEM + 30 mM glucose + free insulin treatment was observed. This effect
can be attributed to the fact that RIN-m cells, as natural producers of insulin, could suffer
saturation and their insulin secretory activity can be compromised if there is an excess of
insulin in the extracellular medium. Therefore, insulin-loaded exosomes and free insulin
produced the same effect in the RIN-m cell culture.
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Figure 5. In vitro determination of glucose concentrations in HepG2, HDFa and RIN-m cell lines treated with DMEM +
10% FBS (light blue bars), DMEM + 30 mM glucose (green bars), DMEM + 30 mM glucose + insulin-loaded exosomes
(yellow bars) and DMEM + 30 mM glucose + free insulin (dark blue bars). (A) HepG2-derived exosomes and free insulin
treatments were significantly different (p < 0.05), showing lower glucose levels in the DMEM + 30 mM glucose + free insulin
treatment. (B) HDFa-derived exosomes and free insulin treatments presented significant differences (p < 0.05), showing lower
glucose levels in the DMEM + 30 mM glucose + insulin-loaded exosome treatment. (C) Loaded RIN-m derived exosomes
and free insulin treatments did not present significant differences (p < 0.05), showing equal glucose concentration levels.
(D) Morphological and cell population variation for the DMEM + 30 mM glucose, DMEM + 30 mM glucose + insulin-loaded
exosomes and DMEM + 30 mM glucose + free insulin treatments in the HepG2, HDFa and RIN-m cell lines. Brightfield images
were captured 24 h after starting each treatment. The error bars in the graphs represent the mean concentration plus the standard
error. * Significant differences between treatments (Student’s t-test; p < 0.05); N.S. represents non-significant differences.

Nonetheless, other exosome properties must be taken into consideration. For instance,
the effect of injectable human insulin generally starts 45 min after subcutaneous administra-
tion, and the duration of its effect can be expected to be between 6 and 8 h until enzymatic
degradation [57]. For their part, exosomes have been considered, in a variety of studies,
to be long-lasting nanocarriers whose beneficial effects have been observed weeks after
their addition to the target tissue. Specifically, Aquil et al. [58] demonstrated that exosomes
loaded with curcumin formulations presented an antitumoral activity at least for 7 weeks
after the addition of exosomes, and also reported that loaded exosomes were stable and
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had an unaltered drug load at −80 ◦C for up to 6 months of storage. In consequence, a
bioavailability and stability study for prolongated time periods could provide a better
insight into the potential exosomes that could be as valuable tools for insulin delivery in
pancreatic beta cells.

4. Conclusions

This work was based on evidence that supported exosomes as highly efficient vehicles
for the delivery of therapeutic biomolecules. Therapeutic compounds such as miRNAs,
chemotherapeutical molecules or natural extracts have been successfully delivered to target
tissues using these naturally occurring EVs. In this work, we demonstrated that exosomes
may also represent a valuable delivery system for biologically active peptides such as insulin.
Here, cell-derived exosomes were isolated and loaded with human insulin to be internalized
by the recipient cells and to induce a biological effect in glucose transport and metabolism.
Human insulin was encapsulated into the exosomes by electroporation, with a high efficiency
compared with other reported insulin encapsulation methods and nanocarriers. Considering
that insulin is a peptide hormone with a relatively high molecular weight, the fact that it
can be encapsulated while conserving its unaltered biological function indicates a promising
result. Insulin-loaded exosomes were internalized by their respectively donor cells and were
able to promote and enhance the transport and metabolism of glucose in hyperglycemic
environments. This evidence suggests a potential novel tool for a long-lasting, stable and
non-cytotoxic insulin delivery technology. The World Health Organization estimates that
the 8.5% of the global population was diagnosed with diabetes in 2014, and 2.2 million
deaths were directly related to high glucose levels in 2016. These data reflect the necessity of
continuing to search for and find novel therapies and treatments for Type 1 and 2 diabetes.
Novel cell-specific techniques for exosome delivery may not only represent a drug delivery
tool but could also present a means of targeting biomarkers for preventive medicine and
for the control of disease progression. However, current exosome isolation and purification
protocols are still a time-consuming process with relatively low outcomes. Therefore, new
scalable, effective and economically sustainable processes are required for large-scale exosome
isolation and engineering. Nevertheless, nanotechnology is rapidly developing and, in the
near future, will surely provide a solution to solve some of the existing challenges in exosome
engineering and could lead the way to new personalized therapies.
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