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The high mortality and morbidity rate of stroke is a chronic problem that plagues human
society. The activation of microglia is one of the principal reasons why neuroinflammation
induces cerebral dysfunction. Because of their vital functions in the regulation of
neuroinflammation, microglia constitute an important target for stroke. Given that
there is an innate self-preservation mechanism between neurons and microglia, the
transmembrane glycoproteins on the surface of their membranes, namely CD200
and CD200R, have become a popular topic of research. Numerous studies have
demonstrated that CD200-CD200R interaction, microglial activation, and poststroke
neuroinflammatory damage are inextricably linked. In this review, we describe the above
relationship from a new perspective. We specifically focus on neuroinflammation after
stroke. The role of crosstalk of CD200-CD200R inhibitory immune ligand receptors
in immune regulation will also be illustrated. Thus, we will see how poststroke injury
can be influenced by the CD200-CD200R crosstalk. Finally, we will discuss the
possibility of clinical application of the result of CD200-CD200R interaction to manage
neuroinflammatory injury after stroke.
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INTRODUCTION

Stroke with high mortality and morbidity rates have a high incidence worldwide and threatens
human health and quality of life. It is a devastating disease and continues to play an important
role in current research in the field of medicine. Portegies, from the Epidemiology Department of
Erasmus MC University Medical Center, found that between 1990 and 2012, 74.3% of patients with
their first-ever stroke died (919/1237), but only 53.8% of stroke-free participants died (2654/4928)
(Portegies et al., 2016). Stroke is classified into two types: ischemic stroke and hemorrhagic stroke.
The former accounts for over 80% of stroke cases (Weinstein et al., 2010). In recent years, several
therapeutic strategies for stroke have been used in clinical practice. Unfortunately, most patients
are unable to obtain timely and proper treatment because of the narrow therapeutic time window,
and only 3.4–5.2% of patients receive timely treatment during the acute phase (Writing Group
et al., 2016). During the subacute and chronic phases, it is therefore quite essential to discover
other combinations of treatments to facilitate the functional rehabilitation of patients with stroke
(Kanazawa et al., 2017).

Following the use of the magnetic resonance imaging (MRI) techniques at the cellular and
molecular level, researchers have obtained a new understanding of the inflammatory reaction after
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stroke because of the ability to dynamically monitor the reaction
changes occurring at spatial and temporal levels (Frechou et al.,
2013). The immune response after stroke is a significant factor
that affects the pathobiology and prognosis of acute ischemic
stroke (Anrather and Iadecola, 2016). Microglia/macrophages
are the main immune cells in the defense against brain damage
(Xiong et al., 2016). These cells release mediators, which may have
positive effects on brain repair and neurogenesis. Furthermore,
superabundant proinflammatory mediators can cause secondary
neuronal injury and hinder brain regeneration (Kim et al., 2016).

CD200 and its receptor CD200R are transmembrane
glycoproteins present on the surface of cells. Studies have shown
that CD200 is expressed on the surface of a wide variety of
cells such as thymocytes, B cells, T cells, tonsil follicles, kidney
glomeruli, syncytiotrophoblasts, and endothelial cells (Wright
et al., 2001). Indirect immunoperoxidase staining showed that
CD200 is primarily distributed in all neurons of the spinal cord
and brain in the central nervous system (Webb and Barclay,
1984). CD200R is expressed to a lesser extent than CD200 and
is mainly distributed in myeloid cells (Wright et al., 2003).
In the central nervous system, CD200R is mainly expressed
in microglia (Hoek et al., 2000). CD200R1, a member of the
CD200R family, binds to CD200 with a higher affinity than other
CD200R family members (Gorczynski et al., 2004). Recently, we
have focused our attention on the relationship between CD200
and CD200R to elucidate their immunoregulatory functions
in neuroinflammation.

Neurons are thought to have a self-protection mechanism
in which they express CD200 that binds to CD200R on the
microglial surface, which further prevents secondary neuronal
injury caused by microglia (Hoek et al., 2000; Wang, 2010;
Manich et al., 2019). Although there are no studies on the
specific repair mechanisms and therapeutic effects of CD200-
CD200R in poststroke inflammation injury, CD200R, could
still be considered as a high potential target in the study of
stroke immunotherapy.

NEUROINFLAMMATION AFTER STROKE

The innate immune system plays a role in the cerebral damage
due to ischemia, hemorrhage, and other brain injuries, and
inflammatory signal transduction is involved in all periods of
stroke, from the early stages where it mainly causes damage
to the late regenerative processes responsible for brain tissue
repair (Iadecola and Anrather, 2011). After stroke, primary
brain damage results from the death of cerebral cells. Secondary
brain damage is caused by cytoplasmic substances released
into the extracellular environment, which initiate a cascade
of inflammatory events that can amplify cell damage (Wang,
2010). Microglia have profound effects on neuroinflammation.
Activated microglia act as a double-edged sword. These cells are
normally responsible for clearing up necrotic neural cells and
restoring neuronal functions. However, when overly activated
after stroke, they produce a high amount of proinflammatory
mediators that can destroy the blood-brain barrier and
neurons and affect neurogenesis (Xiong et al., 2016). In

this review, we have mainly focused our attention on the
proinflammatory functions of microglial activation closely linked
to the regulator CD200-CD200R.

Mechanisms of Microglial Activation
During the occurrence of acute brain injuries, microglia
shift their activated states depending on two factors: the
expression of “on signals” and/or the abnormity of “off signals”
(Manich et al., 2019). The “On” signal is principally found in
pathological states and involves purines, chemokines, matrix
metalloproteinase-3, and glutamate. The “Off” signal mainly
appears in the healthy brain and is regulated by the release
of CD22, CX3CL1, neurotrophins, and neurotransmitters from
neural cells, which could combine with receptors on microglia
and help microglia to function in the physiological process
(Biber et al., 2007).

Immediately after the occurrence of cerebral injuries,
microglia become activated through signals. Damage-associated
molecular patterns (DAMPs), which include modified
extracellular matrix components, modified or oxidized lipid
species, DNA, RNA, and cytoplasmic proteins, are released
from the cell intracellular structures at the appropriate time
of cell death (Matzinger, 2002). DAMPs activate families of
scavenger receptors and Toll-like receptors on microglia, thereby
triggering stroke-induced neuroinflammation. In particular,
Toll-like receptor 4 (TLR4) and TLR2 are considered to mediate
the inflammatory response involved in the pathophysiological
processes of cerebral ischemia-induced injury (Kong and Le,
2011). Mice lacking TLR4 showed less expression of mediators
relevant to brain damage and inflammation, including IFN-β,
COX2, inducible nitric oxide synthase (iNOS), interferon
regulatory factor-1(IRF1), and matrix metalloproteinase-9
(MMP-9) (Caso et al., 2007). Moreover, ATP from injured
neurons, a type of DAMPs, is a contributing factor that causes
microglia to function by binding to the purinergic receptors on
microglia (Rodrigues et al., 2015).

Proinflammatory Functions of Microglial
Activation
Once microglia are activated, they undergo major changes
in their morphology, functions, and behaviors, such as
migration, proliferation, and phagocytosis. The production
of proinflammatory cytokines such as IL-6, IL-1, and TNF-α is
one of the most crucial abilities of microglia (Zhou et al., 2014).
Furthermore, activated microglia synthesize iNOS, which is
essential to produce NO. High levels of NO damage the brain
under the oxidative stress state because of the oxidation and
nitro-tyrosination of useful substances (Guix et al., 2005). On
the one hand, the proinflammatory cytokines lead to neuronal
death through direct or indirect pathways, for instance, apoptosis
and necrosis regulated by the caspase family of proteins and
inflammasome (Lamkanfi and Dixit, 2014; Jimenez Fernandez
and Lamkanfi, 2015). On the other hand, the proinflammatory
cytokines could mediate the phagocytic activity of microglia.
After ischemic stroke, higher levels of TNF-α expression were
detected in accordance with higher phagocytic activity of
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microglia (Ritzel et al., 2015). TNF-α has strong immune activity
and neurotoxicity (Shichita et al., 2012).

ROLE OF THE CD200-CD200R
INTERACTION IN
NEUROINFLAMMATION

One of the most useful endogenous immunoregulatory molecule
candidates that could prevent the neuroinflammation status
of the brain tissue seriously altered in cerebral injuries is the
CD200/CD200R inhibitory immune ligand-receptor crosstalk.
The immunomodulatory effect of CD200-CD200R is produced
in the different processes of microglial functions, as shown in
the following text.

Impact on Microglial Proliferation
In this segment, the proliferation of microglia probably
affected by the CD200-CD200R interaction is discussed.
Deckert et al. (2006) found that in a CD200-deficient mice
model with toxoplasma encephalitis, the number of microglia
with the proliferation-associated antigen Ki67 + dramatically
increased; this finding demonstrates that the deficiency of the
CD200-CD200R interaction upregulates microglial proliferation.
Furthermore, a study by Wang et al. (2011) showed a high
amount of microglia following the exposure to rotenone in
the neuron-microglia co-cultures after using an anti-CD200R
blocking antibody (ACDR). Oria et al. (2018) observed an
increase in the quantity of microglial cells with active phenotype
by using a retinoic acid (RA)-induced spina bifida animal model
to downregulate CD200 and upregulate CD200R. Thus, it can be
speculated that the loss of the CD200-CD200R pair will stimulate
microglial proliferation.

Influence of Microglial Activation
One of the most pivotal roles played by the CD200-CD200R
interaction is in maintaining microglia in a resting state to
inhibit the release of the proinflammatory mediators. As shown
in Figure 1, once CD200R binds to CD200, its tyrosine
residues are phosphorylated. Simultaneously, the downstream of
tyrosine kinase (DOK)1, DOK2, and RAS p21 protein activator
1 (RasGAP) are recruited. Finally, MAPK p38, extracellular
kinase (ERK), and c-Jun terminal kinase (JNK), the common
signaling pathways in microglial activation, are suppressed
(Manich et al., 2019). Ultimately, the production of TNF-α, IL-
6, and iNOS is reduced (Hernangomez et al., 2014). In one
study, the authors used mice lacking CD200 to reveal that
microglia exhibited a more activated phenotype and were large
in numbers (Hoek et al., 2000). Lago et al. (2018) observed that
the level of proinflammatory cytokines increased using a selective
blocking antibody against CD200R1; this finding indicates that
the destruction of CD200R1 induced microglial cells to exhibit
a proinflammatory phenotype. Liu et al. (2010) administered
a CD200R1 agonist (CD200Fc) in mice with experimental
autoimmune encephalomyelitis (EAE) during the chronic phase
of the disease; they found that the activation markers of microglia
were decreased. To the best of our knowledge, we can predict that

the immunomodulatory outcome of CD200-CD200R binding is
to inhibit the activation of microglia.

ROLE OF CD200-CD200R IN STROKE

Stroke leads to the death of neural cells. In this condition, the
CD200-CD200R has ceased to function. Although understanding
the interaction between microglial cells and neurons is a
significant challenge, it has a high therapeutic potential to restore
damage caused by microglia in neuroinflammation after stroke.
For the past few years, various studies have been conducted
on CD200-CD200R interaction in stroke in animal models, and
satisfactory results have been achieved.

Effects on Microglial Activation by
Mechanisms
Ren et al. (2016) showed CD200 could open the KATP channel
(adenosine triphosphate-sensitive potassium) and inhibit the
release of ATP as well as the proinflammatory factors in an
in vitro Parkinson’s disease (PD) model. Thus, it can be said that
the CD200/CD200R inhibitory immune ligand-receptor system
partially mediates the inhibitory effects of microglial activation
by reducing ATP release. Additionally, a report demonstrated
that the fusion protein CD200-Fc reduced the levels of TLR4
on the surface of peripherally circulating macrophages in an
in vivo model of white matter ischemia induced by endothelin-
1 (Hayakawa et al., 2016). On the basis of these results, we
can speculate that the same process occurs in the microglia.
In a recent study, researchers developed animal models with
acute stroke by subjecting the wild-type (WT) control mice and
CD200R1-knockout (KO) littermate mice to 60 min transient
middle cerebral artery occlusion (tMCAO) and assessed post-
acute changes in monocyte infiltration, microglia proliferation,
and behavioral deficits up to 1 week. Surprisingly, at 72 h
after stroke, more deaths occurred in the CD200R1-deficient
mice group because of monocyte infiltration and exacerbated
microgliosis. On the seventh day, CNS inflammation was
resolved in WT mice, whereas microglia activation persisted in
CD200R1-KO mice (Ritzel et al., 2019).

Correlations With Stem Cell Treatment in
Stroke
Cell therapy represents a potential breakthrough in the treatment
of stroke. Preclinical studies have revealed that cell therapy is
effective in the improvement of sensorimotor functions and
facilitation of behavioral recovery in animal models of stroke (Mu
et al., 2019). More importantly, the putative mechanisms include
neuroprotection against inflammation.

In a previous study, the authors used an in vitro human
allogeneic co-culture model to reveal the interplay between
neural stem/progenitor cells (NPCs) and a microglia population.
They showed that the proportion of NPCs expressing CD200 and
microglia expressing CD200R in the co-culture were higher than
those in the mono-culture, leading to the enhanced possibility of
the CD200 ligand-receptor binding to ameliorate the detrimental
neuroinflammation mediated by microglia (Liu et al., 2013).

Frontiers in Neuroscience | www.frontiersin.org 3 August 2019 | Volume 13 | Article 840

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00840 August 6, 2019 Time: 17:19 # 4

Zhao et al. CD200-CD200R in Stroke

FIGURE 1 | Presumptive mechanism of anti-inflammatory effects through the CD200-CD200R crosstalk. As soon as CD200R binds to CD200, its tyrosine residues
are phosphorylated. The tyrosine residues of CD200R recruit the downstream of tyrosine kinase (DOK)1, DOK2, and RasGAP, eventually leading to the inhibition of
Ras activation (Manich et al., 2019). Subsequently, the production of TNF-α, IL-6, and iNOS is also suppressed (Hernangomez et al., 2014).

In addition, Kong et al. (2018) proved that human placenta
amniotic membrane-derived mesenchymal stem cells (AMSCs),
transplanted into the rat model with ischemic stroke, drastically
reduced the level of proinflammatory cytokines accompanied by
upregulation of the CD200 protein and suppressed microglia
activation compared to the control group. Furthermore, several
experiments confirmed that transplantation of various stem
cells had anti-inflammatory effects in the treatment of stroke,
although the results did not explicitly state that the regulation
of inflammation was induced by CD200-CD200R because of the
inadequate analysis of CD200 distributed on the surface of stem
cells (Borlongan et al., 2010; Eckert et al., 2015; Yoo et al., 2016).
It is, however, still reasonable to believe that there is a relationship
between the two on a theoretical basis. More research studies are
needed to gain further knowledge on this topic.

CD200-CD200R IN OTHER NEURONAL
INJURIES

The EAE model is used to investigate the relationship
between CD200-CD200R and multiple sclerosis (MS). In the
experiment, the phenomenon of reduction in CD200 and an
increase in CD200R1 was observed in the EAE model. More

specifically, CD200 expression showed an apparent reduction
before the appearance of clinical symptoms in EAE. This perhaps
indicates that changes in CD200 expression might occur in
the early phase of MS, which may be the reason for the
downregulated control of macrophage/microglial activation, thus
contributing to the inflammatory response and the development
of pathological processes. In comparison, a succedent increase in
CD200R1 expression followed behind that seemingly portended
compensatory reaction to re-build control of the inflammation
(Valente et al., 2017).

The CD200-CD200R pair also acts as a contributing factor to
neurodegenerative diseases such as PD and Alzheimer’s disease
(AD). After preinjection of a CD200R blocking antibody to
block the CD200-CD200R inhibition signal in rats, a sub-lethal
dose of 6-hydroxydopamine, which only caused slight death
of dopaminergic neurons in the substantia nigra, resulted in
apparent PD symptoms in rats. Histopathological examination
showed the death of dopaminergic neurons and activation of
microglia cells in the substantia nigra (Zhang et al., 2011).
Quantitative studies demonstrated significantly less mRNA and
protein levels of CD200 and CD200R in the inferior temporal
gyrus and hippocampus (brain regions that show significant
AD pathology) from the neuropathologically confirmed AD
samples; however, a similar result was not observed in cerebellum
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samples – an encephalic region that is spared of AD pathology in
general (Walker et al., 2009).

CONCLUSION AND FUTURE
PROSPECTS

Recently, CD200 and CD200R have been increasingly
investigated, and the immune regulation induced by the
CD200-CD200R axis is valuable. As we already know, the
toxic damage caused to neurons by overactivated microglia
far outweighs its benefits (Weinstein et al., 2010; Kanazawa
et al., 2017). Nonetheless, neurons have a self-protection
mechanism in which they express CD200 that binds to
CD200R on the microglia surface, leading to the negative
regulation of proinflammatory factors derived from microglia
(Ritzel et al., 2019). Although there are no studies on the
specific repair mechanisms and therapeutic effects of CD200-
CD200R in poststroke inflammation injury, CD200R can
still be considered a high potential target in the study of
stroke immunotherapy.

In accordance with the evidence reviewed earlier, stem cells
are optimal materials for the cell therapy of patients with stroke.
Many animal trials have been conducted, in which the anti-
inflammatory effects of stem cells are hot topics (Liu et al.,
2013; Eckert et al., 2015; Kong et al., 2018). Yet, some questions
remain unsolved. Which kind of stem cell can convert into
neurons and express more CD200? Will a combination of stem
cells be more effective or less effective? Do stem cells have

other signaling pathways that could help enhance the anti-
inflammatory regulation of CD200-CD200R interaction? Can
we find a method to make the surviving neurons compensate
for the high expression of CD200? Or is it possible to use
the fusion protein CD200-Fc as a method to treat the harmful
neuroinflammation induced by microglia?

In conclusion, compared to traditional treatment regimens,
the use of the CD200-CD200R pair as target sites to alleviate
poststroke inflammatory injury is certainly one of the best
options (Hernangomez et al., 2014). Regulation of microglia
using the CD200-CD200R crosstalk meets our natural body
rhythm in an even better way and enables our body to conduct
efficient signal transmission and maintain the cells in a steady
state. Considering this, it is a long and uphill journey to reveal
more unknown details about the CD200-CD200R axis.
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