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Abstract
Genomic selection relies on single-nucleotide polymorphisms (SNPs), which are often collected using medium-density 
SNP arrays. In mink, no such array is available; instead, genotyping by sequencing (GBS) can be used to generate marker 
information. Here, we evaluated the effect of genomic selection for mink using GBS. We compared the estimated breeding 
values (EBVs) from single-step genomic best linear unbiased prediction (SSGBLUP) models to the EBV from ordinary 
pedigree-based BLUP models. We analyzed seven size and quality traits from the live grading of brown mink. The 
phenotype data consisted of ~20,600 records for the seven traits from the mink born between 2013 and 2016. Genotype 
data included 2,103 mink born between 2010 and 2014, mostly breeding animals. In total, 28,336 SNP markers from 391 
scaffolds were available for genomic prediction. The pedigree file included 29,212 mink. The predictive ability was assessed 
by the correlation (r) between progeny trait deviation (PTD) and EBV, and the regression of PTD on EBV, using 5-fold cross-
validation. For each fold, one-fifth of animals born in 2014 formed the validation set. For all traits, the SSGBLUP model 
resulted in higher accuracies than the BLUP model. The average increase in accuracy was 15% (between 3% for fur clarity 
and 28% for body weight). For three traits (body weight, silky appearance of the under wool, and guard hair thickness), the 
difference in r between the two models was significant (P < 0.05). For all traits, the regression slopes of PTD on EBV from 
SSGBLUP models were closer to 1 than regression slopes from BLUP models, indicating SSGBLUP models resulted in less 
bias of EBV for selection candidates than the BLUP models. However, the regression coefficients did not differ significantly. 
In conclusion, the SSGBLUP model is superior to conventional BLUP model in the accurate selection of superior animals, 
and, thus, it would increase genetic gain in a selective breeding program. In addition, this study shows that GBS data work 
well in genomic prediction in mink, demonstrating the potential of GBS for genomic selection in livestock species.
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Introduction
In the mink industry, the main objective is to produce large dried 
skins of high quality for sale, preferably from females with large 
litters. However, the breeding program for mink suffers from a 
number of characteristics that make it difficult for the breeder 
to achieve a balanced genetic progress for target traits. First, 
genetic evaluation of fertility traits has a low accuracy because 
heritabilities (h2) for fertility traits are low (Koivula et al., 2011; 
Thirstrup et al., 2019). Female reproductive capacity is limited 
as mink are monoestrous and only have one litter per year 
(Mononen et al., 2012). In addition, about 60% of females only 
get one litter before they are pelted, and only females capable of 
weaning a large litter with high body weights may get a second 
breeding season. Males usually breed 5 to 10 females and are 
pelted afterward. Therefore, selection intensities are low. 
Second, pelt size and pelt quality records are not available for 
selection candidates. Instead, body weight and quality recorded 
for live animals are used as indicator traits for pelt size and 
pelt quality. Both have medium to high h2 (Thirstrup et al., 2017, 
2019). Finally, there is a negative genetic correlation between 
litter size and body weight (Koivula et al., 2011), so selection for 
body weight leads to large animals with low fertility because 
phenotypic selection for larger animals is much more efficient 
than selection for higher fertility.

In pigs, Guo et al. (2015) found that models including genomic 
information resulted in higher accuracies for the low heritable 
fertility traits than a pure pedigree-based model. The increased 
accuracies for models that include genomic information might 
be used in mink to obtain a more balanced selection. In addition, 
the use of indicator traits that are genetically correlated to 
the traits of interest in mink suggests that genomic selection 
may be a good solution for improving the genetic evaluation 
(Meuwissen et  al., 2001, Calus and Veerkamp, 2011). Genomic 
selection has successfully been applied in many livestock 
species, such as cattle, pigs, and poultry (e.g., VanRaden et al., 
2009; Christensen et  al., 2012; Wolc et  al., 2015). It makes use 
of genome-wide dense marker sets to predict genetic values 
of candidate animals (Meuwissen et  al., 2001). A  single-step 
genomic best linear unbiased prediction (SSGBLUP) model 
was proposed (Legarra et al., 2009; Christensen and Lund 2010) 
to use the phenotypic information of both genotyped and 
non-genotyped individuals for genomic prediction efficiently. 
The SSGBLUP combines genotypic, phenotypic, and pedigree 
information for estimating breeding value and thereby results 
in higher accuracies of the estimated breeding values (EBVs).

Genomic selection in livestock usually uses SNP (single-
nucleotide polymorphisms) arrays for genotyping. However, 
no SNP array is currently available for mink. Alternatively, 
genotypes of SNP markers can be obtained in a price-efficient 
manner by genotyping by sequencing (GBS). Poland et al. (2012) 
presented a GBS-based approach to genomic prediction in barley 

and wheat, which has also been applied in genomic selection in 
aquaculture (Robledo et al., 2018).

The assembly of the mink genome by Cai et  al. (2017) has 
made the genomic prediction in mink breeding feasible. The 
current study is (to our knowledge) the first study to examine 
the impact of genomic selection in mink. We did so by testing 
whether prediction accuracies of breeding values estimated 
from SSGBLUP and a conventional pedigree-based best linear 
unbiased prediction (BLUP) approaches were significantly 
different.

Materials and Methods

Animals and phenotypic data

A total of 20,639 Brown mink (Neovison vison) born during the 
period from 2013 to 2016 in Foulum Research Farm, Aarhus 
University, Denmark, were used in this study. The mink were 
housed and later pelted in accordance to the Danish legislation 
for mink production (Danish Ministry of Environment and Food, 
2015), tissue samples were collected postmortem, and, therefore, 
no ethical approval was needed for this study.

In their first year, the mink were graded by professional fur 
quality evaluators from Kopenhagen Fur after maturation of 
the winter fur in November. Mink were graded for fur quality: 1 
to 5 (5 being best), under wool density: 1 to 3 (flat-filling), silky 
appearance: 1 to 3 (normal-silky), fur clarity: 1 to 3 (red-blue), 
guard hair thickness: 1 to 3 (thick-thin), and guard hair length: 
1 to 5 (long-short). Body weight was also measured at the live 
grading in November. A more detailed explanation of the traits 
can be found in Thirstrup et  al. (2017). The pedigree file was 
extracted from the Fur Farm database held by the Danish fur 
breeders association. The pedigree encompassed 29,212 brown 
mink.

Genotypes

Tissue for DNA extraction was collected from the muscle Mm. 
interossei in a toe after culling of the mink. We extracted genomic 
DNA from 2,103 brown mink born from 2010 to 2014 at Foulum 
Research Farm, Aarhus University, Denmark. The genotyped 
mink were primarily breeding animals and their progeny. As a 
consequence, more females than males were genotyped. Table 1  
summarizes the distribution of the 2,103 genotyped mink in 
relation to year of birth and sex.

The mink were genotyped by GBS method (Elshire et  al., 
2011), reads were aligned using Burrows-Wheeler Alignment 
tool (Li and Durbin, 2009), variant calling was done using GATK’s 
HaplotypeCaller (Poplin et  al., 2018, preprint), and GATK’s 
SelectVariants and VariantAnnotator was used to filter for 
biallelic sites and to annotate for Allele Balance, respectively. 
In the GBS protocol, the genome was cut with Pstl (cut site: 
CTGCAG) and Mspl (cut site: CCGG). There were 2,081,313 SNPs 

Abbreviations

BLUP	 best linear unbiased prediction
BV	 breeding value
EBV	 estimated breeding value
GBS	 genotyping by sequencing
MAF	 minor allele frequency
PTD	 progeny trait deviation
SNP	 single-nucleotide polymorphism
SSGBLUP	 single-step genomic best linear 

unbiased prediction

Table 1.  The number of genotyped males and females born from 
2010 to 2014 

Birth year Males Females Total

2010 1 97 98
2011 3 226 229
2012 6 439 445
2013 187 391 578
2014 193 560 753
Total 390 1,718 2,103
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with a mean depth per site of 10.08 before filtering. We obtained 
a filtered set of variants using vcftools (https://github.com/
vcftools/vcftools) with the parameters mac 3, minQ 30, max-
missing 0.5, minDP 3, maf 0.01, max-meanDP 102, and hwe 1e-05 
followed by vcffilter, which is a part of vcflib (https://github.com/
vcflib/vcflib) using the command vcffilter -s -f “ABHet > 0.35  & 
ABHet < 0.65 & ABHom > 0.85” in.vcf > out.vcf. After filtering, we 
obtained a total of 28,336 SNP, mapping to 391 scaffolds (mean: 
72.5 SD: 123.6) with minor allele frequency (MAF) > 0.02, at least 
80% calls per individual (Cai et al., 2018) and an average of 97% 
individuals called for each marker.

Statistical models

Breeding values were estimated using a conventional pedigree-
based BLUP method and an SSGBLUP method. The difference 
between the two methods is the information used to construct 
the relationship matrices.

Variance components and breeding values were estimated 
using BLUP and SSGBLUP. We used a single-trait model: 

y = Xb+Wp+ Za+ e� (1)

where y is the vector of phenotype, X is the design matrix for 
fixed effects, b is the vector of fixed effects, W is the design 
matrix that relates common litter effect to phenotypes, p is a 
vector of common litter effect, Z is the design matrix that relates 
animals to phenotype, a is the vector of animal additive genetic 
effects, and e is the vector of random residual effects. It was 
assumed that p ∼ N(0, Iσ2

c ) where I is an identity matrix, σ2
c  is 

the variance of litter effects, a ∼ N(0,Aσ2
a) when using BLUP or 

a ∼ N(0,Hσ2
a) when using SSGBLUP, where A is the pedigree-

based relationship between individuals, and H is the genotype 
and pedigree joint relationship matrix (see details below), σ2

a is 
the additive genetic variance, e ∼ N(0, Iσ2

e ), where I is an identity 
matrix and σ2

e  is the residual variance.
The fixed effects in the models were sex, birth year, and shed 

within the year. The random effects were common litter and 
additive genetic effects.

The joint relationship matrix H was constructed by combining 
the pedigree relationship matrix A and the genomic relationship 
matrix G (Legarra et al., 2009; Aguilar et al., 2010; Christensen 
and Lund, 2010). The genomic relationship matrix G was 

constructed according to VanRaden (2008), that is, G = ZZ′

2Σ pj(1−pj)
, 

where pj is the frequency of the second allele for the jth SNP, and 
the elements in the matrix Z is 0-2pj for homozygous 11, 1-2pj 

for heterozygous 12 and 21, and 2-2pj for homozygous 22. The 
combined relationship matrix H was constructed as:

H =

ñ
Gw GwA

−1
11 A12

A21A
−1
11 Gw A21A

−1
11 GwA

−1
11 A12 + A22 − A21A

−1
11 A12

ô
� (2)

Where A11 is the submatrix of A for the genotyped mink, A22 is 
the submatrix of A for the non-genotyped mink, A12 and A21 are 
the submatrices of A between genotyped and non-genotyped 
mink, respectively, and Gw is the improved genomic relationship, 
Gw = wG+ (1−w)A11, where w is the fraction of genetic variance 
not captured by the markers (Christensen et al., 2012). In this 
study, w = 0.30 was chosen according to some previous studies 
in pig (Christensen et  al., 2012; Guo et  al., 2015; Xiang et  al., 
2016). The inverse of H was:

H−1 = A−1 +

ñ
G−1
w − A−1

11 0
0 0

ô
� (3)

We used the same variance components for both conventional 
and genomic predictions. The variance components for the base 
population were estimated from all available phenotypic data 
from 2013 to 2016 using the linear model (1) with pedigree-
based/combined relationship matrix by restricted maximum 
likelihood in the software DMU (Madsen et al., 2014). Breeding 
values were also estimated in the DMU package. The phenotypic 
records of body weight were standardized to a mean of 0, and a 
variance of 1 within sex, due to the sex-specific differences in 
body weight in mink, where males are twice as heavy as females.

Table 2 summarizes the number of phenotypic records for 
the estimation of variance components, progeny trait deviation 
(PTD) and EBVs, respectively, and the mean and SD of each 
trait prior to the standardization of body weight to mean 0 and 
variance 1.

Validation

The predictive ability of the traditional BLUP and genomic 
SSGBLUP model was assessed using 5-fold cross-validation. In 
each of 5-fold, one-fifth of animals born in 2014, the last year 
with genotyped animals, were assigned to the validation set, 
and their phenotypic records were discarded. The remaining 
four-fifth of animals born in 2014 and all the animals born 
in 2013 formed the reference set. The split into the five 
validation sets was based on paternal half-sib families, such 
that all individuals of each paternal half-sib and full-sib family 

Table 2.  The number of phenotypic records and mean in the datasets used for estimation of variance components, PTD, and EBV, respectively 
(SD given in brackets)

Trait
Records up to 2016    

Estimation of variance components 
Records up to 2015   
 Estimation of PTD 

Records up to 2014    
Estimation of EBV

 N Mean N Mean N Mean

Body weight, g 10,043m1  
10,241f1

3,872 (552)  
2,028 (314)

7,635m  
7,688f

3,818 (546)  
1,987 (305)

5,002m  
4,824f

3,739 (524)  
1,953 (96)

Density 20,574 2.23 (0.43) 15,259 2.22 (0.43) 9,776 2.21 (0.42)
Quality 20,574 3.45 (0.76) 15,259 3.42 (0.79) 9,776 3.42 (0.82)
Silky 20,571 2.06 (0.57) 15,258 2.01 (0.58) 9,775 1.96 (0.61)
Guard hair thickness 20,563 2.03 (0.64) 15,253 2.02 (0.62) 9,775 2.01 (0.60)
Guard hair length 20,573 2.93 (0.66) 15,258 2.86 (0.65) 9,775 2.88 (0.64)
Fur clarity 20,573 2.13 (0,77) 15,258 2.10 (0.80) 9,775 2.06 (0.80)

1,m and frefer to male and female records, respectively.

https://github.com/vcftools/vcftools
https://github.com/vcftools/vcftools
https://github.com/vcflib/vcflib
https://github.com/vcflib/vcflib
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were assigned to the same validation set. The EBVs from the 
validation animals in each fold were joined such that the set 
of animals born in 2014 formed the combined validation set, 
in which accuracies and regressions were computed. In total, 
we had phenotypic records from about 9,800 mink born in 
2013 and 2014 for each trait. These records were used for the 
estimation of breeding values. Of the 9,800 mink, 1,331 were 
genotyped. About 1,000 phenotypic records were discarded 
in each validation fold (981 to 1,080), hereof about 100 from 
genotyped mink with progeny in each fold (78 to 141). Table 3 
specifies the number of discarded phenotypic records in each 
validation fold, and how many of these are from genotyped 
individuals with progeny. Table 3 also specifies the number of 
litters and sires of the litters in each fold.

The predictive ability of the two models was assessed by the 
accuracy of the EBV from the BLUP and the SSGBLUP models 
for genotyped validation animals that had progeny in 2015. The 
PTD was defined as the average of the progeny’s performance 
adjusted for fixed and nongenetic random effects of the progeny 
as well as the genetic effect of mates. The PTDs were estimated 
using a conventional single-trait animal model BLUP in the DMU 
package (Madsen et  al., 2014). Phenotypic records until 2015 
were included, because these were needed for the estimation of 
PTD to the validation animals born in 2014.

The correlation between PTD and EBV (Cor(PTD, EBV)) was 
calculated as a weighted correlation using a weighting factor 
wPTD, to account for heterogeneous residual variance of PTD due 
to different amount of information for PTD:

wPTD =
r2PTD

(1− r2PTD)
� (4)

where r2PTD is the model reliability of PTD, which depends on 
the number of progeny contributing to the PTD (nPTD), and the h2.

r2PTD =
nPTD

nPTD+ ( 4−h2
h2 )

� (5)

Table 4 summarizes the average r2PTD and wPTD for the genotyped 
validation animals with progeny.

The validation accuracy is:

rEBV = cor(PTD,EBV)/
»
r2PTD� (6)

The cov.wt function in the R package (version 3.4.4) was used 
to estimate a weighted correlation. We estimated the 95% 
confidence interval for the difference between the validation 
accuracies from the SSGBLUP and BLUP model (rEBV,SSGBLUP-rEBV,BLUP) 
using nonparametric bootstrap based on 10,000 bootstrap 

samples. In addition, we used a t-test to test the hypothesis that 
the difference between correlations was 0.

The bias of EBVs from the two models was assessed from the 
regression coefficients of EBVs from the full data including all 
records up to 2014 on EBV for validation animals with genotypes 
and progenies in the five validations. The expectation was 1, 
if there was neither over nor under dispersion (Legarra and 
Reverter, 2018).

Results
We estimated variance components using single-trait animal 
models with both BLUP and SSGBLUP methods based on full data 
(Table 5). The estimates of σ2

c , σ
2
c , and σ2

e  were not significantly 
different for the two models based on t-tests. Most of the traits 
had low to medium h2 varying from 0.092 for density in the BLUP 
model to 0.530 for body weight in the SSGBLUP model.

The accuracies of the prediction of EBV from the two models 
and the increase from BLUP-EBV to SSGBLUP-EBV are presented 
in Table 6. For all traits, the SSGBLUP model resulted in higher 
accuracies than the BLUP model. The accuracies ranged from 
0.298 for fur clarity in the BLUP model vs. 0.308 in the SSGBLUP 
model to 0.673 for silky appearance of the under wool in the 
BLUP model to 0.753 in the SSGBLUP model. The increases 
ranged from 3% for fur clarity to 28% for body weight, and the 
average increase in accuracy was 15%. Table 6 also presents the 
confidence interval for the difference between the correlations 
from the two models, estimated using 10,000 bootstrap samples. 
For body weight, silky appearance of the under wool, and guard 
hair thickness, there were significant increases in accuracy 
with the SSGBLUP model, and, in addition, the 95% confidence 
intervals did not include 0, indicating that the SSGBLUP model 
resulted in significantly higher prediction accuracy than the 
BLUP model for these traits.

Bias in the genetic evaluations was measured by the 
regression of genetic evaluations on PTD for validation animals 

Table 3.  For each validation fold for 2014 records, this shows the number of phenotypic records discarded, total, and from genotyped validation 
animals with progeny, the number of litters, and number of sires for the litters 

Discarded records Hereof from validation animals with PTD

Validation fold N Litters Sires N Litters Sires

1 1,080 192 61 100 53 26
2 1,042 194 62 90 56 30
3 1,039 193 63 78 43 24
4 1,059 205 68 85 46 24
5 981 174 50 141 75 31
Total 5,201 958 304 494 273 135

Table 4.  Average PTD reliability, r2PTD, and weighting factor, wPTD, for 
the genotyped validation animals with progeny (SD given in brackets)

Trait r2
PTD wPTD

Body weight 0.50 (0.20) 1.54 (1.58)
Quality 0.40 (0.19) 0.96 (0.99)
Density 0.17 (0.13) 0.24 (0.25)
Silky 0.34 (0.19) 0.72 (0.74)
Guard hair length 0,46 (0.20) 1.28 (1.31)
Guard hair thickness 0.40 (0.19) 0.97 (1.00)
Fur clarity 0.29 (0.17) 0.54 (0.55)
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with genotypes and progenies in the five validations. The 
regressions are presented in Table 7. Both negative and positive 
biases were observed for EBV from both BLUP and SSGBLUP 
models. For three traits, a t-test implied that regression coefficients 
were different from 1. The lowest regression coefficient was observed 
for density (0.790 and 0.856 for BLUP and SSGBLUP, respectively). 
The highest was observed for silky appearance of the under wool 
(1.600 and 1.469 for BLUP and SSGBLUP model, respectively). 
Another trait with regression coefficients deviating from 1 was 
quality. Inclusion of genomic information in the relationship 
matrix tended to reduce the over or under dispersion of EBVs 
with regression coefficients deviating less from 1 for five out of 
seven traits. However, there was no significant difference in the 
regression coefficients for the two models for any trait.

Discussion
This study is the first to investigate the benefit of genomic 
prediction in a real mink population. We compared genetic 
evaluation using the SSGBLUP model with conventional 
pedigree-based BLUP model. We found that it was possible to 
perform a genetic evaluation based on GBS data with a relatively 
small number of genotyped mink. A  comparison of the EBV 
from the models indicated that the SSGBLUP model led to 
higher accuracy and less bias of EBV than the pedigree-based 

BLUP model. Fur clarity did not increase in accuracy with an 
SSGBLUP model. This could be because the models we used for 
the analyses assumed normally distributed traits. This seemed 
reasonable for most of the traits based on data distributions; 
although, most of the traits only had few categories. However, for 
fur clarity, the observations were almost uniformly distributed; 
therefore, the prediction model might have failed. We have tried 
to estimate EBV for all traits with categorical liability threshold 
models, but the analyses did not converge, and the data set 
might be too small for these analyses. A larger data set might 
allow the use of a categorical model, especially for fur clarity.

In many livestock species, genomic selection uses commercial 
SNP arrays for genotyping, for example, the BovineSNP50k 
BeadChip for cattle, the PorcineSNP60k BeadChip for pig, and 
the 60k BeadChip for chicken, all from Illumina Inc, San Diego, 
CA. As there was no SNP chip for mink, the technique GBS was 
used for genotyping of the mink. Many simulation studies have 
suggested using GBS in livestock populations (Gorjanc et  al., 
2015; Wang et  al., 2019); however, until now, the technique 
is mostly used in plant breeding. The results from this study 
confirmed that GBS is a viable alternative to using an SNP chip 
for genomic prediction.

In this study, the number of genotyped animals was 
relatively small. However, the accuracies for EBV estimated 
in BLUP and SSGBLUP models confirmed that the inclusion of 

Table 5.  Genetic variance (σ2
a), common litter variance (σ2

c), residual variance (σ2
e), and heritability (h2) of body weight and quality traits estimated 

by BLUP and SSGBLUP using all data records until 2016 (SE given in brackets)

Trait BLUP SSGBLUP

 σ2
a σ2

c σ2
e h2 σ2

a σ2
c σ2

e h2

Body weight1 0.414 
(0.021)

0.077 
(0.005)

0.299 
(0.011)

0.524 0.419  
(0.021)

0.077  
(0.005)

0.295  
(0.011)

0.530

Quality 0.183 
(0.012)

0.025  
(0.003)

0.324  
(0.007)

0.345 0.187  
(0.012)

0.023  
(0.003)

0.321  
(0.007)

0.352

Density 0.016  
(0.002)

0.006  
(0.001)

0.155 
(0.002)

0.092 0.018  
(0.002)

0.005  
(0.001)

0.155  
(0.002)

0.099

Silky 0.079  
(0.006)

0.016  
(0.002)

0.204  
(0.004)

0.263 0.078  
(0.005)

0.015  
(0.002)

0.203  
(0.004)

0.264

Guard hair length 0.187  
(0.010)

0.016  
(0.002)

0.208  
(0.006)

0.456 0.189  
(0.010)

0.015  
(0.002)

0.207  
(0.006)

0.460

Guard hair thickness 0.138  
(0.009)

0.018  
(0.002)

0.240  
(0.005)

0.349 0.138  
0.009)

0.017  
(0.002)

0.239  
(0.005)

0.349

Fur clarity 0.116  
(0.010)

0.028  
(0.004)

0.439  
(0.007)

0.200 0.116  
(0.010)

0.028  
(0.004)

0.438  
(0.007)

0.200

1 Original records within sex were standardized to mean = 0, variance = 1, and the records of males and females were analyzed together.

Table 6.  Accuracy of BLUP-BV and SSGBLUP-BV for the genotyped validation animals with progeny, the increase in accuracy of EBV from the 
SSGBLUP model relatively to the BLUP model, and 95% confidence interval for the difference of cor(PTD,EBV) from the two models based on 
10,000 bootstrap samples (SE given in brackets)

Trait Accuracy BLUP-BV Accuracy SSGBLUP-BV Increase in accuracy, % 95% confidence interval

Body weight 0.38 (0.07) 0.49 (0.07) 28* 0.019 to 0.159
Quality 0.53 (0.08) 0.59 (0.08) 10 −0.005 to 0.092
Density 0.37 (0.16) 0.44 (0.15) 18 −0.005 to 0.086
Silky 0.67 (0.08) 0.75 (0.08) 12* 0.014 to 0.099
Guard hair length 0.47 (0.09) 0.52 (0.08) 12 −0.011 to 0.105
Guard hair thickness 0.55 0.08) 0.65 (0.07) 19* 0.036 to 0.119
Fur clarity 0.30 (0.11) 0.31 (0.11) 3 −0.043 to 0.058
Average 0.47 0.53 15 —

*Significant increase based on t-test, P < 0.05.



Copyedited by: SU

6  |  Journal of Animal Science, 2021, Vol. 99, No. 1

marker information in a single-step approach produced more 
accurate EBV estimates for the genotyped animals. The average 
increase in accuracy for the seven traits was 14.6% when 
EBV was estimated using the SSGBLUP model, even with the 
relatively small number of genotyped animals. This increased 
accuracy indicates that the SSGBLUP model results in a more 
correct ranking of individuals and thereby a higher potential 
for maximizing genetic progress. This increase could be caused 
by the information about the Mendelian sampling term in the 
SSGBLUP model. The extra gain from genomic information 
was confirmed by bootstrapping statistics and a significant 
increase in accuracy. Many previous studies in livestock species 
also concluded that SSGBLUP evaluations provided more 
accurate EBV estimates than the traditional BLUP model based 
on pedigree. Christensen et  al. (2012) found that correlations 
between BLUP-BV, SSGBLUP-BV, and corrected phenotypes 
increased from 0.179 to 0.353 for daily gain in genotyped pigs 
and from 0.196 to 0.231 for feed conversion ratio. Su et al. (2012) 
reported that reliability increased from 0.199 using BLUP to 
0.322 using SSGBLUP, averaged over 15 traits in the Red cattle 
population. Gao et al. (2018) found reliabilities increased by 55% 
to 85% for milk, fat, and protein for genotyped cows going from 
a pedigree-based BLUP to SSGBLUP model. Yoshida et al. (2019) 
studied a population of rainbow trout and found an increase in 
reliability going from pedigree-based BLUP to SSGBLUP of 7% to 
11% for survival traits. These studies and many others all used 
SNP chip for genotyping.

The h2 estimates for all traits were similar for the two models. 
The medium to high h2 estimates indicated that all traits could be 
genetically improved by selection. The estimates of the h2 were 
in concordance or higher than previous estimates for body size 
and live quality traits in Danish mink reported by Thirstrup et al. 
(2017). However, different studies, in general, have shown large 
discrepancies in h2 estimates for body size and quality traits in 
mink, depending on the population and the trait definition. For 
examples, Koivula et al. (2011) found a h2 of 0.19 for body size in 
Finnish mink, and Kołodziejczyk and Socha (2012) estimated a h2 
of 0.11 for body weight in American mink.

The regression coefficient of EBVs from all records up to 
2014 on EBVs from the five validation folds for the genotyped 
validation animals with progeny is a measure of dispersion of 
predictions (Legarra and Reverter, 2018). A regression slope of 1 
indicates no positive or negative bias. In this study, four out of 
the seven regression coefficients were not significantly different 
from 1 for both models. However, for all traits, the regression 
slopes for SSGBLUP-BV were closer to 1, indicating that SSGBLUP 
models resulted in less bias of the EBV than the BLUP model.

Conclusions
This study supports the potential of GBS for genomic selection 
in livestock species. The single-step method provided more 
accurate estimates of EBV for the genotyped mink than the 
pedigree-based BLUP model. Bootstrap confidence interval and 
hypothesis test supported the statistical significance of the 
superiority of the SSGBLUP model to the BLUP model. Regression 
coefficients of EBVs based on all records up to 2014 on EBVs from 
the five validation folds for the genotyped validation animals 
with progeny were closer to 1 for the SSGBLUP-BV, indicating less 
bias of the EBVs from SSGBLUP than those from the BLUP model.
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