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Abstract: Lung cancer is the leading cause of cancer-related deaths worldwide, with lung
adenocarcinoma representing the most common lung cancer subtype. Among all lung
adenocarcinomas, the most prevalent subset develops via tumorigenesis and progression from
atypical adenomatous hyperplasia (AAH) to adenocarcinoma in situ (AIS), to minimally invasive
adenocarcinoma (MIA), to overt invasive adenocarcinoma with a lepidic pattern. This stepwise
development is supported by the clinicopathological and molecular characteristics of these tumors.
In the 2015 World Health Organization classification, AAH and AIS are both defined as preinvasive
lesions, whereas MIA is identified as an early invasive adenocarcinoma that is not expected to recur if
removed completely. Recent studies have examined the molecular features of lung adenocarcinoma
tumorigenesis and progression. EGFR-mutated adenocarcinoma frequently develops via the multistep
progression. Oncogene-induced senescence appears to decrease the frequency of the multistep
progression in KRAS- or BRAF-mutated adenocarcinoma, whose tumor evolution may be associated
with epigenetic alterations and kinase-inactive mutations. This review summarizes the current
knowledge of tumorigenesis and tumor progression in early lung adenocarcinoma, with special focus
on its clinicopathological characteristics and their associations with driver mutations (EGFR, KRAS,
and BRAF) as well as on its molecular pathogenesis and progression.

Keywords: CDKN2A (p16); de novo pathway; HNF4A; immunohistochemistry; molecular
pathological epidemiology; NKX2-1 (TTF-1) amplification; Napsin A; Noguchi classification; terminal
respiratory unit (TRU)-lineage; TP53 (p53)

1. Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide, with adenocarcinoma
representing the most prevalent subtype. As most cases of lung adenocarcinoma are found at advanced
stages, even with regular radiographic screening, improved detection of early lung adenocarcinoma
at a curable stage would decrease lung cancer-related deaths and avoid costly treatments. Over
the past several decades, novel strategies based on newly identified genomic features of these
cancers have provided us with refined risk assessments, early detection methods, and therapeutic
interventions for lung cancer; however, the impact of these strategies is limited by inadequate
knowledge of the biological features of lung cancer, especially the processes of tumorigenesis and
tumor progression at early stages. Recent studies have increased our understanding of the genomic
features of lung adenocarcinoma in terms of its initiation and progression. The most prevalent subset
of adenocarcinoma is believed to develop stepwise from atypical adenomatous hyperplasia (AAH)
to adenocarcinoma in situ (AIS), to minimally invasive adenocarcinoma (MIA), and finally, to overt
invasive adenocarcinoma with a lepidic pattern.
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The recently updated World Health Organization (WHO) classification [1,2], which is based
on the accumulated molecular features of cancer, has adopted this stepwise continuum of lung
adenocarcinoma tumorigenesis and progression. Considering that this process begins with AAH
(the precursor of adenocarcinoma), the 2015 WHO classification divides adenocarcinoma into
AIS (preinvasive lesion), MIA, and overt invasive adenocarcinoma, according to the extent of
invasiveness [1].

AAH, AIS, and MIA are precursors of overt invasive adenocarcinoma with a lepidic pattern;
therefore, a greater understanding of their development may elucidate the underlying mechanisms
of tumor evolution in early lung adenocarcinoma. An analysis of these mechanisms will allow the
development of more effective prevention and therapeutic strategies. This review presents the current
knowledge of the processes of tumorigenesis and progression in early lung adenocarcinoma, with a
focus on its clinicopathological characteristics and their associations with driver mutations (EGFR,
KRAS, and BRAF).

2. Clinicopathological Characteristics

The stepwise continuum of AAH to AIS, to MIA, to overt invasive adenocarcinoma with a
lepidic pattern, has been recognized as a potential model of lung adenocarcinoma development. This
continuum is supported not only by the morphological appearance of the tumor but also by the
sequence of the molecular processes involved. Both cellular and structural atypia increase along
this stepwise continuum. Noguchi et al. classified small (less than or equal to 2 cm) peripheral
adenocarcinomas into six types (the Noguchi classification; type A–F) based on histological tumor
growth patterns. In the Noguchi classification, early adenocarcinomas with lepidic patterns are
classified as type A, B, or C [3], representing the stepwise progression of lung adenocarcinoma [3,4].
Type A adenocarcinoma, corresponding to AIS, exhibits lepidic growth with a relatively thin stroma.
Type B adenocarcinoma, corresponding to the sclerosing variant of AIS, exhibits lepidic growth with
septal widening due to alveolar collapse. Type C adenocarcinoma, corresponding to MIA, represents
localized adenocarcinoma with lepidic growth and foci of active fibroblast proliferation [3,4]. This
section provides an overview of the clinicopathological features of AAH, AIS, and MIA.

2.1. AAH (Atypical Adenomatous Hyperplasia)

AAH has been uniquely recognized as a potential lesion from which lung adenocarcinoma arises
and is usually undetectable by imaging techniques. AAH is typically identified incidentally during the
examination of surgical specimens harboring a malignant tumor [1]. AAH is a local, slow-growing
lesion. On computed tomography (CT), AAH, when detectable, manifests as a small, ground-glass
nodule (GGN) with no solid component [5–7]. The incidence of AAH is high in surgically resected lung
tissue that harbors lung cancer, especially lung adenocarcinoma [8,9]. Among adenocarcinomas, AAH
frequently coexists with AIS [9]. This higher risk of AAH in lung tissue harboring adenocarcinoma
may be explained by field cancerization [10–12], which suggests that normal lung tissue is at risk of
developing adenocarcinoma because it possesses genetic features that make the tissue vulnerable to
the development of AAH, which is often followed by invasive adenocarcinoma.

AAH is a small (usually smaller than 0.5 cm) lesion that typically occurs in the peripheral
lung, especially near the pleura [1,3,13]. AAH is frequently undetectable macroscopically but can
often be identified microscopically. Macroscopically identified AAH usually appears as a small,
poorly-defined, tan-yellow, nodular lesion [1]. Microscopically, AAH exhibits localized proliferation of
alveolar type II pneumocytes with mild to moderate cellular atypia, which line pre-existing alveolar
walls (lepidic growth) (Figure 1) [1]. Atypical alveolar type II pneumocytes typically have a hobnail
appearance. Intranuclear eosinophilic inclusions are occasionally observed. Between the atypical type
II pneumocytes, substantial gaps are evident along the surface of the basement membrane. These
gaps are useful characteristics to distinguish AAH from AIS (Figure 1). AAH lesions show an abrupt
transition to adjacent normal pneumocytes. Although the alveolar wall may be slightly thickened by
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collagen, these interstitial changes do not extend beyond the borders of the lesion, as defined by the
population of atypical pneumocytes [1].

AAH must be distinguished from AIS and reactive pneumocyte hyperplasia. AAH and AIS
both present a morphological continuum of progression in terms of cellular and structural atypia.
Therefore, the distinction between AAH with a greater number of cellular/structural atypia and AIS
is occasionally challenging. In AIS, cellular/structural atypia are typically more pronounced than
in AAH. It should be noted that AIS is generally larger (usually greater than 5 mm), with a greater
population of densely packed atypical cells, with greater cell-cell contact, overlap, mild stratification,
and abrupt transitions to adjacent normal pneumocytes [1]. Reactive pneumocyte hyperplasia with
cellular atypia occurs secondary to parenchymal inflammation or fibrosis, where atypical pneumocytes
are not the dominant feature. Typically, AAH does not occur in inflammatory or fibrotic lesions [1].
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Figure 1. Morphology of AAH (hematoxylin and eosin staining). (A) Low magnification
(Scale bar = 1000 µm). (B) High magnification (Scale bar = 100 µm). AAH, atypical adenomatous hyperplasia.

2.2. AIS (Adenocarcinoma In Situ)

AIS is a small (defined as less than or equal to 3 cm in diameter), localized adenocarcinoma that
is typically identified in the lung periphery, close to the pleura [3,13]. In the Noguchi classification,
the continuum from type A to type B, followed by type C, represents the stepwise progression of
peripheral early adenocarcinoma of less than or equal to 2 cm in size [3,4]. AIS lesions, corresponding
to Noguchi type A or type B adenocarcinoma, are localized and grow slowly. When AIS lesions are
completely resected, disease-free survival is nearly 100% [14–18]. AIS tumors can be subdivided
into nonmucinous and mucinous variants; however, the mucinous variant is extremely rare. AIS is
usually identified coincidentally with the use of CT for other medical reasons. On CT, AIS appears
as a small GGN with no solid component, similar to AAH. In cases of mucinous AIS, lesions
very rarely show a part-solid or solid nodule [1,19]. Macroscopically, AIS typically appears as a
poorly-demarcated nodule with a tan- or pale-colored cut surface. Microscopically, AIS appears
as a pure lepidic growth of tumor cells along pre-existing alveolar structures and lacks lymphatic,
vascular, stromal, or pleural invasion (Figure 2). The tumor should be completely sampled and
microscopically examined to confirm the lack of an invasive component. Nonmucinous AIS typically
comprises atypical type II pneumocytes (Figure 2A–C). Extremely rare cases of mucinous AIS consist
of tall columnar cells with abundant cytoplasmic mucin and basal nuclei, resembling goblet cells.
Nuclear atypia are virtually absent in mucinous AIS, whereas low-grade nuclear atypia are observed
in nonmucinous AIS [1]. Immunohistochemically, nonmucinous AIS usually expresses TTF-1 (NKX2-1)
protein, which is a transcription factor that regulates the tissue-specific expression of surfactant
proteins [20] and a lineage-specific marker of terminal respiratory unit (TRU) [21–23]. In contrast,
mucinous AIS rarely expresses TTF-1 protein; therefore, a majority of mucinous AIS tumors are
considered non-TRU-type adenocarcinomas [23]. Both nonmucinous and mucinous AIS tumors show
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positive CK7 immunostaining. In contrast, mucinous AIS tumors are usually immunohistochemically
positive for CK20, whereas nonmucinous AIS tumors rarely show such CK20-positive staining.
The coexpression of CK7 and CK20 is a characteristic feature of mucinous lung adenocarcinoma,
including mucinous AIS [24]. However, it should be noted that mucinous adenocarcinomas from
other organs, such as ovaries, occasionally coexpress CK7 and CK20 [25]. Morphologically, AIS tumor
cells typically resemble alveolar type II pneumocytes that grow with the continuous replacement of
alveolar epithelium. AIS that lacks fibrotic foci and possesses a relatively thin stroma corresponds
to Noguchi type A adenocarcinoma (Figure 2A–C). The sclerosing variant of AIS (corresponding to
Noguchi type B adenocarcinoma) shows septal widening with alveolar collapse and an increase in
elastic tissue (Figure 2D–G) [3,4]. Distinguishing between sclerosing AIS and invasive adenocarcinoma
is occasionally challenging.

AIS must be distinguished from AAH (as described above) and MIA, which presents as a
minimally invasive lesion. The delineation of invasive foci in MIA from sclerosing AIS with a marked
increase of elastic tissue in thickened alveolar septa is potentially problematic. The use of an elastic
tissue stain that demonstrates the destruction of alveolar structures allows the differentiation between
true invasion and alveolar collapse [26,27]. However, it should be noted that the destruction of elastic
fibers is not necessarily present during the early phase of invasion. Additionally, changes at the
biopsy site from prior biopsies should not be misinterpreted as stromal reactions induced by tumor
invasion [28]. Noninvasive adenocarcinomas greater than 3 cm in diameter are very rare; thus, there is
insufficient evidence for a prognosis of 100% disease-free survival when they are removed completely.
In the 2015 WHO classification, these tumors are classified as “lepidic predominant adenocarcinoma,
suspect AIS” [1].
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Figure 2. Morphology of AIS (Noguchi type A; A–C) and AIS, sclerosing type (Noguchi type B;
D–G). AIS at low magnification (Noguchi type A) [(A) HE staining and (B) EVG staining] and
(C) high magnification (HE staining). AIS, sclerosing type, at low magnification (Noguchi type B)
[(D) HE staining and (E) EVG staining] and high magnification [(F) HE staining and (G) EVG staining].
A, B, D, and E: Scale bar = 1000 µm. C, F, and G: Scale bar = 100 µm. AIS, adenocarcinoma in situ;
EVG, Elastic van Gieson; HE, hematoxylin and eosin.
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2.3. MIA (Minimally Invasive Adenocarcinoma)

MIA has been introduced as a new tumor entity between AIS and lepidic adenocarcinoma in the
2015 WHO classification [1]. The introduction of MIA is logical from a clinicopathological point of
view [27]. MIA is a small (less than or equal to 3 cm in diameter) adenocarcinoma with a predominantly
lepidic pattern and an invasive structure smaller than or equal to 5 mm (Figure 3). MIA is usually
nonmucinous but rarely can be mucinous [1]. As with AIS, MIA is usually detected coincidentally
on CT performed for other medical reasons. On CT, MIA frequently appears as a GGN in the lung
periphery with a solid component smaller than 5 mm. The invasive lesion requires differentiation
from alveolar collapse, fibrosis, and mucous that can also cause a solid appearance on CT. Whereas the
differential diagnosis between MIA and mucinous AIS is problematic on CT, multiple nodules and
spread of the nodule to adjacent lung parenchyma with an indistinct border support the diagnosis of
mucinous AIS [29]. Clinically, MIA is not expected to recur if removed completely [14,17,18,30–32].
As previous studies have not demonstrated any significant differences between AIS and MIA in terms
of clinical outcome, the benefit of their differentiation is questionable [33,34]. Based on previous
research [1,2], neither AIS nor MIA tend to spread to regional lymph nodes or metastasize. Therefore,
patients with AIS or MIA are candidates for sublobar resection [35–38].

Macroscopically, MIA typically appears as a centrally elastic-hard, fibroblastic lesion surrounded
by an elastic-soft, pneumatic component. MIA lesions frequently exhibit central anthracotic
pigmentation and pleural puckering. Tumor size on gross examination may be smaller than that
on radiological examination. Collapse of the lung tissue, especially when the lung is not adequately
filled with formalin, and formalin fixation itself may contribute to the reduced gross size. Furthermore,
ill-demarcated tumor, because of the sparse lepidic growth in the periphery, may lead to a smaller
macroscopic size compared to radiology. Microscopically, MIA appears as an adenocarcinoma
(less than or equal to 3 cm) with a predominant lepidic pattern and invasive structure less than
or equal to 5 mm (Figure 3) [1,39]. The size of the invasive area must be correctly measured in the
largest dimension, based on classification criteria [1,39]. Scattered invasive foci make it difficult to
measure the greatest diameter of the structure. A recent study suggested that the size of the invasive
structure can be estimated as the sum of the percentages of the invasive components multiplied by
the greatest diameter of the tumor [1,14]. According to the classification criteria, a small (less than or
equal to 3 cm) adenocarcinoma with an estimated invasive diameter less than or equal to 5 mm can be
diagnosed as MIA [1,14]. Microscopically, MIA appears nonmucinous but very rarely can be mucinous
or of a mixed phenotype, similar to AIS [1,30,32,40]. If the tumor size is less than or equal to 2 cm,
MIA is classified as a Noguchi type C tumor. Noguchi type C adenocarcinoma represents localized
adenocarcinoma with lepidic growth and foci of active fibroblast proliferation [3,4]. The invasive
component of MIA can display various histological patterns, such as acinar, papillary, solid, or
micropapillary. The infiltration of tumor cells into the stroma with active myofibroblast proliferation
is also considered invasive. MIA is defined as lacking lymphatic, vascular, and pleural invasive
components; tumor necrosis; or spreads through air spaces, all of which are associated with a poor
outcome. Immunohistochemically, nonmucinous MIA tumors are TRU-type adenocarcinomas that
stain positive for pneumocyte markers TTF-1 and Napsin A, which is an aspartic proteinase involved
in the maturation of surfactant protein B in type II pneumocytes [21,41]. Mucinous MIA tumors are
frequently negative for pneumocyte-associated proteins and positive for CK20 and HNF4A [42],
which is a transcription factor expressed in the liver, kidney, and intestine that plays a crucial
role in morphological differentiation [43]. HNF4A is frequently detected in invasive mucinous
adenocarcinomas [42].

MIA must be properly distinguished from AIS (as described above) and invasive lepidic
adenocarcinoma. When scattered invasive foci are observed in a tumor, measuring or estimating
the size of the invasive component correctly is challenging; however, this step is necessary to make
a proper differential diagnosis. It should be noted that invasive lepidic adenocarcinoma resembles
MIA in terms of morphological features but has a significantly worse clinical outcome than MIA.
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Acinar and papillary patterns are the most commonly observed invasive components in MIA [14];
therefore, the architectural similarity of these patterns with lepidic patterns makes it more difficult to
differentiate between a noninvasive lepidic pattern and an invasive pattern [44]. An intraoperative
diagnosis using frozen sections may be used to stratify lung tumors into AIS, MIA, and overt invasive
adenocarcinoma, which may help determine treatment strategies (lobectomy or sublobar resection) [45].
The accuracy of an intraoperative diagnosis is dependent on multiple factors, such as tumor size,
interstitial inflammation or fibrosis, number of pathologists engaging in the diagnosis, and number
of examined samples [45–48]. As most studies of adenocarcinomas with minor invasive components
involved the examination of tumors smaller than 3 cm, there is insufficient evidence for a prognosis of
100% disease-free survival when such tumors are removed completely. Therefore, these tumors are
classified as “lepidic predominant adenocarcinoma, suspect MIA” in the 2015 WHO classification [1].
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Figure 3. Morphology of MIA. MIA at low magnification ((A) HE staining and (B) EVG staining)
(Scale bar = 1000 µm). Lepidic component of MIA at high magnification ((C) HE staining) and the
invasive component ((D) HE staining and (E) EVG staining) (Scale bar = 100 µm). EVG, Elastic van
Gieson; HE, hematoxylin and eosin; MIA, minimally invasive adenocarcinoma.

3. Molecular Pathogenesis through a Stepwise Continuum

The multistep progression of lung adenocarcinoma is supported by the molecular and
clinicopathological features of the tumor. The progression from AAH to AIS, followed by invasive
adenocarcinoma, is based on the molecular evidence described below.

3.1. AAH

AAH is the presumed lesion from which lung adenocarcinoma arises. The premalignant nature of
AAH is supported by a variety of molecular findings that show similarities between AAH and
adenocarcinoma. AAH demonstrates clonality [49,50], loss of heterozygosity of chromosomes,
including 9q and 16p [51], mutations of EGFR, BRAF, KRAS, FGFR3, and ERBB2 [52], high expression
levels of CCND1 (cyclin D1), and low expression levels and epigenetic downregulation of CDKN2A
(p16) [53,54]. AAH harbors some molecular alterations observed in lung adenocarcinoma, which
supports the progression from AAH to adenocarcinoma. These studies have identified several aspects
of pathogenesis of AAH; however, the complex nature of its molecular pathology is still poorly
understood and must be further elucidated.

3.2. AIS

In the multistep continuum, AIS is the intermediate step between AAH and MIA [1]; however,
little evidence exists for the molecular events that allow the progression from AAH to AIS. Aberrant
DNA methylation gradually increases along the continuum [55]. Specific CpG islands are significantly
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hypermethylated in AIS compared to those in AAH [55]. Telomere shortening and DNA damage
responses (DDRs) are considered an early event in lung carcinogenesis. Expression levels of DDR
proteins and mRNAs for TERF1 and TERF2 that encode telomere-specific DNA-binding proteins are
associated with the progression from AAH to AIS [56,57]. Driver genetic mutations, including EGFR,
KRAS, and BRAF, are thought to be associated with the initiation and progression of adenocarcinoma
as described in this review.

3.3. MIA

MIA is an early invasive adenocarcinoma; therefore, its genetic alterations are associated with
molecular events that allow invasion [1]. The invasiveness of lung adenocarcinoma via the multistep
continuum has been associated with multiple molecular events. For adenocarcinomas containing
EGFR mutations, EGFR amplification is involved in the transition from AIS to MIA [58–60]. TTF-1
amplification typically occurs coincident with EGFR amplification [59,61,62]. The frequency of TP53
mutations increases during the progression to invasive tumors [32,63,64]. The number of regions of
allelic imbalance is higher in invasive tumors [63]. Repression of TGFBR2 acts as a determinant
of invasiveness [65]. MiR-9-5p promotes invasion by downregulating TGFBR2 expression [66].
Amplification and overexpression of PDCD6 and TERT on chromosome 5p promote invasion [67].
Laminin-5, an invasion-associated molecule [68,69], is activated during the progression from AIS
to MIA.

4. Driver Mutations in AAH, AIS, and Invasive Adenocarcinoma

The EGFR-RAS-RAF-MEK (MAP2K)-ERK (MAPK1) signaling pathway is a key regulator of
cell growth and transformation [70]. When activated, this signaling pathway leads to uncontrolled
cell proliferation, increased cell survival, and tumor initiation and progression. EGFR is a receptor
tyrosine kinase belonging to the ERBB family, whereas KRAS is an important effector of activated EGFR.
The KRAS oncogene belongs to the RAS family of genes that encode guanosine-5′-triphosphate-binding
proteins. BRAF, a member of the RAF gene family, encodes a serine-threonine protein kinase that is a
downstream effector of activated RAS, activating MEK (MAP2K) and leading to tumor initiation and
progression via the activation of ERK (MAPK1).

4.1. EGFR and KRAS

Sakamoto et al. examined EGFR and KRAS mutations in 119 synchronous pulmonary lesions,
including 40 cases of AAH, 26 cases of AIS, 14 cases of MIA, and 34 cases of overt invasive
adenocarcinoma [71,72]. The mutually exclusive nature of EGFR and KRAS mutations was maintained,
even in preinvasive lesions (AAH and AIS), similar to invasive adenocarcinomas [71–73]. Of note,
these authors demonstrated that the rate of KRAS mutations decreased along the stepwise continuum:
33% in AAH, 12% in AIS, 8% in MIA, and 0% in well-differentiated invasive adenocarcinoma.
In contrast, the frequency of EGFR mutations was distributed in a similar proportion along the
multistep continuum. Interestingly, moderately and poorly differentiated adenocarcinomas harbored
KRAS mutations (18% and 17% respectively) more frequently than well-differentiated adenocarcinomas,
suggesting potential de novo carcinogenesis as a result of KRAS mutations and additional genomic
events. In terms of smoking status, KRAS-mutated AAH and adenocarcinoma were more frequently
observed in smokers [71,72]. As for EGFR mutations, while there is a significant association between
EGFR mutations and nonsmoking in invasive adenocarcinoma, one-half of AAH lesions developed in
smokers [71]. The relatively high frequency of KRAS mutations in AAH lesions in smokers is consistent
with the results of recent high-throughput studies [52,74,75]. We also examined the association between
smoking status and molecular features in 110 AIS lesions [76]. We demonstrated that mutation rates of
EGFR and KRAS did not differ by smoking status in AIS lesions. In contrast, mutations in EGFR and
KRAS were significantly associated with smoking status in invasive adenocarcinoma: EGFR mutations in
nonsmokers and KRAS mutations in smokers [76], consistent with findings from previous studies [77,78].
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These results suggest that AIS may be a distinct biological entity of lung adenocarcinoma, and that
smoking may act not only as a cause of AIS but also as a promoter of invasion [76].

4.2. BRAF

Emerging evidence demonstrates that AAH and AIS lesions frequently harbor BRAF
mutations [52,74,75], despite the low frequency of BRAF mutations in invasive adenocarcinoma.
According to a study by Sivakumar et al. [75], BRAF was the most commonly mutated gene in AAH
(23%), followed by KRAS (18%). Whereas KRAS mutations in AAH were associated with smokers,
BRAF mutations were not associated with a smoking history [75], which is consistent with results from
another study [52]. Of interest, no BRAF mutations were found in lung adenocarcinomas that coexisted
with BRAF-mutated AAH lesions, whereas four of five cases of BRAF-mutated AAH tumors coexisted
with EGFR-mutated adenocarcinomas [75]. Among studied AAH lesions, BRAF mutations are mutually
exclusive of KRAS mutations. These results are also consistent with those of similar studies [52,74].

4.3. EGFR vs. KRAS and BRAF

Of interest, the frequencies of KRAS and BRAF mutations are higher in preinvasive lesions than in
invasive lesions, whereas the frequency of EGFR mutations in preinvasive lesions is similar to that in
invasive lesions (Figure 4). These results suggest that KRAS or BRAF mutations induce cell proliferation
and cellular atypia; however, preinvasive lesions containing KRAS or BRAF mutations rarely progress
to invasive lesions unless they undergo additional genomic alternations (Figure 4). Preinvasive lesions
containing KRAS mutations may become invasive after additional genomic mutations caused by
smoking, because of a well-known association between KRAS mutations and smoking in invasive
adenocarcinoma. Preinvasive lesions containing BRAF mutations may also become invasive after
additional genomic alterations. However, more plausible explanations include de novo developments
from normal lung epithelium to KRAS- or BRAF-mutated invasive adenocarcinomas as a result of
KRAS or BRAF mutations and additional genomic changes, including genomic instability caused by
defective DNA repair or smoking (Figure 4) [79,80].
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Figure 4. AAH develops from normal alveolar type II cells or club (Clara) cells after mutations in
EGFR, KRAS, and BRAF. EGFR-mutated AAH progresses to AIS, followed by invasive adenocarcinoma
after EGFR/TTF-1 amplification. KRAS- or BRAF-mutated AAH rarely progresses to AIS or invasive
adenocarcinoma, but can do so after the inactivation of TP53/CDKN2A (p16) or other genomic events
(dotted arrows). KRAS- or BRAF-mutated invasive adenocarcinoma may arise from normal lung
epithelium via a de novo pathway that involves KRAS or BRAF mutations and other genomic events.
Solid arrows indicate progression. AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in
situ; amp, amplification; inact, inactivation; mut, mutation.
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5. Driver Mutations in Lung Tumorigenesis

The comparative associations between the frequencies of EGFR, KRAS, and BRAF mutations in
preinvasive versus invasive lesions may be explained by experiments using mice that consistently
express these mutants [72,81–84].

5.1. EGFR

EGFR-mutated adenocarcinoma is characterized by East-Asian ethnicity, female gender,
non/light-smoking history, and hobnail cell morphology [85,86]. As EGFR-mutated adenocarcinomas
frequently develop via the presumed multistep continuum [52,71,74–76], incidence rates of AAH, AIS,
and MIA are high in East-Asian populations. Mutations and amplification of EGFR are closely associated
with each other, and EGFR amplification occurs only in EGFR-mutated adenocarcinoma [87,88]. In the
stepwise development of EGFR-mutated adenocarcinoma, EGFR amplification plays a crucial role in
the progression to invasive adenocarcinoma [58,60].

Ji et al. generated bitransgenic mice in which the expression of two common EGFR mutations
(i.e., exon 19 deletion and L858R point mutation in exon 21) could be induced in alveolar type II
pneumocytes [81,89,90]. After the continuous expression of EGFR mutants, the bitransgenic mice
developed invasive lung adenocarcinoma via the multistep continuum: the progression from AAH to
AIS, followed by invasive adenocarcinoma with lepidic features [81]. These authors demonstrated
that the continual expression of the EGFR mutant is not only essential for tumor development but
also for tumor stability, and that EGFR-targeted therapy for EGFR-mutated lung adenocarcinoma is
dramatically effective, suggesting that EGFR mutants are directly involved in tumor maintenance.

5.2. KRAS

Studies using human preinvasive and invasive lesions demonstrated that KRAS mutations
are observed more frequently in preinvasive lesions than in invasive lesions [52,71,74–76]. These
discordant frequencies may be explained by experiments using mice that continuously expressed
a KRAS mutant. Johnson et al. demonstrated that active somatic mutations of the KRAS oncogene
cause early onset lung tumors in mice [82]. The KRAS mutant caused a benign, noninvasive lung
alveolar tumor, closely resembling AAH. Only the selected cell lineage (alveolar type II pneumocytes,
not club (Clara) cells) was affected by the expression of the KRAS mutant, and a benign alveolar
tumor developed to invasive adenocarcinoma via TP53 inactivation [82]. Collado et al. showed
that benign-looking bronchioloalveolar tumors with KRAS mutations in mice harbored biological
features that were distinct from those observed in invasive adenocarcinoma [84]. Benign-looking
tumors with KRAS mutations underwent oncogene-induced senescence, as shown by the expression of
senescence-associated β-galactosidase [91] and the presence of senescence-associated heterochromatin
foci [84,92]. These authors concluded that a substantial number of cells in KRAS-mutated
benign-looking tumors undergo oncogene-induced senescence, but that KRAS-mutated invasive
adenocarcinomas do not undergo senescence due to the inactivation of oncogene-induced senescence
effectors such as TP53 and CDKN2A [84]. As for KRAS mutations in colorectal tumors, Bennecke
et al. demonstrated that murine intestinal epithelial cells with KRAS mutations developed serrated
hyperplasia, which is characterized by CDKN2A overexpression and induction of senescence [93].
However, a CDKN2A deletion in mutant KRAS-expressing mice prevented the progression to
senescence and led to invasive and metastasizing adenocarcinomas with morphological and molecular
features similar to KRAS-mutated adenocarcinomas. Cellular transformation induced by mutant KRAS
is not sufficient to drive carcinogenesis; KRAS-mutated cells require other genomic events, including
genomic instability in the context of the inactivation of the TP53 pathway [79,80]. Other mechanisms
of KRAS-induced carcinogenesis include increases in levels of reactive oxygen species (ROS), and
the association of ROS generation with malignant cellular transformation [94]. The mechanism
underlying KRAS-driven carcinogenesis remains unclear because of the complexity of its downstream
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effectors [80,95]. Collectively, although precise mechanisms are still unclear, KRAS mutations play
divergent roles in both cellular senescence and carcinogenesis.

In 2017, Vaz et al. showed that exposure to chronic cigarette smoke induces progressive epigenetic
alterations of bronchial epithelial cells that sensitize these cells to transformation with a single KRAS
mutation, eventually driving the development of lung cancer [96]. Their results provide a paradigm
in which epigenetic alterations may precede (and sensitize cells to) genetic events that drive lung
carcinogenesis. Methylated gene abnormalities greatly overlap those commonly seen in smokers with
lung cancer. Chronic exposure to cigarette smoke causes the hypermethylation of genes that play
significant roles in the regulation of WNT signaling (SFRP2, SFRP5, and WIF1), the apoptotic function
of TP53 (MSX1), and RAS/MAPK signaling (BMP3, WIF1, and GATA4) [96,97]. These epigenetically
altered pathways, including the RAS/MAPK [98] and WNT [99–102] pathways, can potentially drive
cigarette smoke-induced lung cancer [103,104]. Taken together, smoking induces epigenetic alterations
that make cells vulnerable to key genetic events, such as KRAS mutations, driving carcinogenesis.
Thereafter, altered pathways or other genomic events may promote tumor progression.

5.3. BRAF

The BRAFV600E mutation causes oncogene-induced senescence [105], similar to KRAS
mutation-induced senescence [84]. The relevance of BRAF mutations in AAH and invasive
adenocarcinoma corresponds to that of melanocytic nevus and malignant melanoma, both of which
carry the oncogenic BRAFV600E mutation [105]. Melanocytic nevus is a commonly observed benign
tumor of melanocyte origin [106]. Although nevi frequently harbor the oncogenic BRAFV600E

mutation [107], the initial step of nevus growth is typically followed by growth arrest from
oncogene-induced senescence that blocks BRAFV600E-mediated oncogenic signaling. Growth-inhibitory
responses induced by the BRAFV600E mutant show classical hallmarks of senescence (i.e., induction of
both CDKN2A and senescence-associated acidic β-galactosidase activity). In contrast, nevi with the
BRAFV600E mutation develop into malignant melanomas via the inactivation of the TP53 pathway or
CDKN2A [108,109].

In 2017, Nieto et al. identified the role of a kinase-inactive BRAF mutation in the tumorigenesis
of lung adenocarcinoma [110]. The oncogenic mechanism of activating BRAF mutations, such as
BRAFV600E, is known to promote MEK-ERK activation; however, the biological role of kinase-inactive
BRAF mutations, which are more common in lung adenocarcinoma than the activating BRAFV600E

mutation [111,112], is not known. On the other hand, inactivating BRAF mutations have been identified
in a subset of KRAS-activated lung cancers. These authors demonstrated that the expression of an
endogenous kinase-inactive BRAF mutant triggered the development of lung adenocarcinoma in mice,
indicating that BRAF-inactivating mutations initiate lung oncogenesis. Furthermore, the coexpression
of activating KRAS mutations and inactivating BRAF mutations in mouse lung cells markedly
enhanced tumor initiation, a phenomenon mediated by CRAF kinase activity [113,114], and effectively
accelerated tumor progression to advanced lung adenocarcinomas. Their results also suggest that the
signal intensity of the MAPK pathway is a critical determinant not only of tumor development, but
also of tumorigenesis [110].

6. Conclusions and Future Directions

This review summarizes the state of knowledge of tumorigenesis and progression of early lung
adenocarcinoma, with a special focus on its clinicopathological characteristics and their associations
with driver mutations (EGFR, KRAS, and BRAF). Most cases of lung adenocarcinoma are found
at advanced stages; therefore, improved detection at curable stages is needed to decrease the
number of disease-associated deaths. The most prevalent subset of adenocarcinoma, including
EGFR-mutated adenocarcinoma, appears to develop from AAH to AIS, to MIA, to overt invasive
adenocarcinoma with a lepidic pattern, which is typically observed in TRU-type adenocarcinoma.
In contrast, oncogene-induced senescence is likely to reduce the frequency of the stepwise progression
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in KRAS- or BRAF-mutated adenocarcinoma. Oncogene-induced senescence, epigenetic alterations,
or kinase-inactive mutation may be associated with the tumor evolution of KRAS- or BRAF-mutated
adenocarcinoma. While the mechanism of tumorigenesis in lung adenocarcinoma is unclear, a better
understanding of tumorigenesis and progression in such cases may allow the development of effective
preventive, screening, and therapeutic strategies.
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AAH atypical adenomatous hyperplasia
AIS adenocarcinoma in situ
CT computed tomography
DDR DNA damage response
EVG Elastic van Gieson
GGN ground-glass nodule
HE hematoxylin and eosin
MIA minimally invasive adenocarcinoma
ROS reactive oxygen species
TRU terminal respiratory unit
WHO World Health Organization
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