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Abstract: Cancer continues to rank among the world’s leading causes of mortality despite advancements in treatment. Cancer stem 
cells, which can self-renew, are present in low abundance and contribute significantly to tumor recurrence, tumorigenicity, and drug 
resistance to various therapies. The drug resistance observed in cancer stem cells is attributed to several factors, such as cellular 
quiescence, dormancy, elevated aldehyde dehydrogenase activity, apoptosis evasion mechanisms, high expression of drug efflux 
pumps, protective vascular niche, enhanced DNA damage response, scavenging of reactive oxygen species, hypoxic stability, and 
stemness-related signaling pathways. Multiple studies have shown that mitochondria play a pivotal role in conferring drug resistance to 
cancer stem cells, through mitochondrial biogenesis, metabolism, and dynamics. A better understanding of how mitochondria 
contribute to tumorigenesis, heterogeneity, and drug resistance could lead to the development of innovative cancer treatments. 
Keywords: mitochondria, cancer stem cells, drug resistance, therapy, metabolic dysfunction

Introduction
Despite several available therapies cancer is a leading cause of death worldwide. The failure of cancer cells to be 
eliminated by any kind of chemo or radiation therapy is attributed to a subpopulation of cells in the tumor, referred to as 
cancer stem cells (CSCs) or tumor-initiating cells (TICs).1–4 In the early nineteenth century, several studies documented 
the presence of pluripotent stem cells in teratomas and hypothesized their role in tumorigenesis.5,6 However, the debate 
was rekindled when a study on human acute myeloid leukemia (AML) provided the first evidence for the involvement of 
stem cells in cancer. This study demonstrated that transplanting a population of cells from AML patients into severe 
combined immune-deficient (SCID) mice, initiated AML in the mice. These cells were then referred to as the AML- 
initiating cell population.2 Similarly, CSCs were found in a variety of malignancies, including those of solid tissues.7 In 
fact, the existence of CSCs in solid tumors was first shown in breast cancer in the early 2000s, where as few as a hundred 
CSCs were able to form tumors in mice, in contrast to tens of thousands of cells with alternative phenotypes.8 These 
unusual cell subpopulations that cause tumors in vivo were later discovered in colon and brain malignancies.9,10 To date, 
CSCs have been isolated from almost all solid tumors, including pancreatic cancer, prostate cancer, melanoma, and 
ovarian cancer.11–14

CSCs are subpopulations of cancer cells that share characteristics with healthy stem or progenitor cells, such as the 
ability to self-renew and differentiate into several cell types to aid in the growth and heterogeneity of tumors.15 It is well 
established that CSCs make up a relatively small fraction of tumor tissues, often between 0.01–2% of the overall tumor 
mass.4,16 CSCs act as drivers of tumor formation and growth and are frequently associated with aggressive, hetero-
genous, and therapy-resistant tumors.17–20 CSCs’ resistance to chemotherapy or radiotherapy is linked to various factors, 
including the pivotal role of the cellular powerhouse – the mitochondrion. Mitochondria contribute to the maintenance of 
CSCs’ survival and self-renewal, drug resistance, and tumor recurrence. Alterations in mitochondrial structure, function, 
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and location are commonly observed in CSCs.21–24 Consequently, exploring how mitochondrial function regulates CSCs 
holds promise in facilitating the creation of innovative CSC-targeted treatments to overcome cancer drug resistance.

In this review, we discuss the diverse attributes displayed by CSCs, exploring their connection with mitochondrial 
biology, and particularly emphasizing the role of mitochondria in CSC drug resistance.

Characteristics of Cancer Stem Cells
A common approach to reduce the tumor burden is to eliminate proliferating cells by chemotherapeutic agents. However, 
CSCs can undergo quiescence and resist such treatments, triggering a tumor relapse.25,26 Hence, it is essential to understand 
the basic cellular and molecular factors that influence the functioning and survival of CSCs. In this context, beyond the 
proliferative and self-renewal capabilities of CSCs, we elucidate several significant traits that govern their tumorigenicity.

Promoting Tumor Recurrence
Despite significant advancements in first-line anti-cancer medication, resection surgery, combination chemotherapy, and 
radiation, many patients still experience high rates of tumor recurrence and metastasis. The survival of CSCs following 
conventional therapy is assumed to be the cause of tumor recurrence, which poses a serious clinical problem in the 
successful treatment of cancer.25,27,28 Current anti-cancer medicines fail to effectively treat CSCs, which contributes to 
tumor recurrence, diversification, and a poor prognosis.29,30 There are several ways to understand CSCs’ function in 
promoting cancer recurrence. The foremost cause of tumor recurrence is due to the ability of CSCs to withstand radiation 
and chemotherapy, thus maintaining a steady supply of tumor-causing cells.25,27 Another viewpoint on recurrence focuses 
on the significance of epithelial-mesenchymal transition (EMT), which involves the transformation of epithelial cells into 
mesenchymal phenotypes.31 Overexpression of EMT-related transcription factors (eg Twist and Snail) led to the expression 
of antigenic markers of neoplastic mammary stem cells in the non-tumorigenic, immortalized human mammary epithelial 
cells (HMLEs).32 These were able to form mammospheres, a characteristic of CSCs, and also expressed typical CSC 
markers such as CD44+/CD24−/low.32 In a separate investigation, human breast tumor cells belonging to the claudin-low 
molecular subtypes demonstrated enrichment of cells that expressed elevated levels of CD44+/CD24−/low markers and 
exhibited the ability to form mammospheres.33 These cells had high expression of mesenchymal genes like Snail and low 
expression of cell-cell contact genes such as E-cadherin after treatment with endocrine therapy or chemotherapy.33 Such 
evidence indicates that the CSCs undergo EMT and escape treatment resulting in tumor recurrence. Moreover, the 
establishment of CSCs can also occur due to abnormal activation of autocrine and paracrine signaling pathways.34 This 
phenomenon is corroborated by a study that highlights the coordinated influence of TGFβ-SMAD and Wnt-β catenin 
pathways in inducing epithelial-mesenchymal transition (EMT) in both normal and tumorigenic human mammary 
epithelial cells (MECs).35 According to certain studies, stem cell-like subpopulations of mesenchymal circulating tumor 
cells (CTCs) may serve as markers of micrometastatic status and predictors of the likelihood of tumor recurrence.36

Tumorigenicity and Transplantation Potential
The tumorigenic and metastatic potential of CSC-containing malignancies surpasses that of non-CSC tumor cells, a well- 
established fact supported by numerous in vitro and in vivo studies. In particular, pancreatic cancer cells expressing CSC 
markers, such as CD133 and CXCR4, have demonstrated significantly higher tumorigenic and metastatic abilities.37 

Additionally, studies involving the transplantation of these CSCs into immunodeficient mice have shown their remark-
able capacity to repopulate the original tumor even at low clonal densities, further exemplifying their potent tumorigenic 
potential.15,38 For instance, in one study, injection of a small number of CD44+/CD24− prostate cells into SCID mice 
resulted in tumor formation. These cells expressed stem-cell associated BMI1 and OCT-3/4, reinforcing their role as 
cancer stem cells.38 Various xenograft models, both in vitro and in vivo, have consistently revealed that subpopulations of 
CSCs from different malignancies exhibit significantly higher proliferative capability, enhanced clonogenic potential, and 
an increased propensity for tumorigenesis and metastasis. Notably, numerous human malignancies, including leukemia, 
glioblastoma, breast, and skin cancers, harbor these clonogenic potential cells capable of reforming the parental tumors 
after transplantation. This underlines the critical role of CSCs in driving tumor initiation, growth, and dissemination, 
making them an essential target for developing effective cancer therapies.8,38–40
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Expression of Specific Markers
Recent advances in single-cell technologies have enabled genomic and proteomic profiling of individual cells. These 
advancements have also led to robust isolation and characterization protocols to identify CSCs from the rest of the tumor, 
based on a few molecular markers. However, the CSC isolation protocols are still limited by the cellular heterogeneity 
within the tumor and the diverse origins of tumors.41,42 It has been demonstrated that several cell surface markers, such 
as THY1 (THYmocyte differentiation antigen 1), EpCAM (epithelial cell adhesion molecule), ABCB5 (adenosine 
triphosphate (ATP) -binding cassette B5), CD24, CD133, CD200, CD44, etc may identify populations that are CSC- 
enriched (Table 1).10,43–45 Other markers have also been used to identify CSCs, like aldehyde dehydrogenase 1 
(ALDH1), which is used to characterize CSCs in many types of cancers, including breast, leukemia, colon, liver, 

Table 1 Cancer Stem Cell Associated Markers Reported in Different Cancers

Cancer Type Markers of CSCs

Breast CD44, CD24, ALDH1A1, ESA, CD61, CD90, CD49f, CD29, LGR5, CD13, NANOG, KLF4, SOX2, BMI1, CXCR4, OCT4, 

SALL4, CD29, CD133

Cervical CD44, CD29, CD13, CD105, ABCG2, CD133, CD49f, ALDH

Prostate CD44, ALDH1A1, CD133, α2β1, CD49f, CD166, NANOG, KLF4, SOX2, BMI1, OCT4, SALL4, CD151, EpCAM, CD117, 

α2β1, EZH2, CXCR4, E-cadherin

Colorectal CD44, CD24, ALDH1A1, CD133, ESA, CD166, CD29, CD26, LGR5, NANOG, KLF4, SOX2, Musashi-1, BMI1, SALL4, 

LETM1, CD200, EpCAM, CD206, CD49f

Ovarian CD44, CD24, ALDH1A1, CD133, ESA, CD117, NANOG, SOX2, OCT4, SALL4, CD105, EpCAM

Lung CD133, ALDH1, CD44, CD24, ALDH1A1, ESA, CD34, CD90, CD117, CD166, NANOG, SOX2, BMI1, OCT4, CD87, 
CD133

Liver CD44, CD24, ALDH1A1, CD133, ESA, CD90, CD117, CD49f, CD13, OCT4, AFP, CD206, OV-6, EpCAM

Head/Neck CD44, CD24, ALDH1A1, CD133, CD90, LGR5, BMI1, CD271, CD166

Pancreatic CD1333, CXCR4, SSEA-1, CD44, CD24, CD133, ESA, Nestin, SOX2, BMI1, CXCR4, OCT4, ALDH, ABCG2

Leukemia ALDH1A1, NANOG, KLF4, SOX2, BMI1, OCT4, CD47

Gastric CD44, HER2, APC, p53, KRAS, PTEN, LGR5, CCKBR, RHOA, CDH-1, SMAD5, ATP4B, PGA3, CD24, ALDH1A1, CD133, 
ESA, CD90, NANOG, SOX2, CXCR4, CD15, LINGO2, LETM1, MSI2, CD54, CD49f, CD71, EpCAM

Bladder CD44, OCT4, CD47, CD66c, CD44v6, ALDH

Brain CD44, CD133, ESA, SSEA-1, CD90, CD49f, NANOG, KLF4, Nestin, SOX2, Musashi-1, BMI1, CXCR4, CD15, CD36, 

EGFR, A2B5, L1CAM

Melanoma CD133, CD166, Nestin, SOX2, OCT4, CD20, ABCB5, CD271, ALDH

Renal CD133, ALDH, CXCR4, CD44, CD105

Gall bladder CD44/CD133

Oral CD44+/CD24−, ITGA7

Esophageal ITGA7, CD44, ALDH, CD133, CD90

Nasopharyngeal CD44, CD133, ALDH, CD24

Laryngeal ALDH, CD44, CD133

Multiple myeloma CD19, CD27

Blood CD34, CD38, CD123, CD90, CD117, CD26, CD20, TIM3, SALL4, CD19
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pancreatic, lung, prostate, brain and bladder (Table 1).46–51 The expression of CSC markers has been suggested to be 
associated with certain CSC characteristics like chemoresistance and the recurrence of invasive tumorigenicity.52,53 

Numerous studies have also reported the expression of pluripotency factors such as KLF4, NANOG, SOX2, OCT4, and 
c-MYC as phenotypic markers of CSCs.54–57 A recent study utilizing triple-negative breast cancer cells has established 
Kruppel-like factor 8 (KLF8) as the master regulator for the expression of these pluripotency markers.58 The study also 
showed the presence of a positive feedback loop with a metabolic enzyme, O-GlcNAc transferase (OGT). Increased 
expression of KLF8 correlated with increased resistance to paclitaxel, a commonly used chemotherapeutic agent for 
breast cancer.58

CSCs and Acquisition of Therapeutic Resistance
Drug resistance in CSCs is a multifaceted phenomenon involving various mechanisms that enable these cells to survive 
and persist despite treatment.58,59 This resistance can stem from intrinsic factors, which may be inherited or acquired 
resistance to medication, as well as extrinsic factors, which result from tumor cells being exposed to chemicals. A few 
examples of these factors include the hypoxic microenvironment,60–62 disrupted cell cycle regulation,63 increased 
autophagy,64 epigenetic modifications,30 microRNA dysregulation, interactions with the tumor microenvironment,65 

heterogeneity within CSC populations, quiescence,65 interactions with the extracellular matrix, and paracrine signaling. 
These factors ultimately contribute to drug resistance through downstream processes that include epithelial-mesenchymal 
transition (EMT), drug efflux through ABC transporters, deregulation of essential signaling pathways, expression of 
multidrug-resistant (MDR) proteins, upregulation of DNA repair proteins, acquired mutations, evasion of apoptosis, and 
activation of the DNA damage response (DDR) pathway.66–69 Gaining a comprehensive understanding of these complex-
ities is crucial to develop effective therapies targeting CSCs and ultimately enhancing cancer treatment outcomes. An 
overview of the processes responsible for drug resistance in CSCs is presented in the following section.

Quiescence
Quiescence is a biological condition in which the cells do not enter the cell cycle, remain in a state of rest but retain the 
ability to divide. Adult stem cells exhibit quiescence as a part of tissue homeostasis,70 whereas CSCs undergo quiescence 
to escape drug exposure.71 CSCs can alternate between the phases of proliferation and quiescence, and the latter state is 
responsible for cancer recurrence and therapy resistance.72,73 CSCs often spend several years in a quiescent state (ie 
reversible G0 phase) within the body and endure prolonged periods of environmental stress.65 These CSCs in the 
quiescent state are distinct from active CSCs because they lack unique surface markers and common genotypic and 
phenotypic traits. They do, however, have certain distinctive traits, such as label retention, low RNA content, and lack of 
expression of proliferative markers,74 and have been studied in a variety of cancers.75,76 Chemotherapies drive CSCs to 
enter quiescence through upregulation of hairy and enhancer of split homolog-1 (HES1), a transcriptional repressor of 
Notch signaling, downregulation of c-MYC resulting in decreased Wnt signaling, increased expression of bone 
morphogenetic protein 7 (BMP7), which upregulates a metastasis suppressor gene, N-MYC downstream-regulated 
gene 1 protein (NDRG1) through activation of the p38-MAPK signaling pathway.77–79 Epigenetic modifications like 
DNA methylation and chromatin remodeling also drive CSCs into quiescence. Through H4K20me3 catalysis, SET 
domain-containing protein 4 (SETD4) induced quiescence in breast CSCs through tighter heterochromatin formation.75 

These genetic and epigenetic alterations act as a switch to regulate the growth arrest and quiescence of CSCs, which are 
linked to aggressive biology and chemoresistance of malignancies.80,81

Dormancy
Dormancy is a stage in cancer progression in which cells stop proliferating. When the majority of the cancer population 
exhibits this phenomenon, the result is known as tumor dormancy, and when a single cancer cell exhibits this 
phenomenon, the process is referred to as quiescence.82 Dormancy is a special case of quiescence and is perhaps 
a deeper arrested state.83 In contrast to quiescence, where cells resume proliferation more readily, dormancy requires 
a particular stimulus for cells to proliferate. When cells from the same tumor are disseminated, they have very distinct 
fates. Most of them experience senescence. Those that survive circulation and extravasation at secondary sites are 
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destined for a period of dormancy but might also enter quiescence based on the signals received from the 
microenvironment.84 Tumor growth, metastasis, minimal residual disease (MRD), multidrug-resistance (MDR), and 
tumor expansion are all effects of tumor dormancy.85–88 It is a type of clinical remission in which cancer cells are occult 
(ie undetectable and asymptomatic), for a lengthy period.89 CSCs and their clonal development are substantially 
responsible for tumor dormancy and treatment refractoriness in many forms of cancer.90,91 However, it is challenging 
to identify the precise or overlapping populations responsible for stimulating the processes of dissemination, intravasa-
tion, dormancy, and relapse due to the continual refining of the CSCs based on novel markers.91 Numerous malignancies, 
including pancreatic carcinoma, ovarian cancer, melanoma, lung cancer and chronic myeloid leukemia (CML) have been 
shown to have cells that combine stemness, drug resistance, and dormancy.92–97

Enhanced ALDH Activity
A family of nicotinamide adenine dinucleotide phosphate [NAD(P)+]-dependent enzymes, the ALDHs detoxify a broad 
range of aldehydes to weak carboxylic acids, increasing the cell’s resistance to injury from medicines.98 ALDHs play 
a crucial role in stem cell maintenance and differentiation as well as in healthy development. Accumulating evidence 
suggests that the expression of ALDH is upregulated as a response to therapeutic intervention, which in turn facilitates 
the development of resistance to chemotherapy and radiotherapy.99 By metabolizing harmful aldehydes and maintaining 
low reactive oxygen species (ROS) levels, ALDH enzymes help CSCs survive by regulating their capacity for self- 
renewal, cell differentiation, and chemoresistance. Through a variety of pathways, they support CSC immune evasion 
and metabolize retinoic acid, which promotes cancer progression and therapy resistance99–101 and are linked to the self- 
renewal abilities of stem cells in a variety of cancers, including breast cancer, colon cancer, hepatoma, and lung 
cancer.99,102–105 For example, increased ALDH gene expression was associated with high Snail expression. 
Knockdown of Snail decreased ALDH1 expression, inhibited cancer stem-like properties, and tumor formation ability 
of CD44+CD24−ALDH+ cells of head and neck squamous CSCs.103 High ALDH1 is detected only in CSCs of various 
tumors like breast, oesophagus, lung, colon, and stomach epithelium and not in the cancer tissues, thus serving as 
a marker for the identification of CSCs.106 Among the many isoforms, CSCs express high levels of ALDH1A1 and 
ALDHA3. Normal human and mouse stem cells express high levels of ALDHA1107,108 while normal human mammary 
cells have high ALDHA3 and low ALDHA1.109 ALDHs mediate drug resistance by converting active 4-hydroperox-
ycyclophosphamide (4-Hc) to inactivate carboxyphosphamide110 and this effect is reversed by pretreatment with N, 
N-diethylaminobenzaldehyde (DEAB).111

Apoptosis Evasion Mechanisms
The hallmark features of malignancies are attributed to the intrinsic ability of CSCs to self-renew, proliferate, and 
disseminate, as well as evade apoptosis via aberrant regulation of signaling pathways involved in programmed cell 
death.104 Cellular Fas-associated death domain-like IL-1β-converting enzyme (FLICE)-inhibitory protein (c-FLIP) is 
a negative controller of the death receptor (DR) -initiated apoptotic pathway.112 As a main anti-apoptotic regulator, 
c-FLIP interacts with Fas-associated death domain (FADD), caspase-8/10, and DR5, preventing the formation of death- 
inducing signaling complex (DISC) and subsequent activation of the caspase cascade.113 The CSC population was shown 
to have higher levels of c-FLIP expression than non-CSC-like cancer cells across a variety of malignancies, including 
leukemia, breast cancer, and glioblastoma.114–116 As a result, compared to their non-CSC-like counterparts, CSCs from 
these tumors show reduced sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced 
apoptosis. Several studies have demonstrated that c-FLIP isoforms sustain the survival and resistance of CSCs against 
apoptosis and anti-cancer treatments.117–119 Increasing the expression of c-FLIP in CD133+ cells, a marker associated 
with CSCs involved in metastasis, carcinogenesis, and chemoresistance, can serve as a way to inhibit apoptosis.112

Proteins from the inhibitor of apoptosis (IAP) family, which block apoptosis, are crucial for supporting cell survival. 
IAPs can directly or indirectly interact with caspases and thwart the apoptotic cascade. As an alternative, certain IAPs 
take part in signal transduction and activate the nuclear factor kappa B (NF-κB) pathway and promote cell survival. 
Receptor-interacting protein kinase 1 (RIP1) mediates caspase-dependent activation of cell death. Downregulation of 
RIP1 levels is mediated by IAPs that recruits inhibitor of nuclear factor- κB (IκB) kinase (IKK) and E3 ligases and drive 
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the ubiquitination/degradation of RIP1, leading to cell survival.120 IAPs are also involved in the maintenance of CSC 
properties by enhancing the stability of CSC markers like SOX2.121 For example, XIAPs blocked the autophagic 
degradation of SOX2 by inhibiting the activation of ERK1 in CSCs. In nasopharyngeal CSCs, autophagic degradation 
of SOX2 was inhibited by XIAPs which negatively regulated the activity of ERK1. SOX2 enhanced the stemness of 
CSCs, suggesting that IAPs can induce the expression of pluripotency markers.121 Contrary to many oncogenes, B-cell 
lymphoma-2 (Bcl-2) inhibits cell death and improves tumor cell survival rather than promoting cell proliferation.122 

Studies have demonstrated elevated levels of Bcl-2 family proteins in CSCs, and these higher levels have been associated 
with reduced cell death and treatment resistance in CSCs.123,124 This resistance of cancer cells to treatment and 
programmed cell death is partially attributed to the balance between anti-apoptotic and pro-apoptotic protein levels, 
which promotes cell survival.66

High Expression of Drug Efflux Pumps
CSCs have the unique ability to promote tumorigenesis, diversification, and metastasis. According to the CSC model of 
drug resistance, tumors include a population of pluripotent, drug-resistant cells that may withstand chemotherapeutic 
shock. CSCs in tumors are protected by ABC efflux pumps, which guard them against the negative effects of 
chemotherapy. ABCB1, ABCG2, and ABCC1 are among the drug efflux transporter proteins or ABC transporters that 
have been discovered to be expressed by CSCs. ABC transporters, such as ABCG2, ABCB1, and ABCC1, to mention 
a few, are linked to drug resistance and are significantly expressed in several malignancies.125–128

Protective Niche
The niche is a term used to describe the unique microenvironment where stem cells divide, differentiate, or stay dormant. 
Chemokines, immune cells, stromal cells, cytokine networks, growth factors, hypoxic areas, and extracellular matrix 
(ECM) make up the tumor microenvironment (TME).129 TME promotes CSC self-renewal, angiogenesis, modifying 
immunity, and other conditions that are favorable for metastasis. Dynamic alterations also contribute to treatment 
resistance, mostly by assisting CSCs in maintaining their stem-related signaling pathways.112 To maintain CSCs in 
a stem-like state, the CSC niche modifies the signaling pathways of Wnt-β catenin, Notch, and Sonic Hedgehog (Shh), 
and/or interferes with the function of key transcriptional regulators such as NANOG, OCT4, and SOX2, among other 
factors.130 Additionally, studies have also revealed that CSCs possess the ability not only to differentiate but to actively 
influence the surrounding microenvironment by recruiting niche components.131

Enhanced DNA Damage Response
CSCs are suggested to have an enhanced DDR to resolve DNA damage more effectively than bulk cancer cells.68,132–134 

Studies have revealed that CSCs have a greater amount of inherent replicative stress than other types of cancer cells, 
leading to a constitutively active DDR. For example, in glioblastoma cancer stem-like cells expressing CD133, a CSC 
marker, increased expression of replicative stress response markers such as replication protein A2 (RPA2) and H2A 
histone family member X (H2AX) was observed when compared to CD133− cells. This phenomenon is due to the 
formation of DNA double-stranded breaks in glioblastoma cancer stem-like cells which results in increased DDR.135 

Additionally, CSCs share numerous characteristics with normal stem cells. Studies indicate that tissue-specific stem cells 
employ DNA repair pathways to mediate chemotherapy and radiation therapy resistance, and CSCs may exploit these 
same processes to their benefit.133,136,137 Also, the remarkable resistance of CSCs to standard chemotherapy and 
radiotherapy techniques results from their strong capacity to repair DNA damage caused by chemical agents or radiation. 
This increased DNA repair capacity may be a direct result of improved repair mechanisms or an indirect effect of slowed 
cell cycle progression.138 Additionally, the CSCs evade therapeutic interventions through modulation of epigenetic marks 
(eg DNA methylation, promoter methylation/acetylation), long-range chromatin interactions, and altered splicing of 
nascent transcripts.30
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Scavenging of ROS
The physiological and functional activities of a living cell are greatly influenced by its oxidation-reduction (redox) state. 
Similar to normal stem cells such as hematopoietic stem cells, CSCs also show lower intracellular ROS contents than 
non-CSCs, which may be due to the increased expression of free radical scavenging systems. Modulation of the level of 
ROS plays a crucial role in chemoresistance and the upregulation of drug efflux during chemotherapy.139,140 ROS also 
mediate several processes, such as endoplasmic reticulum (ER) stress, autophagy, and disruption of the cell cycle, which 
contribute to the acquisition of chemoresistance in CSCs.141–143 For instance, ROS has been demonstrated to shift the 
ER-stress-mediated apoptosis to autophagy in methotrexate-resistant choriocarcinoma cells,142 highlighting their intricate 
role in drug resistance mechanisms. Enhanced ROS scavenging mechanism and decreased levels of ROS generation are 
associated with the increased radioresistance of CSCs in breast carcinoma.132 Upregulation of genes involved in ROS 
scavenging pathway such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase has been observed 
in breast cancer CSCs.132 Glutathione is an antioxidant, that plays a critical role in protecting cells against oxidative 
stress. Buthionine sulfoximine (BSO) inhibits gamma-glutamylcysteine synthetase,144 which results in decreased synth-
esis of glutathione. In the absence of adequate levels of glutathione, an increase in ROS levels was observed, which 
significantly reduced the clonogenic characteristics and radiation therapy resistance of CSCs, supporting the hypothesis 
that ROS scavengers play a role in CSC radioresistance.132

Hypoxic Stability
Hypoxia occurs when tissues receive insufficient oxygen levels, leading to an inability to maintain proper homeostasis. 
Tumor hypoxia refers to a condition in which the cells within excessively grown tumors receive less than 2% of the 
oxygen typically available in normal tissues.145 It is strongly associated with CSC’s resistance to radiation and 
chemotherapy, making the microenvironment an important factor in cancer progression.60,146 The role of hypoxia- 
inducible factors (HIFs), which function as transcription factors (TFs) in the cell’s oxygen signaling pathways, is gaining 
increasing recognition due to their involvement in both CSC survival and tumor diversification. Moreover, a growing 
body of experimental evidence demonstrates that HIFs that are not destroyed in the hypoxic condition of tumor cells take 
part in the change of CSC phenotypes and regulate tumor radiation or chemotherapy resistance.146 Studies have 
suggested the role of hypoxia in CSC resistance to radiation and chemotherapy, and that HIFs play a major regulatory 
role in the hypoxic microenvironment.60–62,146 Hypoxia maintains CSC stemness and promotes resistance through 
activation of self-renewal signaling pathways such as Notch, Wnt, and Shh.147,148

Stemness Signaling Pathways
CSCs share many characteristics with tissue or embryonic stem cells, including the constant activation of highly 
conserved signaling pathways involved in tissue homeostasis and development, such as Wnt, Shh, Notch, and Hippo 
signaling pathways. These pathways have been studied to test potential novel CSC-targeting medications since they are 
linked to CSC self-renewal.58,149 These and other findings imply that some oncogenic cues can activate CSCs. These 
signals are followed by a rise in chemotherapeutic treatment resistance and, in certain situations, radiation 
resistance.58,150 Furthermore, a strong correlation exists between various mitochondrial activities, including mitochon-
drial biogenesis, metabolism, and dynamics, and the factors contributing to drug resistance in CSCs. A few such factors 
have been discussed earlier and include ALDH activity, apoptosis evasion mechanisms, ROS scavenging, hypoxic 
stability, elevated cryoprotective pathways, and more. This observation highlights the pivotal role of mitochondria in 
the growth and survival of CSCs.151–153 By dissecting the role of mitochondria in CSC survival, we can potentially 
uncover valuable therapeutic opportunities that could be harnessed for the development of effective cancer treatments 
and management strategies.

Mitochondrion - A Key Organelle in Cancer Stem Cells
Mitochondria are bioenergetic, metabolic, and signaling organelles that are essential for sensing stress and helping cells 
adapt to their surroundings. Numerous studies have been conducted on the involvement of mitochondria in the 
emergence and spread of cancer.154–156 Mitochondria, which are the primary ATP producers, supply the energy required 
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for carrying out cellular functions through a process known as oxidative phosphorylation (OXPHOS).157 In addition to 
energy production, mitochondria are crucial for the generation of ROS, redox chemicals, and metabolites as well as for 
controlling cell signaling, cell death, and biosynthetic metabolism.158–160 Due to their wide range of functions, 
mitochondria play a key role in cells’ capacity to detect stress and adapt to their surroundings.161 Mitochondria in 
cancer cells adapt to withstand challenging conditions such as hypoxia, nutrient scarcity, and cancer treatments. As 
a result, they play a pivotal role in tumor formation, necessitating adaptability to counter cellular and environmental 
changes, as well as the effects of cancer therapies.162 Besides bioenergetics, many other aspects of mitochondrial biology 
have been implicated in cellular transformation. Some of such processes are mitochondrial biogenesis and turnover, 
metabolism, fission and fusion dynamics, oxidative stress regulation, cell death susceptibility, and signaling.

The morphology, localization, and functions of mitochondria in CSCs differ from normal cells, normal stem cells, and 
cancer cells.163–166 CSCs express fewer mitochondrial DNA copies (mtDNA) and low levels of mitochondrial transcrip-
tion factor A (TFAM) in contrast to normal cells which express many copies of mtDNA and TFAM.163,165,166 Notably, 
during the process of fibroblast remodeling into iPSCs, a significant reduction in the number of mitochondria takes place, 
accompanied by decreased mtDNA, mitochondrial mass, and low ROS levels in the stem cells. Conversely, as stem cells 
differentiate, there is an observable rise in mitochondrial biomass and mtDNA content, resulting in increased ROS and 
ATP production.167 Structurally, mitochondria in CSCs are small and round in shape and highly perinuclear in localiza-
tion whereas in normal cells, mitochondria are elongated and tubular in shape and mostly distributed in the 
cytoplasm.168,169 Cristae within mitochondria appear elongated in regular cells, and spherical in normal stem cells. In 
CSCs, the cristae become widened and fragmented.170 Due to fragmented mitochondria, CSCs exhibit impaired aerobic 
function and reduced ETC, which leads to a decrease in ROS levels causing resistance to HIF-1α and subsequent 
activation of MAPK that helps in the maintenance of stemness.171–173 Also, CSCs exhibit unique metabolic character-
istics compared to cancer cells and normal stem cells. They switch between glycolysis and OXPHOS to produce ATP 
which is required for their activities. CSCs produce oncometabolites like fumarate, succinate, lactate, and 2-hydro-
xyglutarate which helps in tumor proliferation, angiogenesis, and invasion through accumulation of HIF-1α, production 
of VEGF through activation of STAT3, activation of p65 via NF-κB pathway and many others.174–176 Metabolically, 
mitochondria from CSCs vary from non-CSCs in terms of glucose uptake/consumption, ROS levels, ATP contents etc 
depending on the origin of the cancer.177

In the following section, we discuss the role of different mitochondrial aspects in CSCs and their contribution to drug 
resistance in CSCs.

Mitochondrial Biogenesis and CSC Resistance
Mitochondrial biogenesis is the process by which cells increase the number and size of mitochondria, an essential process 
to maintain proper metabolism and the cell cycle. Several mitochondrial proteins involved in biogenesis are encoded in 
the nucleus and translated to the cytosol. The transport of these proteins from the cytosol to the mitochondria takes place 
through translocase of the outer membrane (TOM) complex. This process takes place during the M phase of the cell 
cycle. Thus, mitochondrial biogenesis is linked to cell cycle, thereby enabling proper functioning of the cell.178,179 Each 
cell contains many copies of mitochondrial DNA (mtDNA). The size of human mtDNA is 16.5 kb and comprises 37 
genes responsible for coding 13 polypeptides vital for OXPHOS, along with 2 rRNAs and 22 tRNAs necessary for 
translating the respiratory subunit mRNAs within the mitochondrial matrix. Other mitochondrial proteins are coded in the 
nuclear genome.180 Thus, mitochondrial biogenesis is a strictly controlled process that uses “mitonuclear communica-
tion” to coordinate a network of both mitochondrial and nuclear DNA (mtDNA and nDNA).181 During the process of 
mitochondrial biogenesis, a limited number of coactivators and nuclear TFs that are already present in the cell are 
gradually activated by signaling pathways, leading to the formation of new mitochondria from the pre-existing ones. 
Mitochondrial biogenesis is stimulated under increased energetic needs by a signaling pathway involving peroxisome 
proliferator-activated receptor-gamma co-activator 1 (PGC1) family members (such as PGC1α, PGC1β, and PPRC1), 
nuclear respiratory factors (NRF1 and NRF2), mitochondrial transcription factor A (TFAM), and estrogen-related 
receptors (ERRs) (ERR -α, -β, and -γ), and to a smaller extent, the peroxisome proliferator-activated receptor (PPAR) 
family of TFs (Figure 1a).182
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The process of mitochondrial biogenesis is different in CSCs from other cells. CSCs exhibit low levels of TFAM and 
mtDNA when compared to differentiated cancer cells. This phenomenon has been observed in different cancers like lung, 
thyroid, and colon.183,184 Reduced number of mtDNA copies helps in the maintenance of the stemness of cancer cells. 
Stem-cell like characteristics were observed in esophageal squamous cell carcinoma cells exhibiting low copies of 
mtDNA. Additionally, the knockdown of TFAM in these cells resulted in the formation of spheres.166 Mitochondrial 
biogenesis and mtDNA alterations are frequently linked to increased tumorigenicity and resistance in CSCs. Ethidium 
bromide (EtBr) inhibits mtDNA replication. Ovarian cancer cells treated with EtBr showed upregulated proliferation 

Figure 1 Mitochondrial Dysfunction and Cancer Stem Cells (CSCs). (a) Schematic of mitochondrial biogenesis and its regulation by transcription factors (PGC1, NRF, 
TFAM, PPAR, and ERR). Additionally, depicted are AMPK, oncogenic KRAS, and c-MYC-dependent mechanisms that lead to increase in biogenesis and energy production. 
This results in elevated oxidative phosphorylation (OXPHOS) and high ATP levels in CSCs. (b) Representation of mitochondrial metabolic dependency in CSCs. Cellular 
energy is derived through OXPHOS, fatty acid oxidation (FAO), and the TCA cycle within the mitochondria. CSCs exhibit increased oxidative phosphorylation for enhanced 
ATP production and elevated fatty acid oxidation through activation of oncogenic pathways. Deregulated TCA cycle enzymes in CSCs produce oncometabolites contributing 
to cancer progression. (c) Representation of altered mitochondrial dynamics in CSCs, where the balance between mitochondrial fission and fusion is disrupted. Upregulation 
of mitochondrial fission proteins (Drp1) and their regulators (Fis1, MID49, MID51, MFF) and downregulation of mitochondrial fusion proteins (Mfn1, Mfn2, OPA1) leads to 
impaired mitochondrial dynamics. (d) Increased activity of Ca2+-dependent kinases (PKC, CaN, CAMKIV, JNK, MAPK) due to altered membrane potential in CSCs is shown. 
Also indicated are the kinases and nuclear transcription factors involved in retrograde signaling. (e) Schematic representation of mitophagy in CSCs. Elevated cytoplasmic 
PINK1 phosphorylates Parkin and ubiquitinated-OMM proteins. Phosphorylated Parkin is transported into the mitochondria where it ubiquitinates itself and other 
mitochondrial substrates. These ubiquitin (Ub)-marked mitochondria are degraded by autophagosomes. (f) Mitochondria-mediated apoptosis in CSCs. Cells with damaged 
DNA activate caspase-8 mediated cell death. In CSCs, activation of caspase-8 is inhibited by high levels of c-FLIP; levels of pro-apoptotic proteins (Bax, Bak) are decreased 
while levels of anti-apoptotic proteins (Bcl-xL) are increased leading to cell survival and no apoptosis.
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through increased expression of genes like ABCC3, VEGFA, ATF3, etc. They also showed downregulation of mitochon-
drial-related genes like TMEM165, PDK1, PDK2, etc. The expression of the chemoresistance factor ABCC3, tumor-
igenicity-related factor HES1 and angiogenesis-related factor VEGFA were upregulated in the cells treated with EtBr. 
The increased expression of CSC markers CD90 and CD117 was also observed in these cells.21

CSCs exhibit increased energy demands for their survival. This results in the activation of TFs like PGC1, NRFs, etc 
resulting in increased production of ATP and OXPHOS by the activation of AMPK. Adenosine monophosphate (AMP) - 
activated protein kinase (AMPK) is frequently activated by decreasing cellular bioenergetic output to create ATP and 
OXPHOS, which in turn triggers mitochondrial biogenesis.185 AMPK promotes the catabolic pathways performed by the 
cell resulting in the generation of ATP. The expression of NRF2 was higher in CD44+/CD24− doxorubicin-resistant 
MCF7 cells. Silencing of NRF2 resulted in higher levels of ROS, decreased tumor growth, and reduced sphere formation 
and invasion in these cells when compared to controls.186 It is also required for the self-renewal of CSCs. Knockdown of 
NRF2 decreased the expression of BMI1, SOX2, and Cyclin E in glioma stem cells.187 Increased levels of NRF2 are 
crucial for the survival of CSCs and attaining drug resistance. In cervical cancer cells with SP phenotype, increased 
NRF2 expression resulted in enhanced expression of ABC transporter ABCG2 than in the non-SP cells.188 PGC1α plays 
an important role in causing drug resistance in cancer cells. In ovarian cancer, PGC1α overexpressing cells were resistant 
to chemotherapy. They expressed drug resistance-related proteins, MDR1 and ABCG2 and this was observed in tumor-
spheres than differentiated cells. Additionally, the spheres showed elevated mitochondrial mass and fragmented mito-
chondria at the perinuclear region. Knockdown of PGC1α showed decreased mitochondrial mass, downregulated 
expression of MDR1 and ABCG2, and sensitized the spheres to cisplatin treatment.189 Oncogenes like KRAS and 
c-MYC also regulate mitochondrial biogenesis and increase intracellular respiration and biosynthesis, which promotes 
the development of cancer (Table 2).154,190,191

Mitochondrial Metabolism and CSC Resistance
Mitochondria are subcellular organelles that are maternally inherited and are responsible for fundamental mechanisms of 
ATP production, including OXPHOS and electron transport chain (ETC), fatty acid oxidation (FAO), and tricarboxylic 
acid (TCA) cycle. In addition to these roles, mitochondria also play a crucial role in other cellular processes such as 
calcium signaling, apoptosis, and biosynthesis of important molecules such as heme, pyrimidines, and iron-sulfur (Fe-S) 
clusters. CSCs mostly depend on these processes to meet the energy demands for their survival. Unlike normal stem cells 

Table 2 Drug Category and Mode of Acquired Resistance in Cancer Stem Cells in Different Cancers

Drug Cancer Type Impact of the Molecule Involved Mode of Action Ref.

Metformin Pancreatic Reduced MYC and increased PGC- 

1α levels

Lowers ROS levels [190]

Paclitaxel Triple Negative Breast 

Cancer

Increased expression of Myc Increased mtOXPHOS and ROS levels [191]

Sorafenib Hepatocellular Increased NANOG Increased FAO [192]

Gefinitib Non Small Cell Lung 

Cancer

Increased expression of HIF-1 Increased IGF1 expression [193]

Gefinitib Non Small Cell Lung 

Cancer

Loss of PTEN Akt activation; increased TSPYL5 

expression

[194]

Temozolomide Glioma Loss of PTEN Promotes SP phenotype [195]

Paclitaxel & gemcitabine Triple Negative Breast 
Cancer

Increased expression of HIF Increased IL-6 and IL-8 signaling; 
Increased MDR expression

[196]

Doxorubicin Breast Overexpression of Bcl-2 Upregulation of IL-6/STAT3 pathway [124]
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and differentiated cancer cells, CSCs exhibit distinct metabolic characteristics for the maintenance of stemness and self- 
renewal.172

Oxidative phosphorylation (OXPHOS) plays a critical role in the metabolism of CSCs.197,198 CSCs utilize ATP 
produced from OXPHOS for their metabolism. It has been observed that CSCs derived from the ovaries of patients 
exhibited elevated expression of mitochondrial OXPHOS enzymes.199 Unlike differentiated cancer cells, which undergo 
glycolysis, cancer stem cells depend on OXPHOS for their energy needs. In glioma, the comparison of oxygen 
consumption rate, glucose uptake, lactate production, and intracellular ATP levels between differentiated cancer cells 
and CSCs, CSCs showed less glycolytic activity, consumed less glucose, and produced less lactate. The increased levels 
of ATP were also observed in CSCs than the differentiated cells. Additionally, glioma stem cells were found to be 
radioresistant.200 In gliomaspheres, OXPHOS is known to be regulated by oncofetal insulin-like growth factor 2 mRNA- 
binding protein 2 (IMP2, IGF2BP2). IMP2 participates in the assembly and function of mitochondrial respiratory chain 
complex subunits by binding to mRNAs that code them. Depletion of IMP2 impaired OXPHOS by affecting complex 
I and complex IV mRNA and protein levels in gliomaspheres.201

Fatty Acid Oxidation (FAO) is required for the maintenance of stemness in CSCs. In a study on liver tumor-initiating 
stem-like cells (TICs), NANOG was found to be essential for FAO. Knockdown of NANOG resulted in decreased 
mRNA and protein levels of FAO-associated genes like Echs1, Acads, and AcadvI. The FAO flux analysis with 
14C-radiolabeled-palmitic acid to produce acid-soluble 14C metabolites and 14CO2 demonstrated that NANOG+ TICs 
showed higher levels of FAO activity compared to controls.192 Carnitine palmitoyl transferase I (CPTI) and carnitine 
palmitoyl transferase II (CPTII) enzymes are crucial in increasing FAO in radioresistant breast cancer cells. 
Downregulation of the ERK pathway was observed in cells by blocking FAO by CRISPR-mediated CPTI/CPTII 
knockdown and inhibited the formation of tumorspheres in radioresistant breast CSCs.202 FAO is also regulated by 
JAK/STAT3 and is critical for CSC self-renewal and chemoresistance. Inhibition of JAK/STAT3 blocked the self-renewal 
of breast CSCs. It also resulted in reduced expression of the CPT1B gene, which codes for an enzyme involved in 
FAO.203 The reduced products formed during FAO, FADH2, and NADH, are funnelled back to the respiratory chain 
where they are oxidized to produce ATP which is required for the survival of CSCs.204 Elevated levels of FAO contribute 
to chemoresistance in different cancers by increased levels of oncogenic pathways like JAK/STAT3, and Wnt 
(Table 2).192,203,205,206

The TCA cycle, sometimes referred to as the Krebs cycle or the citric acid cycle, is a sequence of chemical processes 
that take place in a closed loop and function as an internal metabolic engine in cells oxidizing carbohydrates, proteins, 
and lipids.204 In a simplistic view, the TCA cycle is a continuous cyclic mitochondrial pathway that is continually 
oxidizing the acetyl moiety of acetyl-CoA to carbon dioxide (CO2), creating NADH and FADH2, whose electrons power 
the mitochondrial respiratory chain for ATP production.204

In normal cells, the TCA cycle is fuelled by glucose whereas in CSCs the products of the glutamine pathway fuel the 
TCA cycle.207 In human malignancies, several mitochondrial enzymes, involved in the TCA cycle like Aconitate 
Hydratase (AH), Isocitrate Dehydrogenase (IDH), Fumarate Hydratase (FH), Succinate Dehydrogenase (SDH), and α- 
ketoglutarate dehydrogenase complex (α-KGDHC) are often altered or deregulated (Figure 1b) and have been linked to 
cancer progression.208 Moreover, these mutations lead to the aberrant accumulation of various metabolites, known as 
oncometabolites like (R)-2-hydroxyglutarate, fumarate, and succinate. These oncometabolites can interfere with funda-
mental cellular processes, particularly epigenetic regulation, and contribute to cancer development and progression.209 

Oncometabolites can alter epigenetic regulation by inhibiting enzymes involved in the removal of epigenetic marks, such 
as DNA and histone demethylases, or by promoting the activity of epigenetic writers, such as DNA methyltransferases 
and histone acetyltransferases. For example, mutations in SDH and FH cause the accumulation of succinate and fumarate 
and inhibit multiple α-KG-dependent dioxygenases such as histone and DNA demethylases in cancers.210 Also, muta-
tions in SDH and FH result in the stabilization of HIF-1α, a transcription factor responsible for promoting tumor survival 
and metastasis.211 Another prominent example is the inhibition of the activity of the ten-eleven translocation (TET) 
methyl-cytosine hydroxylases and Jumonji (JmjC) domain-containing histone demethylases in gliomas and acute 
myelogenous leukemia due to mutant IDH.30,212 The dysregulation of epigenetic regulation by oncometabolites is 
thought to play a critical role in the development and progression of several cancers, including renal cell carcinoma 

Stem Cells and Cloning: Advances and Applications 2023:16                                                               https://doi.org/10.2147/SCCAA.S417842                                                                                                                                                                                                                       

DovePress                                                                                                                          
29

Dovepress                                                                                                                                                       Garimella et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


and certain types of leukemia. Targeting the metabolism of cancer cells, including the production and accumulation of 
oncometabolites, is an area of active research for cancer therapy development.

Mitochondrial Dynamics and CSC Resistance
The process of mitochondrial fission (constriction and scission) and fusion, known as mitochondrial dynamics, regulates 
the shape, quality, and number of mitochondria. In contrast to mitochondrial fusion, which involves joining two 
mitochondria to form a single mitochondrion, mitochondrial fission is characterized by the division of a single 
mitochondrion into two daughter mitochondria. Large GTPase proteins from the Dynamin (Dnm) family make up the 
majority of the core machinery proteins.213 These mechanoenzymes can oligomerize and alter conformation to promote 
membrane remodeling, constriction, scission, and/or fusion.214 Mitochondrial fission is carried out by the Dnm-related/- 
like protein 1 (Drp1) that can be recruited to the mitochondrial membrane (MM) from cytoplasm with the help of 
mitochondrial receptor proteins Fis1, MID49, MID51, MFF (for constriction) and Dnm2 (for scission) (Figure 1c).215 On 
the other hand, mitochondrial fusion is ensured by mitofusins 1 and 2 (Mfn1 and Mfn2) and optic atrophy 1 (OPA1), 
which mediate outer mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM) fusion, respectively 
(Figure 1c).216 Up-regulation of fission-related proteins and down-regulation of fusion-related proteins have been 
implicated in the onset, development, metastasis, CSC survival, and treatment resistance of several cancers.217–220 The 
inhibition of Drp1, a fission-related protein using mdivi-1 resulted in the inhibition of cell migration and CSC signaling 
in breast cancer. The inhibition also reduced the formation of tumorspheres in a dose-dependent manner in breast, lung, 
and melanoma cells.221 In another study, high expression of OPA1 was observed in the tumorspheres of NSCLC CSCs, 
which was due to overexpression of SPDEF, a SAM Pointed Domain containing ETS transcription factor.222 

Mitochondrial fission and fusion enhance CSC stemness and maintain self-renewal. Knockdown of fission-related 
genes such as Drp1, and MFF reduces the expression of stemness-associated genes like OCT4, NANOG, etc, and the 
tumorsphere formation capability of CSCs in brain and prostate cancer.220,223 Moreover, the inhibition of Drp1 by mdivi- 
1 reduces the capacity of CD44+ CSCs to form tumors in vitro and in vivo in nasopharyngeal cancer.224 Similarly 
reduced populations of CD133+CD15+ brain tumor-initiating cells and decreased levels of stemness genes in EpCAM 
+CD133+ liver cancer stem cells were observed upon Drp1 inhibition with mdivi-1.220,225 Phosphorylation of Drp1 
induces mitochondrial fragmentation to promote metabolic adaptation and chemoresistance as seen in acute lympho-
blastic leukemic T-cells.226

Mitochondrial Retrograde Signaling and CSC Resistance
Mitochondrial retrograde signaling refers to the cellular response to changes in mitochondrial activity and state and is 
a vital component in maintaining cellular homeostasis. Mitochondrial retrograde signaling enables the transmission of 
information regarding alterations in mitochondrial bioenergetics and redox potential to the rest of the cell. Altered 
nuclear gene transcription due to mitochondrial dysfunction opens new avenues in mitonuclear communication.227 Under 
both normal and pathological circumstances, mitochondria can communicate with the nucleus through mitochondrial 
retrograde signaling. Disruption of the MM potential and poor absorption of Ca2+ leads to increased intracellular Ca2+. 

This triggers the activity of Ca2+ dependent kinases such as protein kinase C (PKC), c-Jun N-terminal kinase (JNK), 
calcium/calmodulin-dependent protein kinase IV (CamKIV), and mitogen-activated protein kinase (MAPK) which then 
function through various transcription factors like activating transcription factor 2 (ATF2), nuclear factor of activated 
T-cells (NFAT), CCAAT/enhancer-binding protein delta (CEBP/δ), early growth response protein 1 (Egr-1), cAMP- 
response element binding protein (CREB), C/EBP homologous protein (CHOP), and NF-κB, to alter the nuclear gene 
expression (Figure 1d). Additionally, increased Ca2+ levels activate calcineurin (CaN), a calcium-dependent serine- 
threonine phosphatase that is thought to have developed from RTG-dependent retrograde (RTG) signaling and increases 
NFAT and NF-κB.228 The ongoing maintenance of the organelle may be viewed as a delicate balance between its 
biogenesis and the quality control systems (engaged in remodeling and mitophagy) that ensure cell homeostasis and 
function. Numerous antioxidant enzymes like GPX1, PRDX3, PRDX5, SOD2, chaperones, and quality control proteases 
work together to maintain this function by promoting protein folding and stability on the mitochondria while degrading 
accumulating unfolded or misfolded proteins.229
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The molecular connection between the nucleus and mitochondria, which involves ATP, calcium, and ROS, is crucial 
for this regulation.230 Mitochondrial-to-nucleus communication, also activates a coordinated expression of nuclear genes 
to relieve the stress and/or to compensate for the defect upon organelle dysfunction which are caused by many events, 
such as mtDNA depletion, deletions, mutations, aggregation of misfolded proteins, oxidative stress, or dramatic changes 
in morphology and dynamics.231 The dysfunction of mitochondria due to these factors results in the activation of 
retrograde signaling, which alters the transcription of nuclear genes that encode mitochondrial proteins involved in 
retrograde signaling. This alteration can lead to the acquisition of stemness, EMT induction, resistance to apoptosis, and 
drugs in CSCs.232–234 For example, the reduction of mtDNA activated CaN-dependent mitochondrial retrograde signaling 
and generated breast CSCs. This CaN-mediated mitochondrial retrograde signaling led to the induction of EMT by 
increased mesenchymal gene expression in mtDNA-reduced cells.235 These changes occur through dysregulation of TFs 
involved in mitochondrial retrograde signaling. Also, the triggering of the signaling pathways involved in retrograde 
signaling converges on the upregulation of genes affecting several cellular functions, including apoptosis resistance, 
MDR, invasion, and EMT.151 In prostate cells depleted of mitochondria, PARP inhibitor AGD14699 activates Ca2+- 
mediated retrograde signaling and downregulates BRCA2 levels. Decreased levels of BRCA2, a tumor suppressor 
protein that regulates the homologous DNA repair process, make the prostate cells sensitize to PARP inhibitor, resulting 
in cell death. This demonstrates that the presence of mitochondria in the cells provides resistance to drugs.233

Increased ROS obtained after mtDNA depletion in hepatocellular carcinoma cells, activates NRF2 signaling pathway 
and multidrug-resistance proteins MRP1 and MRP2 to help tumor cells fight against ROS and resist cisplatin and 
doxorubicin treatment.236 Also, mitochondrial stress-related ROS modulates the expression of PGC1α, a key regulator of 
mitonuclear communication, to promote OXPHOS and confer cisplatin resistance in SKOV3 ovarian cancer cells.237 

Porporato et al have shown that dysfunction in the ETS results in ROS overproduction that activates Src, which in turn 
induces the expression of Pyk2, a FAK family protein tyrosine kinase known to promote cytoskeletal remodeling, 
migration, and EMT in SiHa cells.238 The above studies indicate a key role for mitochondrial retrograde signaling in 
maintaining stemness and in drug resistance of cancer cells. However, the role of mitochondrial retrograde signaling in 
CSC drug resistance is still being explored.

Mitophagy and CSC Resistance
To ensure a robust and healthy mitochondrial population, cells employ a controlled catabolic process known as 
mitophagy, which serves to eliminate any damaged or defective mitochondria. By doing so, mitophagy plays a crucial 
role in reducing cell damage, promoting cellular homeostasis, and supporting overall cell survival.239 Mitophagy plays 
a crucial role in conferring tumor resistance to various cancer therapies (Table 2) by facilitating the degradation of 
impaired mitochondria, consequently leading to a reduction in mitochondrial ROS levels.240,241 Different routes can be 
used to activate mitophagy. One such mechanism is through the phosphatase and tensin homolog (PTEN) -induced 
putative kinase 1 (PINK1) and Parkin signaling pathway. The PINK1/Parkin pathway is in-charge of preparing damaged 
mitochondria for selective autophagic identification. In general, PINK1 is transported into the IMM by translocase of the 
outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, where it is digested by the proteasome 
and cleaved by the mitochondrial protease PARL (presenilin-associated rhomboid-like) (Figure 1e).242 When the 
mitochondria are depolarized, PINK1 remains connected to the OMM and recruits PARKIN which helps in ubiquityla-
tion of OMM substrates. This ubiquitylation pattern acts as a signal for the sequestration of damaged mitochondria 
(Figure 1e).243 Thus, depolarization of MM results in increased OMM expression of PINK1 following recruitment of 
Parkin to the mitochondria allowing selective and effective turnover of damaged mitochondria.244

Another mechanism that contributes to the removal of mitochondria under physiological and diseased conditions is 
MM receptor-mediated mitophagy. This includes different receptors like BCL2/adenovirus E1B 19 kDa protein- 
interacting protein 3 (BNIP3), BNIP3L/NIX, FUN14 domain-containing protein 1 (FUNDC1), an activating molecule 
in Beclin 1-regulated autophagy (AMBRA1), FK506-binding protein 8 (FKBP8), ATPase family AAA domain- 
containing protein 3B (ATAD3B), and some kinds of lipids (cardiolipin (CL) and C18-ceramide.245 The key mediators 
of hypoxia-induced mitophagy include BNIP3 and BNIP3L/NIX. Interestingly, the transcription of BNIP3 and NIX is 
influenced by HIF-1.
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Mitophagy contributes significantly to the mitochondrial stress response through these two pathways, as well as to the 
regulation of mitochondrial quality and the maintenance of homeostasis.246–249 CSCs utilize mitophagy to promote their 
survival.248–250 For example, in hepatic CSCs, enhanced mitophagy promoted the recruitment of phosphorylated p53 to 
the mitochondria thereby increasing the nuclear expression of NANOG and promoting stemness.247 This process 
facilitates the selective distribution of mitochondria between stem-like and non-stem-like cells. For example, when 
mammary epithelial stem-like cells divide, the daughter cells with stem cell characteristics inherit fewer older mitochon-
dria, whereas the differentiated cells receive a higher proportion of older mitochondria. Consequently, stem-like cells 
inherit the newest and most efficient mitochondria, promoting their continued function, while the differentiated daughter 
cells that receive older mitochondria are eventually eliminated.251 Enhanced mitophagy within the CSC population 
facilitates the removal of aberrant mitochondria, promoting cell growth and survival across various tumor types.252 The 
ability of CSCs to enter a state of cell quiescence is tied to mitophagy. Mitophagy results in a decrease of mitochondrial 
mass and subsequently reduced OXPHOS activity. As a result, cells switch to glycolysis to meet their energy 
demands.178 Glycolysis drives CSCs to enter a quiescent state and is also crucial to increase antioxidant compensative 
capacity, enhancing stemness, and improving self-renewal capacity.253–255 As mentioned above, BNIP3 is highly 
expressed under hypoxic conditions. In glioblastoma cells, growing in hypoxic situations, it has been demonstrated by 
Jung et al that BNIP3-mediated mitophagy promotes cell survival by clearing ROS levels.249 In oral squamous cell 
carcinoma, CD44+/ABCB1+/ADAM17+ CSCs exhibited resistance to cisplatin. Higher autophagic flux and mitophagy 
were observed in drug-resistant FaDu cells compared to parental cells. Mitophagy is a key contributor to doxorubicin 
resistance in CSCs of HCT8 human colorectal cells. The CD133+/CD44+ cells were more resistant to doxorubicin 
treatment. Silencing of BNIP3L prevented mitophagy and increased sensitivity to doxorubicin therapy.256 Deletion or 
mutation of PARK2 and BNIP3 inhibits mitophagy and thereby promotes carcinogenesis. Loss of function mutation in 
the PARK2 gene has been detected in colorectal cancer.257 Therefore targeting mitophagy in CSCs could sensitize cells to 
various chemotherapeutic drugs.

Apoptosis and CSC Resistance
Mitochondria play a central role in apoptotic cell death. The intrinsic apoptosis process is triggered by DNA damage, the 
loss of survival factors, and alterations in cell cycle checkpoints. As part of the intrinsic pathway, BH3-interacting 
domain death agonist (Bid) is cleaved to truncated Bid (tBid) in the presence of activated caspase-8. This results in tBid 
translocation to the mitochondria and causes mitochondrial outer membrane permeabilization (MOMP) by activating 
Bcl-2 associated x -protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), resulting in the release of Cyt C and 
mitochondria-derived activator of caspase (Smac) from mitochondria which are transported to the cytosol. In the cytosol, 
Cyt C interacts with ATP, apoptosis peptidase-activating factor-1 (Apaf-1), and initiator pro-caspase-9 to form a signaling 
complex called apoptosome where caspase-9 is activated, in turn causing the activation of effector caspases-3, −6, and −7 
to cause apoptosis (Figure 1f).258 It has been demonstrated that higher levels of Bcl-2 family proteins are related to drug 
resistance in many cancers. Bcl-2 deregulation hinders the oligomerization of Bax and Bak, preventing MOMP, which in 
turn blocks the release of Cyt C into the cytosol and thereby inhibits apoptosis (Figure 1f).259 Increased levels of Bcl-2 
proteins were detected in many CSCs like breast and colon.123,124 Additionally, mitochondria to nuclear retrograde 
signaling is related to increased transcription of anti-apoptotic Bcl-2 family members and activation of survival signals 
like Akt. CSCs also show apoptosis resistance by increased expression of anti-apoptotic proteins like c-FLIP and IAPs 
(as discussed in the earlier sections) that can block the activation of caspases, thereby inhibiting apoptosis.39,260 Acquired 
resistance to drugs by CSCs through dysregulation of apoptosis-regulating proteins is a recurrent theme observed in 
many cancers (Table 2).

Conclusion
Resistance to chemotherapeutic agents has grown into a major issue in the treatment of cancers. CSCs evolve diverse 
mechanisms to enable this therapeutic evasion of tumors, contributing to poor prognosis. Mitochondria play a central role 
in imparting drug resistance to the CSCs by altering many pathways involved in biogenesis, metabolism, dynamics, and 
retrograde signaling. Developing strategies to target different molecules involved in resistance pathways especially those 
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associated with mitochondria, either alone or in combination with various chemotherapeutic agents could help in the 
sensitization of CSCs, promoting effective treatment.

Mitochondria-targeting therapies for CSCs are a new and promising approach, but still in the preclinical stages. 
Mitochondrial uncouplers selectively disrupt the proton gradient across the mitochondrial membrane, leading to 
oxidative stress-induced apoptosis in CSCs. Mitochondrial-targeting drugs, such as elesclomol, induce mitochondrial 
ROS production and lead to apoptosis in CSCs.261 Targeting mtDNA mutations using drugs or other therapies is another 
promising strategy for eliminating CSCs. Additionally, targeting mitochondrial dynamics, including fusion and fission, 
using drugs like mdivi-1 can induce mitochondrial fission, leading to the selective elimination of CSCs. However, it is 
essential to note that this is still an area of ongoing research, and the development of therapies targeting mtDNA 
mutations to eliminate CSCs is complex and may face challenges. Understanding the mechanisms and vulnerabilities of 
CSCs, as well as potential off-target effects of such treatments, will be critical in realizing the full potential of this 
approach.

Mitochondrial retrograde signaling is a process by which mitochondria communicate with the nucleus to alter gene 
expression in response to changes in mitochondrial function. Dysregulation of mitochondrial function, such as through 
mutations or environmental stressors, can lead to the activation of retrograde signaling pathways and alterations in 
nuclear gene expression that can promote stemness, EMT, drug resistance, and other hallmarks of cancer. Thus, by 
understanding the link between mitochondrial function and nuclear gene expression, novel strategies to target CSCs and 
prevent tumor recurrence can be developed. Targeting mitochondrial function or the pathways involved in mitochondrial 
retrograde signaling could potentially be used to induce apoptosis or differentiation of CSCs, sensitize them to traditional 
cancer therapies, or prevent the emergence of drug-resistant CSCs. Despite the promising results of these mitochondria- 
based therapies in preclinical models, there are still several challenges such as potential toxicity to normal cells and the 
heterogeneity of CSCs that need to be addressed to translate these therapies into clinical applications.
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