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Abstract: Several gas molecules of environmental and domestic significance exhibit a strong deep-UV
absorption. Therefore, a sensitive and a selective gas detector based on this unique molecular
property (i.e., absorption at a specific wavelength) can be developed using deep-UV absorption
spectrophotometry. UV absorption spectrometry provides a highly sensitive, reliable, self-referenced,
and selective approach for gas sensing. This review article addresses the recent progress in the
application of deep-UV absorption for gas sensing owing to its inherent features and tremendous
potentials. Applications, advancements, and challenges related to UV emission sources, gas cells,
and UV photodetectors are assessed and compared. We present the relevant theoretical aspects and
challenges associated with the development of portable sensitive spectrophotometer. Finally, the
applications of UV absorption spectrometry for ozone, NO2, SO2, and aromatic organic compounds
during the last decades are discussed and compared. A portable UV absorption spectrophotometer
can be developed by using LEDs, hollow core waveguides (HCW), and UV photodetectors (i.e.,
photodiodes). LED provides a portable UV emission source with low power input, low-intensity
drifts, low cost, and ease of alignment. It is a quasi-chromatic UV source and covers the absorption
band of molecules without optical filters for absorbance measurement of a target analyte. HCWs can
be applied as a miniature gas cell for guiding UV radiation for measurement of low gas concentrations.
Photodiodes, on the other hand, offer a portable UV photodetector with excellent spectral selectivity
with visible rejection, minimal dark current, linearity, and resistance against UV-aging.

Keywords: deep ultraviolet; absorption spectrophotometry; spectroscopy; ultraviolet light sources;
LEDs; hollow core waveguides; photodiodes; ozone; SO2; NO2; VOC; BTEX

1. Introduction

Gas detection has become an integral part of today’s industrial and domestic life. It has several
applications, ranging from environmental sensing in the stratosphere to indoor air quality and even
diagnosis of different diseases in human bodies. Some common applications of gas sensors are in the
detection of toxic and flammable gases for health and safety, detection of key species in food industry,
monitoring of indoor air quality and exhaust of harmful gases from fossil fuel burning, monitoring of
greenhouse gases for environmental protection, and diagnostics of different diseases by identifying
potential biomarkers such as volatile organic compounds (VOCs) [1–6]. Usually, quantitative detection
of gases is performed by laboratory analytical devices such as gas chromatography with a flame
ionization detector, which preclude portability and real-time observation. Currently, there is a demand
for portable gas analyzers to acquire analytical data in real-time with high sensitivity, low pure gas
consumption (i.e., carrier gas), and low power consumption. Typical gas sensing techniques are

Sensors 2019, 19, 5210; doi:10.3390/s19235210 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8679-917X
https://orcid.org/0000-0003-4591-8643
http://www.mdpi.com/1424-8220/19/23/5210?type=check_update&version=1
http://dx.doi.org/10.3390/s19235210
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5210 2 of 31

electrochemical [7], semi-conductor [8], photo-ionization detection (PID) [9,10], piezoelectric [11,12]
and optical technique [13–16]. Each technique has its advantages and limitations, as summarized in
Table 1.

Table 1. Comparison of different gas detection techniques [12,14,15].

Method/Technique Advantages Limitations

Metal Oxide Semiconductor

Good sensitivity.
Low cost.

Quick Time response.
Easily to integrate.

Relative low selectivity.
High-operating temperature.
Zero-drift and ageing effect.

Mostly affected by humidity and temperature.

Electro-Chemical

Relative sensitive.
Reliable.

Low power consumption.
Quick time response.

Lower cost

Zero drift.
Aging, which leads to a shorter life.

PID
High sensitivity to aromatics.

Quick response.
Portable.

Low selectivity, all the gases with IP equal or lower
the photon may be detected (total VOC

concentration).
Cost.

Piezoelectric
Good sensitivity.

Portable.
Good dynamic range.

Large measurement noise.
Weak selectivity.

Zero drift and cross-reactivity.
Interference from humidity and temperature.

Optical sensors

Excellent sensitivity.
High gas specificity.

Minimal drift and cross-response.
Non-destructive.

Ultra-fast response.

Size
High cost

Optical gas sensors based on absorption have been shown to provide a sensitive and selective
approach with minimal drift, rapid time response, and a low cross-response to other gases [9,14].
The measurement is self-referenced and reliable as the transduction is based on direct measurement
of a molecule’s physical property (i.e., absorbance at a specific wavelength). Real-time data are
obtained without changing the nature of the gases, which can be critical for process control [17].
There are several gas molecules that absorb strongly in ultraviolet (UV) (wavelength range, 180 nm
to 400 nm) and deep-UV (wavelength range, 180 nm to 280 nm), thus by exploiting the absorption
property of these compounds, a sensitive and selective sensing platform can be developed. The
latest advancements in semiconductor and optoelectronics, for instance, LED and photodetectors
and optofluidics have given an opportunity to develop miniaturized UV spectrophotometers for gas
sensing applications. For example, molecules of atmospheric interest such as ozone, NO2, SO2, H2S,
benzene, toluene, ethylbenzene, and xylene (-p, -m, -o) exhibit strong absorption bands in the deep UV
region (λ < 300 nm) as shown in Figure 1.
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Figure 1. The ultraviolet (UV) absorption spectrum of different gases. The absorbance of each gas is 
normalized by the respective maximum absorption coefficient of the gas. The data of each molecule 
were obtained from HITRAN [18] and then plotted on a wavelength scale. 

Recently, there has been growing interest in the application of deep UV spectrophotometry for 
gas sensing application. Therefore, this paper addresses the progress made in the UV 
spectrophotometry and its application for different gases. In the first section, a brief overview of UV 
spectrophotometry is provided. In the following sections, each component of UV spectrophotometer 
is discussed with the latest developments and challenges. The research conducted during the last 
decades in the domain of deep-UV spectrophotometry for different gases is described and compared 
by using various analytical parameters. In the final section, the conclusion of the study is provided 
with a future outlook. 

2. UV Spectrophotometry 

UV absorption spectrometry is a well-known analytical technique and has been applied 
extensively in analytical chemistry, biochemistry, and biomedical applications due to its simplicity, 
flexibility, low cost, and convenience [19]. Absorption is an attenuation of electromagnetic radiations 
at a specific energy as it passes through an analyte. Electromagnetic radiation with high energy (lower 
wavelength) will cause excitation of an electron from lower energy state to high energy state. 
Absorption occurs when the energy of photons ΔE matches with the energy, E2-E1, between the two-
energy level of the analyte. When an analyte absorbs UV/visible radiations, it mainly undergoes a 
change in its valence electronics configurations. UV absorption spectrometry is associated with the 
transition of electrons either from a bonding state (π) to an anti-bonding state (π*) or from a non-
bonding state (n) to an anti-bonding state (π*) at a specific light energy. For example, for benzene, the 
transition from the bonding (π) to the anti-bonding state (π*) happens at radiation with energy 4.88 
eV, which corresponds to a wavelength of 254 nm. Absorption is usually quantified using 
transmittance and absorbance. Transmittance represents the ratio of radiant power I, passing through 
a sample to that of power from the radiant source Io as given by 𝑇 ൌ  ூூ೚ . Most of the detectors for 
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that the analyte will absorb a photon of a given energy. This law is a limiting law and is valid for low 

Figure 1. The ultraviolet (UV) absorption spectrum of different gases. The absorbance of each gas is
normalized by the respective maximum absorption coefficient of the gas. The data of each molecule
were obtained from HITRAN [18] and then plotted on a wavelength scale.

Recently, there has been growing interest in the application of deep UV spectrophotometry for gas
sensing application. Therefore, this paper addresses the progress made in the UV spectrophotometry
and its application for different gases. In the first section, a brief overview of UV spectrophotometry is
provided. In the following sections, each component of UV spectrophotometer is discussed with the
latest developments and challenges. The research conducted during the last decades in the domain of
deep-UV spectrophotometry for different gases is described and compared by using various analytical
parameters. In the final section, the conclusion of the study is provided with a future outlook.

2. UV Spectrophotometry

UV absorption spectrometry is a well-known analytical technique and has been applied extensively
in analytical chemistry, biochemistry, and biomedical applications due to its simplicity, flexibility, low
cost, and convenience [19]. Absorption is an attenuation of electromagnetic radiations at a specific
energy as it passes through an analyte. Electromagnetic radiation with high energy (lower wavelength)
will cause excitation of an electron from lower energy state to high energy state. Absorption occurs
when the energy of photons ∆E matches with the energy, E2-E1, between the two-energy level of the
analyte. When an analyte absorbs UV/visible radiations, it mainly undergoes a change in its valence
electronics configurations. UV absorption spectrometry is associated with the transition of electrons
either from a bonding state (π) to an anti-bonding state (π*) or from a non-bonding state (n) to an
anti-bonding state (π*) at a specific light energy. For example, for benzene, the transition from the
bonding (π) to the anti-bonding state (π*) happens at radiation with energy 4.88 eV, which corresponds
to a wavelength of 254 nm. Absorption is usually quantified using transmittance and absorbance.
Transmittance represents the ratio of radiant power I, passing through a sample to that of power from
the radiant source Io as given by T = I

Io
. Most of the detectors for absorption are based on measuring

transmittance (T < 100%). The attenuation of radiation is alternatively expressed using absorbance A,
which is defined by

A = − log(T) = − log
( I

Io

)
= log

( Io

I

)
. (1)

Absorbance, A and concentration, c (molecule cm−3) are related to each other according to the
Beer–Lambert law as

A = σ l c (2)

where l represents the optical length of the gas cell in cm and σ represents the absorption cross-section
of a gas molecule in cm2-molecule−1. Its value depends on the wavelength and gives the probability
that the analyte will absorb a photon of a given energy. This law is a limiting law and is valid for low
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concentrations of analyte and for strictly monochromatic radiation, provided that the physical and
chemical properties of absorbing species do not change with the concentration.

In absorption spectrophotometry, long optical path length and strong absorption cross-sections
are generally associated with high sensitivity. However, the sensor saturation may occur, which may
limit the sensitivity and linearity. Marcus et al. [20] investigated the sensor saturation and derived
equations based on Beer–Lambert law for optimized transmittance, optical path length, and absorption
cross-section for a specific range of ozone concentration to prevent sensor saturation. The optimized
optical path length, lop and optimized cross-section σop for ozone concentrations c1 and c2 were derived
as expressed as,

lop =
106 R T (ln c1 − ln c2)

σ NAP (c1 − c2)
; σop =

106 R T (ln c1 − ln c2)

l NAP (c1 − c2)
(3)

whereas c is the concentration of an analyte in ppm; σ is absorption cross-section in m2-molecule−1;
T is absolute temperature in K; P is pressure in atm; R is ideal gas constant, 8.205746 × 10−5 atm-m3

mol−1- K−1; NA is Avogadro’s constant, 6.02214199 × 1023 molecule-mol−1. Transmittance, T of light
affects the sensitivity of the measurement. Marcus et al. [21] derived optimized transmittance equation
for highly sensitive measurement and was validated numerically and experimentally as given by,

dTr
dc = Tr ln Tr

c
Tr = exp

(
−σ NA P l c

106 RT

)
.

(4)

The Beer–Lambert equation can be expressed in its integral form where x is the variable length as
given as [22],

I = Io e−σxc

dI
dx

= −σ c Ioe−σxc also
dI
dc

= −σ x Ioe−σxc. (5)

According to Equation (5), a sensor with a high concentration resolution at a shorter length can be
realized by using gas with a high absorption cross-section or/and by employing UV source with a high
spectral power density (Io) close to the maximum absorption power of an analyte. The differential
variation of intensity with the length of the gas cell is shown in Figure 2.
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Figure 2. Variation of relative intensity with the length of a gas cell.

A typical UV-spectrophotometer is mainly composed of a UV emission source, gas cell, and
UV photodetector, as summarized in Figure 3, with its working principle. Each component of the
spectrophotometer is discussed in the following sections.
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Figure 3. Schematics of UV absorption spectrophotometry. The plots on the left and right represent
the signal from the emission source and the final signal recorded at the photodetector after passing
through the gas cell, respectively.

3. UV Sources

3.1. General Overview

UV is a component of the electromagnetic radiation spectrum with a wavelength from
approximately 180 nm to 400 nm, as shown in Figure 4. UV radiation can be sub-divided into
further spectral bands as:

UV-A (near UV), 315–400 nm.
UV-B (middle UV), 280–315 nm.
UV-C (far UV), 180–280 nm.
UV-A can easily transmit through air and glass. On the other hand, UV-B and UV-C are transmitted

through air and quartz but absorbed by the glass. UV with a wavelength less than 280 nm (i.e., UV-C)
are usually called deep-UV. Radiations from 180 nm to 10 nm are called vacuum or extreme UV as
these radiations only propagate in a vacuum.
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Common UV sources are open arcs, fluorescent and incandescent sources, lasers, and LEDs. UV
sources are characterized using wavelength range, optical output stability, lifetime, and input power. In
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spectroscopy applications, a UV emission source should be stable and have enough power intensity for
the desired wavelength. Light stability is commonly characterized by fluctuation (short-term stability)
and drift (long-term stability). The stability of the emitted light output is usually quantified by the
ratio of variation in the intensity of emitted light to the mean intensity of the emitted light. It is an
essential factor in defining the accuracy and reliability of a spectrophotometer. Typically for analytical
detection, the concentration is determined with sequential measurements of the sample and reference
gases that are alternatively injected into the gas cell. It is therefore important to have a stable light
output between the two measurements. Lifetime is usually defined as the time when the light output
exceeds a specified range of fluctuations [23]. The emission spectra of the common UV sources, i.e.,
xenon flash lamp, deuterium lamp, mercury lamp, and UV LED, are shown in Figure 5. Lifetime affects
the cost of equipment. Shorter lifetime results in frequent replacement impacting the total price of use.
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Figure 5. The output intensity of different UV sources. LED (80 µW, Mightex System US) data were
obtained from Khan et al. [24] and other data were sourced from Hamamatsu Photonics. Mercury
Xenon lamp (L2423, 200 W), Xenon flash lamp (L11957, 20 W), Deuterium Lamp (L9519, 30 W) [25].

Deuterium lamps are relatively more stable (fluctuation < 0.005%) than other UV lamp alternatives.
It has relativity high-intensity light output with longer lifetime. However, the major shortcomings
of deuterium lamps are size, a highly stable power supply (150 W) requirement, and a warm-up
time of approximately 30 min for thermal equilibrium. Low-pressure mercury lamps have been
traditionally applied for spectrophotometric detection of ozone and Benzene, Toluene, Ethylbenzene,
and Xylenes (BTEX) as its emission spectrum (i.e., ~254 nm) matches strongly with the absorption
spectra of these molecules. The Mercury Xenon lamp has also been used as a UV emission source in
spectrophotometric studies. Its limitations are that it requires high power input and has low output
stability. Also, mercury lamps contain hazardous waste. There is a pressing need of reducing the
mercury utilization by different agreement and regulations such as Minamata Convention on Mercury,
which is an international treaty for elimination of mercury usage with its implementation by 2020 [26].
In comparison with other UV sources, LEDs are an attractive option for future spectrophotometric
devices owing to portability, low cost, and low power consumption. A comparison of different UV
sources is summarized in Table 2.
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Table 2. Comparison of UV sources for portable spectrophotometry.

LED Deuterium Lamp Xenon Flash Lamp Mercury Lamp

Wavelength Single peak
Relatively wide

spectrum
120–400 nm

Broad-spectrum
160–2000 nm

Broad-spectrum
185–2000 nm

Stability of light
output

Excellent temporal
and spatial

stability.

Good.
Fluctuation

<0.005%

Relatively poor.
Fluctuation

<3%

Relatively poor.
Fluctuation

<2%

Warm-up time Instantaneous 20–30 min Instantaneous 1–15 min

Life (hours) 3000–10,000 2000–4000 400–5000 500–3000

Input wattage (W) DC powered
6–10 V 5–150 2–60 50–500

Thermal effect on
samples

None. LEDs do not
emit forward heat

Sample can be
affected by the heat

from the lamp
None

Sample can be
affected by the heat

from the lamp

Cost Low High High Low

Drive electronics Simple Complex Complex Complex

Safety Low voltage and
cold light source

High power supply
(Input wattage

5–150 W) and hot
lamp surface

High voltage
supply (Input

wattage 2–300 W):
sparking risk

High voltage
supply (Input

wattage 50–500 W)
and contains

mercury in fragile
quartz envelop

LEDs have been successfully applied in analytical chemistry [27–29] and led to the development of
affordable, cost-effective, and compact instrument designs with low power consumption. Bui et al. [30],
Dasgupta et al. [31], and Yan Li et al. [23] have reviewed the development and application of LED
in analytical sciences. For details, the interested readers are invited to refer to these articles. LEDs
are solid-state semiconductor diodes, which emit light due to the recombination of hole-electrons
pair. The energy of an emitted photon depends on the bandgap of the semiconductor. LEDs are
small (emitter chip size for 5 mm is 250 µm2) and portable with low optical noise, which can be easily
incorporated into flow-through detectors, for instance, as absorbance measurement detectors. LEDs
have lower intensity drifts, low cost, long lifetime (104 h), and low heat generation [31]. They can be
operated in pulse mode up to GHz range for applications with fast switching, which is not possible
with the conventional UV sources. These features made them a suitable candidate for incorporation
into low-power portable devices. They are quasi-monochromatic sources that have typically narrow
emission band less than 30 nm in width. The narrow emission bandwidth of LED covers the absorption
band of molecules without monochromators for absorbance measurement of a target analyte. As can
be seen from Figure 1, the absorption spectra of most molecules can be covered with a bandwidth of 30
nm. To broaden the emission band, an array of LEDs can be used to cover a wide range of absorption
spectra. The available range of LEDs is usually from 250 to 900 nm, as shown in Figure 6. LEDs
with lower wavelength (λ < 300 nm) have lower power efficiency, low power output (1 W), limited
wavelength range, and high price tags [32]. Owing to its size and shape, LEDs give more degree of
robustness and miniaturization compare to the conventional light UV sources. Different variants of
LEDs are available such as surface mount, high power version (for higher wavelengths >350 nm),
and LEDs with various integrated lens covers. The top cover of LED, which acts as a lens, can be
modified for desired applications. For analytical applications, usually a collimated or focused beam is
needed, which can be achieved by modifying the shape of the LED headcover. For example, a ball
lens is a good option to realize a tight focusing of light. By changing the curvature of the LED cover
to high-radius curvature (linearized profile) by careful cutting and polishing, a collimated UV beam
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can be achieved, which can be then easily coupled with optical fibers. The total cost of typical ozone
monitors using a UV-C LED (OPTAN 255, 1 mW) as a source is estimated to be $350 (the total cost is
sum of the instrument cost (emission source, optical filter, power supply, detector, and heat enclosure)
and operating cost (i.e., power consumption, lamps replacement, and disposal)). On the other hand,
a rival detector based on UV mercury lamp (TUV 11 W, mercury lamp) is around $580. The lower
cost of LED-based monitor is mainly due to the absence of optical filters and heat enclosure and lower
operating and maintenance cost [33].
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3.2. Challenges and the Latest Advancement

Several LED-based analytical devices have been developed for infrared and visible light application.
However, LEDs for lower wavelength (λ < 350 nm) need a higher bandgap at the semiconductor
junction. At lower wavelength, the photon conversion efficiency is small, which lead to low-power UV
emission, high cost of devices, and negative thermal effects [34]. Presently, LEDs based on AlGaN
semiconductor can emit light with wavelength down to 240 nm, but there is a growing demand for
a stable and high-power LED with emission wavelength lower than 200 nm for sterilization and
sensing applications.

LED is a non-linear electronics device and requires a constant-current supply for operation. The
constant current is usually supplied by using a high voltage with a current limiting resistor or by
employing an active current control. Active control current sources are less susceptible to temperature
changes [30]. The optical output of an LED is sensitive to the junction temperature. The optical power
decreases with the increase in junction temperature. For deep-UV LEDs, proper thermal management
should be considered for a stable LED output. Another approach for minimizing the drift due to the
temperature is by employing a self-reference approach in parallel. The typical power output for UV-C
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LED is less than 1 mW, which is relatively small for transmission in the gas cell. The summary of
different UV LEDs power output is summarized in Figure 6a,b.

UV LEDs show parasitic broadband emission in the visible region, which should be taken into
account when designing an absorption-based detector for UV applications [35]. A typical example of
parasitic emission in the output spectrum of UV-C LED is shown in Figure 6c [23]. Parasitic emission
is dominant at a low forward current (<5 mA) [36] and is predominantly caused by the presence of
undesirable bands of lower energy bands in the emitting semiconductor [37–39] or the presence of
fluorescence or phosphorescence contaminant in LED structure [40]. Recently, aluminum nitride-based
(AlN) LEDs have been developed, which give high optical power out (1.5 mW, 100 mA) with a low
value of parasitic emission in comparison with sapphire-based LEDs (30 mA). Li et al. [23] investigated
the performances of an AlN based LED for analytical applications and reported that AlN based LEDs
have minimal parasitic emission in comparison with the sapphire based LEDs as shown in Figure 6c.
The ratios of parasitic emission to the desired UV emissions were 0.0002% and 8% for AlN and sapphire
based LEDs, respectively.

UV LEDs offers spatial stability, intensity stability, and narrow emission band with low optical
losses, which can be used to achieve better limits of detection than the conventional sources. By
minimizing power supply noise, temperature fluctuation, and mechanical stability of optics, the
performance can surpass the traditional UV lamp sources [41–43].

4. Optical Gas Cell

4.1. General Overview

An optical gas cell (OGC) is a platform where the photons (UV radiation) and gas analyte
molecules interact. According to the Beer–Lambert relationship, the sensitivity of a spectrophotometer
for a specific gas is defined by the length of the gas cell. There is a trade-off between sensitivity (i.e.,
the longer optical path of OGC) and portability of the spectrophotometer for a specific gas. Different
types of gas cell have been developed to achieve longer optical paths such as single-pass gas cells,
multiple-pass gas cells, and resonant cavity. Multiple-pass gas cells (e.g., Herriot or white) are bulky
and require a high volume of gas, thus have limited time resolutions. Single-pass cells, on the other
hand, have low-volume, ease of integration, and fabrication.

Hollow core waveguides (HCWs) provide an attractive option to be employed as a single-pass
gas cell for UV absorption spectrophotometry. HCWs were initially designed as a light-tube for the
transmission of high-peak-power laser light for industrial and medical applications [44,45]. They
have been applied for the detection of different analytes in liquid or gas for environmental, process
monitoring, and biomedical applications [46,47]. HCW acts as a light-pipes by transporting radiation
inside the co-axial hollow core of the fiber. It can be applied as a miniature gas cell for guiding
the radiation for measurement of low gas concentrations. Depending on the guiding mechanism,
HCWs can be classified into attenuated total-reflection (ATR) or leaky-mode (LM) waveguides. ATR
waveguides are made of tubes with refractive index (n) less than that of the air-core (n = 1) whereas LM
waveguides are composed of a tube, with inner wall coated with materials of refractive index greater
than one (n>1) as shown in Figure 7 [48]. In ATRs, the walls are made of alternating dielectric layers,
exploiting the photonic bandgap, which gives a frequency-dependent refractive index contrast [49].
The dielectric layer acts as an optical stop band in the radial direction, and the radiation is propagated
only in the axial direction for a selected range of frequencies [50]. The LM waveguides are composed
of structural tubes of silica, metal, sapphire, or plastics with a reflective coating on the interior walls
of the hollow core. The radiation is propagated by metallic reflection inside the coaxial hollow core.
Some of the common reflective metals for the propagation of radiation, from mid-IR to deep UV are
silver, gold, aluminum, and dielectrics. In this type of waveguide, the metallic coating is often covered
with dielectric coating for chemical inertness of the coating. The coating is applied using chemical
vapor deposition or liquid coating methods [51].
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ATRs have limited applications due to the properties (refractive index, absorption band, etc.)
of compatibility of material for different frequencies and offer a narrow transparent window. LM
waveguide, on the other hand, can transmit broadband of wavelength, from mid-IR to deep UV
radiations and have relatively simple fabrication process. These types of HCWs have been applied
as IR gas cells for detection of several gases. For instance, Kim et al. used silver/silver-halide coated
HCW for detection of industrial relevant gases, i.e., CO2, CH4, and C2H5Cl and their mixture [52].
Leaky mode HCWs have been applied for sensing of carbon monoxide [53], dimethyl sulphide [54],
and methane [55].

There is a demand for waveguides for a number of UV applications, for instance, spectrophotometry
and UV exposure in microfabrication. Optical fiber technology for UV transmission is not as developed
as for IR applications due to the incompatibility of different materials with UV. For example, glass and
silica-based materials are not transparent at low wavelength and materials such as fluorides are not
suited to optical fiber production. Due to these challenges, LM waveguides offer a suitable and simpler
option for UV absorption spectrometry. In such waveguides, the optical transmission depends upon
the metallic or dielectric coating deposited on the inner wall of the metal, polymer, or glass tubing. In
addition to that, the size and geometry of the HCW affect the efficiency of light transmission. HCWs
with smaller diameters exhibit higher attenuation [56],

α

[
dB
m

]
∝

1
a3 (6)

where α represents the attenuation in dB-m−1 and a represents the inner radius of HCW. The orientation
of the HCW also affect the attenuation as the optical losses LHCW increases with the bending radius (R)
or curvature (C = 1/R) of the HCW,

LHCW [dB] ∝ C. (7)

The coupling efficiency is also critical and is related to maximum acceptance angle, i.e.,
N.A = Sin(θmax) where N.A is the numerical aperture. Therefore, for the design of an efficient
portable gas sensing system, the trade-off between the optical efficiency, size, and geometry of the
HCW must be considered. For establishing a constant pressure drop across the HCW, a pressure
controller is usually employed, for example a forward-pressure controller installed at the end of HCW
is a suitable option for easier fluidic connections.

Aluminum-based ATR HCW exhibited excellent low transmissions losses in the UV to near
infrared radiations (i.e., 200 to 800 nm). Matsuura et al. [57] developed a leaky mode hollow-core
optical fiber for UV and vacuum UV applications. Different coating materials were characterized,
as shown in Figure 8a. The aluminum-coated fiber showed low losses compared to silver in the UV
range of wavelengths. A transmission-loss spectrum of the aluminum HCW with an inner diameter of
1 mm for different length is shown in Figure 8b [58]. It can be observed from the figure that losses
do not change linearly with the HCW length because there exist low-order modes and attenuation of
high-order mode in long fibers.
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The compatibility of the coating material of the HCW with the gas mixture can also influence
optical transmission performance. For example, when using aluminum HCW, humidity should be
well-controlled prior to flushing the gas. Water molecules are adsorbed on the surface of the aluminum,
thereby changes the reflectivity of the surface. In order to address this issue, the instalment of Nafion
tubing to trap humidity prior the gas stream injection into the detection cell and quartz lining of the
aluminum tubes avoiding any surface oxidation can minimize the effect of humidity [59].

4.2. Challenges and the Latest Advancement

For a compact IR spectrophotometer, substrate-integrated hollow-core waveguides (i-HCW) have
been developed to achieve longer optical path lengths on a small footprint area. i-HCWs are layered
structures integrated with a solid-state material providing a light propagating channel in a compact
volume as shown in Figure 9. i-HCW can be tailored according to a specific gas requirement and
can be fabricated using cost-effective processes such as hot embossing or 3D printing. This type
of HCWs (i.e., i-HCWs) have been applied for IR spectroscopy to detect several gases, for example
NO2 [60], Ozone [61], methane [62,63], and isoprene [64]. Wilk et al. [65] demonstrated, such an HCW
with 75 mm × 50 mm (L ×W) to realize an optical path length of 22 cm. The device demonstrated
a spectroscopic gas detection of butane, CO2, cyclopropane, isobutylene, and methane with limit of
detection in the range of 6 to 11 ppmv. The application of iHCW for deep UV has not been reported, but
this type of HCWs have a tremendous potential to be extended to deep UV absorption spectrometry
by carefully considering the compatible materials.
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Recently a novel HCW design was developed by Yang et al. [66] made from two planar, parallel,
silicon-on-insulator wafers with subwavelength gratings for IR applications. The design shown in
Figure 10 has a distinct advantage of efficiently guiding light (optical losses 0.37 dB/cm) without
sidewalls for a 9 µm waveguide length, which allows the inflow and outflow of gases from the
side. This design is suitable for microdevice to achieve a good interaction between the radiation and
gas molecules.
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5. UV Photodetectors

5.1. General Overview

An ideal UV photodetector features high sensitivity, excellent photocurrent, or voltage linearity
with incident optical power, high spectral selectivity with excellent visible rejection, good quantum
efficiency, low noise (dark current), and long life (low UV ageing). Most of the sensors available
for UV applications are based on the photoelectric effect, where material absorbs light and emits
electrons. The different UV detector types and their classification are summarized in Figure 11 [67,68].
In photoemissive UV detectors, a solid surface emits an electron into a vacuum upon striking by photon
as illustrated in Figure 12. A photomultiplier tube (PMT) is an example of a photoemissive detector.
Primary photoelectrons are multiplied into secondary electron emission to produce a large cloud or
gain of electrons [67]. In a semiconductor-based photodetector, the photon generates an electron-hole
pair which are separated by an electric field as represented in Figure 12. The photon excites the electrons
into the conduction band of the semiconductor. In case of the photovoltaic detector, the electron-pair is
separated by the electric field of p-n junction or Schottky barrier, which leads to an external photocurrent
proportional to the number of striking photons. In this type of detectors, the incident light causes a
voltage to appear at the p-n junction while in a photoconductive detector, the incident light changes the
internal resistance. The photovoltaic detector is commonly used for UV detection and is classified into
Schottky barrier type, metal-semiconductor-metal (MSM) type, o-n junction type, and p-i-n junction
type. The advantage and disadvantages of different kinds of photovoltaic detector are summarized in
Table 3 [67–70]. For detail of each type of detector, the interested reader can refer to review articles
published by Razeghi et al. [67], Shi et al. [68], Zou et al. [69], and Monroy et al. [70].
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Table 3. Advantages and disadvantages of photovoltaic UV detectors [67–70].

Photodetector Advantages Disadvantages

Photoconductor Simple design, easy process
control, high gain

Large dark current, slow time
response

Schottky UV detector
Low dark current, quick time
response, high sensitivity, and
quantum efficiency

Higher absorption losses,
shallow-semiconductor contact

p-n and p-i-n detectors

Fast time response, high
impedance, low dark current, low
bias operation, high-frequency
operation, easier fabrication

The response is dependent on the
dopant used which impairs the
spectral response

Metal-semiconductor-metal (MSM)
Fast time response, minimally
affected by bias, simple fabrication
process, low cost, easy integration

Lower gain and spectral response

A PMT is a versatile, sensitive, and ultra-fast response device. It has a large detection area and can
detect low-intensity levels of light. A typical PMT is made of a photo-emissive cathode (photocathode),
focusing electrodes, an electrons multiplier, and electron collector (anode) enclosed in a vacuum
chamber, as shown in Figure 13. The photoelectrons generated in the vacuum are accelerated and
focused into dynodes. The electrons are then multiplied by the emission of secondary electrons by the
successive dynodes until detected by the anode. The major disadvantages of PMT are low quantum
efficiency and ageing effects.
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A photodetector is usually selected according to the UV source, cut-off wavelength., and the design
of optical and fluidic connections. The cut-off wavelength is the longest wavelength that the detector
can detect. Dark current is critical in selecting a detector as it deteriorates the output signal-to-noise
ratio of the photodetector and is generated in the detector in the absence of the radiation. The following
relationships are useful for selecting a photodetector according to the specific requirements. The
photocurrent generated is given by

I =
∫ λ2

λ1
AchipSchip(λ) E(λ) dλ (8)

where I is the photocurrent in Amperes, Achip is an active area of the chip in m2, Schip(λ) is the chip
spectral sensitivity in A-W−1-nm−1 at the given λ, and E(λ) is the spectral irradiance of the UV light
source in W-m−2. Equation (8) can be written in a simple form by assuming a constant value of S and E.

I = Achip Schip(λ) E(λ) (9)

The values of S can be obtained from manufacturer datasheet, usually its value is 0.1 A/W for SiC
photodiodes, while E depends on the source employed. The current generated is usually in the range
of nano-Ampere and an amplifier like trans-impedance is needed to obtain a measurable signal.

5.2. Challenges and the Latest Advancement

Initially, narrow bandgap semiconductors were used for UV photodetectors, for example, silicon
or III-V group compounds (for example gallium phosphide (GaP), gallium arsenide (GaAs)). For such
materials, optical and interference filters were installed for spectral-range selectivity and to avoid
material degradation [71]. These devices are sensitive to low-energy radiation and must be cooled for
high-sensitive applications to minimize the effects of the dark current [67–70]. These devices also face
an issue of ageing effect when exposed to radiation higher than their bandgap [72]. UV photodetectors
based on wide bandgap (silicon carbide (SiC), gallium nitride (GaN), and aluminum gallium nitride
(AlGaN)) work at room temperature and offer intrinsic blindness to visible wavelengths. They can
operate even at high temperature and high power due to their high strength of chemical bonds and
high thermal conductivity. There is no need of external filter to realize the desired UV spectrum even
in the presence of high intense visible or infrared light. For example, Si-photodiodes are usually
employed with an interference filter to achieve a monochromatic light with a narrow FWHM of 10
nm to minimize the effects of stray light. An example of a Si-photodiode photosensitivity spectrum is
shown in Figure 14.
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SiC-based photodetectors are considered to be the most efficient UV photodetectors, for a
wavelength range of 200 to 300 nm [72]. SiC-based photodiodes have visible-blindness (non-responsive
towards visible range wavelengths i.e., 300 nm to 700 nm), low dark current, wide bandgap, high break
down the electric field, fast response time, high thermal conductivity, and low thermal expansion.
All these characteristics make them a suitable candidate for high temperature and radiation-resistant
applications. Example of SiC-based photodiodes developed by Sglux exhibits relative narrow spectral
response as shown in Figure 15.
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6. Applications of Deep-UV Absorption Spectrophotometry

UV spectrophotometry has been applied for detection of several molecules, which are of industrial
and domestic significance. For example, ozone, NO2, SO2, benzene, toluene, ethylbenzene, and xylenes
show strong absorption in deep UV range as shown in Figure 1. Table 4 summarizes the airborne
guidelines values of the above-mentioned species found in the literature. During the last few decades
advancement in optoelectronics and optofluidics have led to the development of UV devices (i.e., LEDs
and photodetectors) which are portable, high-sensitive, and cost-effective. Different approaches have
been adapted to realize portable, sensitive, and selective sensors. In the following section, application
of UV absorption spectrometry is discussed for detection of ozone, NO2, SO2, and BTEX. The different
techniques and their analytical performance are compared by using sensitivity, limit of detection, time
response, and the instrumentation used are summarized in Table 5.
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Table 4. Different exposure limits recommended by different organization.

Molecules
NIOSH-Recommended

Exposure Limit
(ppm) a

OSHA
-Permissible

Exposure Limit
(ppm) b

ACGIH-Threshold
Limit Value (ppm)

c

ANSES (VGAI)
France-Long

Exposure (ppm) d

Ozone 0.1 0.1 0.05–0.2 e -

NO2 1 5 0.2 -

SO2 2 [TWA] 5 0.25 -

Benzene 0.1 1 0.5 0.0006

Toluene 100 200 20 5.31

Ethylbenzene 10 10 10 0.345

Xylene(m-,o-,p-) 100 100 100 -
a National Institute of Occupational Safety and Health (NIOSH)-recommended exposure limit is an exposure for 8 or
10-h time weighted-average(TWA); b Occupational Safety and Health Administration (OSHA) permissible exposure
limit are expressed as a time-weighted average; the concentration of a substance to which most workers can be
exposed without adverse effect averaged over a normal 8-h workday or a 40-h workweek; c American Conference of
Governmental and Industrial Hygienists (ACGIH) threshold limit value are expressed as a time-weighted average;
the concentration of a substance to which most workers can be exposed without adverse effects; d National Agency
for Food Safety, Environment and Labor (ANSES) Interior Air Quality Guide Values (VGAI) France; e Depend on
time and workload.

6.1. Ozone

Ozone or trioxide (O3) is a significant atmospheric trace gas, which occurs in the troposphere and
stratosphere. It is a toxic, unstable gas with strong oxidizing properties, and is colorless with a pungent
odor. In the stratosphere, it protects the biosphere from harmful UV radiation from the sun while in
troposphere it plays a vital role in atmospheric oxidation. In the lower troposphere, ozone is a pollutant
and is detrimental to the ecosystem [74] and to human health [75]. In industry, it is used as an oxidizing
agent in chemical reaction and bleaching applications. In the past, it was used as disinfection in the
food industry or water purification. Ozone is also generated by the electric discharge in the air, which
can be utilized as an indicator for the malfunctioning of electronic devices [76]. Different organizations,
for instance, National Institute of Occupational Safety and Health (NIOSH) and Occupational Safety
and Health Administration (OSHA) have established exposure limits of 0.1 ppm for ozone [77]. In
order to detect ozone at such low concentration, different UV absorption spectroscopic approaches
have been adapted by exploiting its absorption band in wavelength (245–320 nm) as displayed in
Figure 1.

Maria et al. [76] developed an ozone monitor using a gas cell of length 400 mm with a retro-reflector
to realize a longer optical path (~2 × 400 mm) by the back reflection of a light beam as shown in
Figure 16a. A broadband UV source DH2000 (190–2500 nm) and spectrometer with filters were
employed as a source and a detector, respectively, to achieve a peak wavelength of 300 nm with FWHM
values of 40 nm. The UV source and detector were placed at one side and reflectometer on the opposite
side. The linearity of 0.1–10 ppm with a limit of detection (LOD) of 0.1 ppm was achieved, as shown in
Figure 16b,c. The LOD was limited by the reflectometer employed.
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the other side. (b) Variation of the signal for 0.25 ppm change of ozone concentration. (c) Calibration
curve obtained for different ozone concentrations in the range 0.2–10 ppm [76].

Anderson et al. [59] developed a portable ozone monitor using aluminum coated with quartz as a
hollow core waveguide of length 15 cm, as shown in Figure 17a. A low-pressure mercury lamp and
photodiode (λcenter = 254 nm) with an interference filter were used as a source and detector, respectively.
Ozone scrubber and Nafion tubes were installed as a filter, to avoid the noise of UV absorbing species
and humidity, respectively. Good sensitivity with a precision of ≤2 ppb with a limit of detection
(S/N = 3) of 4.5 ppb was reported. The sensor reported has good portability (size, 10 cm × 7.6 cm ×
3.8 cm: weight, 0.3 kg) with a robust performance at different humidity, temperature, vibration, and
physical orientation.Sensors 2019, 19, x FOR PEER REVIEW 17 of 31 
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Figure 17. (a) The experimental setup with lamp and photodiode as a source and detector, respectively,
with mirrors at the corners. Aluminum coated with Quartz was employed as a gas cell. (b) Calibration
curve for different concentration of ozone. Adapted with permission from [59], copyright 2019 American
Chemical Society.

An Ozone sensor was developed by Kalnajs and Avallone [78] for stratospheric ballooning
applications. A UV LED (λ = 254 nm) was used as a source and integrated with a feedback photodiode
and a thermistor to compensate for the variation of light intensity and temperature. Teflon tubes were
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installed as a gas cell with an optical path length of 48.8 cm and a diameter of 6 mm, as shown in
Figure 18. SiC photodiodes were used as a detector. The effective area of the photodiode was increased
by using a lens, from 1 to 11 mm2 without introducing extra noise and parasitic capacitance.
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Figure 18. Experimental setup showing the optical and fluidics configuration of the ozone sensor [78].

Guiwen et al. [79] obtained an ozone detector with a resolution of 5 ppb for printing process
applications. Ozone was detected with linearity and resolution of 0–156 ppb and 5 ppb, respectively,
as shown in Figure 19. A mercury capillary lamp with a temperature control was employed using a
quartz gas cell (length 28 cm) with photodiodes as a detector. The absorption distance/optical path
length was increased by coating one side of the gas cell with reflective material to realize a two-way
optical path. A second photodiode with a reduction lens was installed in front of a lamp and used as a
reference measurement to avoid the emission drifts and to get a stable signal. The drift was decreased
to 10 ppb per hour from 100 ppb per hour by matching the radiation intensity at the photodiode and
the electronic circuit amplification.Sensors 2019, 19, x FOR PEER REVIEW 18 of 31 
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Aoyagi et al. [80] developed an ozone sensor using LED (peak wavelength, 280 nm) and detected
ozone down to 0.1 ppm with an accuracy of 0.5% using a gas cell of 20 cm as shown in Figure 20. LED
was fabricated using AlGaN using coated with organic chemical vapor epitaxy crystal growth.
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6.2. Nitric Oxide (NO2) and Sulfur Dioxide (SO2)

NO2 is one of the harmful air pollutants and is reddish-brown with an acrid, pungent odor. The
primary sources of generation are from fossil fuels [81], automobile exhausts, and by microorganism
during the process of nitrogen fixation for agriculture fertilization [82]. Exposure to NO2 can cause
inflammation of respiratory air tracts and can damage the lungs upon long exposure [83]. It plays a role
in the formation of ground-level ozone, fine particulate matter, and acid rain [84]. The exposure limit of
5 ppm is defined by OSHA for NO2. SO2 is a colorless highly toxic gas with a strong irritating pungent
odor. It is highly reactive gas create sulphuric acid when mixed with water, which is corrosive, can
cause chemical burns and acid rains. OSHA designated the PEL for SO2 to be only 5 ppm. Its sources
of generation are fossils fuels, automobile exhausts, boiler and refineries, and active volcanos [85]. It
can harm eyes, lungs, and throat upon exposure [86].

Hawe et al. [87] developed a multipass absorption cell (spherical absorption cavity) for gas
detection in visible and UV range. The gas cell was tested for NO2 and SO2 using broadband light as a
source (Deuterium/halogen lamp) and spectrometer as a detector. The setup was also tested using
LED and photodiode, respectively, for detecting NO2. A spherical gas cell with a diameter of 5 cm
had an effective optical path length of 40–55 cm, was tested as represented in Figure 21. NO2 and SO2

down to 4 ppm and 11 ppm were detected with a response time of 4 s and 2 s, respectively. The same
group [88] developed a LED-based sensor for SO2 and NO2 detection shown in Figure 22. Absorption
gas cell and reflection gas cell with an optical path length of 20 cm and 8 cm, respectively, were tested.

Based on absorption spectra of ozone given in Figure 1, LEDs with a peak wavelength of 255 nm,
285 nm, 320 nm, 405 nm, and 590 nm were used for detecting SO2 and NO2 with a high resolution
of 1 ppm over a wide measurement range up to 1000 ppm and temporal dynamic range up to
10 ms. The setup was extended to detect ozone employing LED with a peak wavelength of 255 nm.
The schematic of the setup is shown in Figure 23 [89]. Dynamic ranges of sub-ppb up to 10 ppm and
10 ppb to 100 ppm for absorption cell of 40 cm and 4 cm, respectively, has been reported.
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6.3. BTEX

Benzene, toluene, ethylbenzene, and xylene (BTEX) are aromatic hydrocarbons and are some of
the hazardous pollutants among VOCs. BTEX can be found in both indoor and outdoor environments
and occur typically at high concentration in indoor spaces [90]. The common sources of generation
of BTEX are coal burning, cigarette smoking, combustion and cleaning products, 3D printing, floor
adhesives, paint, wood paneling, and traffic emissions [91–93]. Exposure to BTEX is considered one
of the reasons for sick building syndrome [94]. Benzene is particularly toxic and acute occupational
exposure to benzene can cause narcosis, headache, dizziness, drowsiness, confusion, tremor, and loss
of consciousness [95–97]. The International Agency for Research on Cancer has identified benzene
as carcinogenic to humans [98]. Exposure to toluene can influence the central nervous system, liver,
kidney, and skin [99]. Exposure to xylene at a low level is associated with nervous system problems,
fatigue, tremor, respiratory, kidney, and cardiovascular-related problems [100]. Due to the harmful
nature of these molecules, there are stringent regulations for exposure limits to these gases. The
established exposure limits for these air-borne pollutants by NIOSH and OSHA in the range from 100
ppb (for benzene) to 100 ppm (for toluene) as summarized in Table 4 [77].
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A synergic microfluidics approach was demonstrated by Ueno et al. [101] for BTEX detection using
a UV absorption spectrometer with a pre-concentration unit. The pre-concentrator was composed of a
microfluidic channel packed with an adsorbent, which traps BTEX molecules when air passes through
and desorbs thermally (250 ◦C) using a heater at the bottom of the channel as shown in Figure 24. The
collected molecules from the concentrator were analyzed in the optical cell, which was linked with a
UV source (D2 lamp) and spectrometer. An aluminum gas cell with an effective optical path length
of 20 mm was employed, and a significant 25-fold improvement was achieved. Detection limits of 4
ppm and 100 ppm were recorded for toluene with and without a pre-concentrator, respectively. The
performance of the detector was enhanced by optimizing the geometry of the pre-concentrator and
by inserting an air-cooled cold trap in-between the pre-concentrator and optical gas cell, as shown in
Figure 25 [102]. The air-cooled cold trap maintains the molecules together and prevents the dilution
of the desorbed molecules. An 80-fold reduction in limit of detection was reported, i.e., 0.05 ppm.
The air-cooled traps were installed to prevent dilution of desorbed gas molecules. The structural
change (wider channel) and cold trap contributed 4-fold and 20-fold reductions in limit of detection,
respectively. BTEX molecules have close peak absorbance wavelengths, and the differentiation of the
molecules is difficult. However, using µGC for separating each molecule before detection cell can help
in identification of each molecule.
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Generally, gas sensor sensitivity can be enhanced by employing a concentration unit before the
detection cell, often called pre-concentrator. The sample gas can be enriched by collecting the molecules
from the carrier gas into the adsorbent over a period referred to as the concentration time. The collected
molecules are then released instantaneously using a thermal heater. The release of molecules at a small
volume and short time leads to 103–105 folds amplification of concentration level at the cost of longer
response time [103–105].

A further improvement in performance was reported by replacing the detection cell with a
platinum-coated cell (length, 2 cm) and the pre-concentrator packed with meso-silicates adsorbent [106].
The system demonstrated good sensitivity and linearity (10–100 ppb), and a limit of detection of
10 ppb was reported for benzene. The prototype was extended for the detection of aqueous BTX
molecules [103]. Two intermediate modules were added for extraction from the aqueous phase to the
gaseous phase and passive drying process as shown in Figure 26.

Sensors 2019, 19, x FOR PEER REVIEW 21 of 31 

 

 
Figure 25. Pre-concentration cell with air-cooled air trap. Adapted with permission from [102], 
copyright 2019 American Chemical Society. 

A further improvement in performance was reported by replacing the detection cell with a 
platinum-coated cell (length, 2 cm) and the pre-concentrator packed with meso-silicates adsorbent 
[106]. The system demonstrated good sensitivity and linearity (10–100 ppb), and a limit of detection 
of 10 ppb was reported for benzene. The prototype was extended for the detection of aqueous BTX 
molecules [103]. Two intermediate modules were added for extraction from the aqueous phase to the 
gaseous phase and passive drying process as shown in Figure 26. 

 
Figure 26. Setup for the detection of aqueous benzene [103]. 

Eckhardth et al. [107] used an aluminum-coated HCW (length,1 m and diameter, 1 mm) with a 
30 W deuterium lamp for analyzing the absorption spectrum of SO2. The UV absorption of SO2 was 
compared with its IR absorption. A CCD-based spectrometer was used with a spectral resolution of 
0.01 nm in the wavelength range 175 to 210 nm. SO2 concentration of 1.1 ppm was first analyzed, and 
it was found that SO2 absorbs stronger (10 times approx.) in UV range compared to IR. The system 
was then tested to measure the absorbance of ammonia and nitric oxide of 1.1 ppm in the wavelength 
range of 185 to 205 nm [108–110]. The system sensitivity and selectivity were enhanced by coupling 
the prototype with GC (length 25 m, diameter 0.32 mm) as given in Figure 27a [108]. A mixture of 
compounds (Ethylbenzene, bromobenzene, cis-decahydronaphtalene, trans-decahydronaphtalene, 
Buthyrophenone, diphenylsulfoxide, carbon disulphide) with close retention time was tested, 
spectrum was recorded in the time domain for wavelength range 170–320 nm, and all the compounds 
were distinctively separated as represented in Figure 27b. 

Figure 26. Setup for the detection of aqueous benzene [103].

Eckhardth et al. [107] used an aluminum-coated HCW (length,1 m and diameter, 1 mm) with a
30 W deuterium lamp for analyzing the absorption spectrum of SO2. The UV absorption of SO2 was
compared with its IR absorption. A CCD-based spectrometer was used with a spectral resolution of
0.01 nm in the wavelength range 175 to 210 nm. SO2 concentration of 1.1 ppm was first analyzed, and
it was found that SO2 absorbs stronger (10 times approx.) in UV range compared to IR. The system
was then tested to measure the absorbance of ammonia and nitric oxide of 1.1 ppm in the wavelength
range of 185 to 205 nm [108–110]. The system sensitivity and selectivity were enhanced by coupling
the prototype with GC (length 25 m, diameter 0.32 mm) as given in Figure 27a [108]. A mixture of
compounds (Ethylbenzene, bromobenzene, cis-decahydronaphtalene, trans-decahydronaphtalene,
Buthyrophenone, diphenylsulfoxide, carbon disulphide) with close retention time was tested, spectrum
was recorded in the time domain for wavelength range 170–320 nm, and all the compounds were
distinctively separated as represented in Figure 27b.



Sensors 2019, 19, 5210 23 of 31

Table 5. Comparison of different deep-UV absorption spectrometry for ozone, NO2, SO2, and BTEX.

S.
No.

Molecules Detected Source
Peak
Wave

Length

Detector Gas Cell (Materials)
Optical Path

Length
Characterization

Remarks Ref.

Limit of Detection Sensitivity
(µAU/ppm) Linearity Time Response

1 BTEX Deep UV LED 260 nm Photodiode Aluminum 40 cm

Benzene = 1.2 ppm
Toluene = 658 ppb
Ethyl-Benzene = 612 ppb
O-Xylene = 600 ppb
m-Xylene = 607 ppb
p-Xylene = 457 ppb

Benzene -62
Toluene -152
Ethylbenzene-166
Xylene(-o)-185
m-Xylene(-m)-169
p-Xylene(-p) -235

934 ppb-60 ppm fast Good reproducibility of RSD 2%.
Carrier gas: N2

[111]

2 Toluene Deep UV LED 260 nm spectrometer
Aluminum and glass
HCW with aluminum
coatings

25 cm 8.1 ppm 200 10–100 ppm -
Good
RSD 2.5%.
Carrier gas: N2

[24]

3

SO2, NO2, Ammonia, Ethyl benzene,
bromobenzene,
cis-decahydronaphtalene,
trans-decahydronaphtalene,
Buthyrophenone, diphenylsulfoxide,
carbon disulphide

Deuterium lamp 175–210
nm spectrometer Aluminum-coated silica

HCW 1 m 1.1 ppm of SO2 was
analyzed - - - UV and IR absorption were compared.

Carrier gas: N2

[107]
[110]
[108]

4 BTX UV D2 lamp 230–270
nm UV spectrometer Pyrex wafer with

Platinum coating 2 cm 4 ppm for toluene - -

20 sec for
detection cell
(The total
analysis time is
different and
depend on the
pre-
concentration
time)

Microfluidics-based device.
Pre-concentrator enhanced the LOD
from 4 ppm to 100 ppm for toluene.
Carrier gas: N2

[101]

5 BTX UV D2 lamp 230–270
nm UV spectrometer Pyrex wafer with the

Platinum coating 2 cm 0.05 ppm for toluene - - Sampling time 30
min

Air-cooled traps were placed to avoid
adsorbed gases dilution.
Carrier gas: N2

[102]

6 BTX UV D2 lamp 230–270
nm UV spectrometer

Channel in glass
substrate with platinum
coating

2 cm 10 ppb for benzene - 10–100 ppb 50 min total
sampling time

Several parameters were optimized to
enhance the LOD to 10 ppb.
Carrier gas: N2

[106]

7 Ozone Deuterium lamp Wavelength
range

Spectrometer
with filter

PTFE
(Polytetrafluoroethylene) 40 cm 0.1 ppm 0.1–10 ppm

The optical path was increased by
using a reflector on one side.
Carrier gas: Air

[76]

8 Ozone Low -pressure Hg
lamp 255 nm

Photodiode with
an interference
filter

Aluminum with Quartz
lining 15 cm

Precision is less than 2
ppb
LOD 4.5 ppb

- - 10 s

The device is small in size with low
power consumption.
Carrier gas: Air.
Nafion tubes were installed to remove
humidity from the air.

[59]

9 Ozone LED 280 nm AlGaN detector - 20 cm 0.1 ppm - 0–1 ppm form
plot - Photodiodes were discussed in detail. [80]

10 Ozone LED 254 nm SiC photdiodes Teflon tubes 48.8 cm - - - - Optoelectronics and data acquisition
were discussed in detail [78]

11 Ozone LED 255 nm photodiode Aluminum 40 cm and 4 cm Sub ppb to 100 ppm - - - -
Carrier gas: Air [89]

12 NO2, SO2
Deuterium/halogen
lamp and LED

Spectrometer and
photodiode

Multi-pass spherical gas
absorption

40–50 cm
(Effective
optical path
length)

4 ppm NO2
11 ppm SO2

NA 0–50 ppm 2–4 sec
Integrating sphere (multi-pass gas
cell) was tested.
Carrier gas: N2

[87]

13 NO2, SO2 LED

255 nm,
285 nm,
320 nm,
405 nm
and
590 nm

photodiode Aluminum 20 cm and 8 cm Resolution 1 ppm Up to 100 ppm 10 ms Carrier gas: N2 [88]
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Bui et al. [111] developed a self-referenced photometer using a UV LED and photodiodes for the 
direct detection of BTEX molecules. Aluminum HCW (length, 40 cm and Inner diameter, 2 mm) was 
employed as a gas cell with UV LED (λ, 260 nm) and photodiodes coupled via optical fiber. The 
absorption values were directly recorded by using integrated circuit log-ratio amplifier converting 
the reference and test photocurrent into voltage values, as shown in Figure 28a. A sensitivity of 235 
µAU/ppm (LOD, 0.5 ppm) and 62 µAU/ppm was recorded for p-xylene and benzene, respectively, 
with excellent reproducibility (relative standard deviation < 2.3%) and linearity in the range 0.5–110 
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Figure 27. (a) Schematic of the experimental setup with Gas Chromatography. (b) Chromatograph
obtained for different molecules (red line represents a magnified version (8 times) of the
chromatogram) [108–110].

Bui et al. [111] developed a self-referenced photometer using a UV LED and photodiodes for
the direct detection of BTEX molecules. Aluminum HCW (length, 40 cm and Inner diameter, 2 mm)
was employed as a gas cell with UV LED (λ, 260 nm) and photodiodes coupled via optical fiber. The
absorption values were directly recorded by using integrated circuit log-ratio amplifier converting
the reference and test photocurrent into voltage values, as shown in Figure 28a. A sensitivity of
235 µAU/ppm (LOD, 0.5 ppm) and 62 µAU/ppm was recorded for p-xylene and benzene, respectively,
with excellent reproducibility (relative standard deviation < 2.3%) and linearity in the range 0.5–110 ppm
(R2 = 0.999).
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cells. A fiber-coupled deep UV-LED was used as a source and a mini-spectrometer as a detector with 
3D printed connectors, as shown in Figure 29a. The performance of the two types of HCWs was 
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Khan et al. [24] demonstrated a simple toluene detector using a glass and aluminum-based gas
cells. A fiber-coupled deep UV-LED was used as a source and a mini-spectrometer as a detector with
3D printed connectors, as shown in Figure 29a. The performance of the two types of HCWs was
investigated and compared. A limit of detection of 8.15 ppm and 12.45 ppm was reported, with good
repeatability and linearity, as shown in Figure 29b.
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7. Conclusions and Outlook

There are several molecules of environmental and domestic significance, which show strong
deep-UV absorption. This intrinsic property can be exploited for the development of a gas sensor
using absorbance measurement at a specific wavelengths range. UV absorption spectrophotometry
provides a sensitive, reliable, self-referenced, and selective approach for gas sensors development.
Recently, portable and efficient UV optoelectronic and optofluidics components have been developed,
for example LEDs, HCWs, and photodiodes. These portable devices can be utilized to develop a
portable deep-UV absorption spectrophotometer, which can rival the analytical performance of a
lab-based deep-UV absorption spectrophotometer.

LEDs offer a stable, efficient, portable, and a narrow emission-band UV source for analytical
applications with ease of alignment, low cost, and enhanced lifetime. The challenges faced by deep-UV
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LEDs are the need for a highly stable power supply source, low power emission, and their susceptibility
to thermal fluctuation. Advances in nitride semiconductors have pushed LEDs into the UV-C band
with improved power (1.5 mW) and low parasitic emission, however thermal-induced noise issue
is still present. A constant power supply, a well-designed thermal management, and self-reference
scheme can minimize this noise and can enhance the stability and intensity of the output signal.
Aluminum-based HCWs are an attractive option to be employed as a gas cell due to their efficient UV
transmission, ease of alignment, and fabrication process. However, size of the gas cell is a bottleneck
for a portable UV spectrophotometer. Recently, the newly developed i-HCWs can be used as a gas
cell, which has a smaller footprint area with a longer optical path, easier integration, and simpler
fabrication process. Such i-HCW have not been reported for deep-UV application, however the design
has a tremendous potential to be used as a gas cell with a longer optical path on a smaller footprint
area for improved sensitivity and portability. The desired features of UV photodetectors for analytical
applications are spectral selectivity with visible rejection, minimal dark current, linearity, and resistance
against UV-aging. Among the different UV photodetectors, SiC photodiodes have shown excellent
performances for a narrow beam of UV radiations (FWHM ~10 nm) without the use of any spatial filters
and can be easily coupled via optical with other components. A well-designed UV spectrophotometer
based on LEDs, HCWs, and photodiodes can rival the analytical performance of detectors based on
conventional UV lamps and commercial spectrometers.

This review covers the latest advancement in the domain of UV absorption spectrophotometry
and its application for gas sensing. New developments are emerging in the domain of optoelectronics,
optofluidics, and material science, which would push the frontiers of this multidisciplinary area.
This study provides useful guidelines for deep UV absorption spectrophotometry that are not only
applicable for gas sensing, but also for analytes detection in liquid media, for instance, HPLC.
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