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Abstract One of the most powerful strategies to

investigate biology we have as scientists, is the ability

to transfer genetic material in a controlled and

deliberate manner between organisms. When applied

to livestock, applications worthy of commercial

venture can be devised. Although initial methods used

to generate transgenic livestock resulted in random

transgene insertion, the development of SCNT tech-

nology enabled homologous recombination gene tar-

geting strategies to be used in livestock. Much has

been accomplished using this approach. However,

nowwe have the ability to change a specific base in the

genome without leaving any other DNAmark, with no

need for a transgene. With the advent of the genome

editors this is now possible and like other significant

technological leaps, the result is an even greater

diversity of possible applications. Indeed, in merely

5 years, these ‘molecular scissors’ have enabled the

production of more than 300 differently edited pigs,

cattle, sheep and goats. The advent of genome editors

has brought genetic engineering of livestock to a

position where industry, the public and politicians are

all eager to see real use of genetically engineered

livestock to address societal needs. Since the first

transgenic livestock reported just over three decades

ago the field of livestock biotechnology has come a

long way—but the most exciting period is just starting.
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Introduction

Biology has many facets and our ability to utilize

novel biological pathways increases every year. As

scientists we strive to develop tools and strategies to

help us tease apart biological process so we can better

understand them. To achieve this understanding,

biologists often turn to the powerful approach involv-

ing gene transfer enabling the consequence of alter-

ations in gene activity to be studied in vivo. Since the

first steps in the early 1970s involving the transfor-

mation of bacteria, the successful transfer of genes

into first mammals and then plants quickly followed,

with similar progress in fish and insects soon achieved.

The first transgenic livestock announced in the mid-

1980s (Hammer et al. 1985) followed the pioneering

work of Palmiter and Brinster in mice (Brinster et al.

1981). Since then we have come a long way, with an

explosion of activity in recent years.

The field of genetically engineered livestock has

been driven by technological advances. This 30 year
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journey started slowly, with pronuclear injection

(PNI) being the first tool in the kit (Hammer et al.

1985). Although conceptually simple—delivering

DNA by injection through a fine glass needle into

one of the pronuclei of a fertilised egg—this method is

technically demanding and those who could success-

fully accomplish it were given great respect by the

research community. PNI was king for the first decade

of transgenic livestock research, with the commercial

enterprises emerging on the back of this technique

focused on producing human biomedical proteins in

animal bioreactors (Jänne and Alhonen 1998; Kind

and Schnieke 2008). But it has limitations. Efficiency

of generating founder animals was low, and the

injected DNA construct integrated randomly into the

genome resulting in unpredictable transgene expres-

sion profiles. The field needed to progress.

Just over 10 years ago, oncoretroviruses were first

employed to produce transgenic livestock (Chan et al.

1998; Cabot et al. 2001). While harnessing the innate

ability of these replication defective viral vectors to

transduce the livestock zygote dramatically increased

the efficiency with which founder transgenic animals

could be created, it quickly became obvious that there

were issues with silencing of transgene expression in

subsequent generations. The move from oncoretro-

viruses such as MoMLV to lentiviruses increased the

transgenesis efficiencies further; Whitelaw et al.

(2004) used an EIAV-based virus encoding eGFP to

produce 40 founder piglets, 37 of which were trans-

genic and 35 of which expressed eGFP. Breeding from

a subset of these for four generations revealed no loss

of gene expression as assessed by visual GFP fluores-

cence and western blot for GFP protein (Whitelaw

et al. unpublished data), in contrast to other studies

with lentivirus transgenes where gene silencing was

observed as assessed by loss of GFP fluorescence and

DNA methylation (Hofmann et al. 2006). This

impressive efficiency has allowed lentiviruses to be

used to create a cohort of transgenic founder animals

to model human disease (Kostic et al. 2013). However,

viral vectors remain limited to a small cargo carrying

capacity (around 8 Kb for lentiviruses) and the fact

that they can only act as unidirectional delivery

vehicles. Offering comparable efficiencies, trans-

poson-based transgenesis (Carlson et al. 2011; Jakob-

sen et al. 2011) is less constrained with regard to

vector design and the vagaries of transgene silencing

(Ivics et al. 2014).

Gene targeting by homologous recombination

Those working on transgenic livestock looked around

to see what was being achieved in other mammalian

species. In particular attention was drawn to what was

technically possible in rodent research, where in

addition to random transgene integration through

pronuclear injection, the ability to perform gene

targeting was possible. Gene targeting is made possi-

ble through homologous recombination (HR) which

involves the exchange of nucleotides between two

similar or identical DNA sequences (Capecchi 1989).

In this way a gene can be targeted for disruption,

termed knockout (KO), or used as a docking site for

transgene insertion, termed knock in (KI)—this

achievement attracted the first of two Nobel Prizes in

this field.

HR in mammalian cells is an inefficient process, so

relied on inclusion of a selectable marker in the

construct to enable only the cells containing gene

targeted events to survive. Subsequently more elegant

strategies involving recombination-steps, driven for

example by Cre recombinase (Nagy et al. 2009),

enabled removal of the undesired marker gene. The

latter has also enabled targeting of a transgene to a

given genetic ‘harbour’, usually intended as a site

permissive for expression of the transgene (Bronson

et al. 1996; Wallace et al. 2000). The multiple steps

involved and the low targeting efficiencies achieved

meant that HR was not practical in zygotes; a cell-

based system was required and the mouse research

community had a very good one. Embryonic stem

cells (ESCs), derived from the preimplantation

embryo, have the ability to both self-renew and retain

pluripotential characteristics (Torres-Padilla and

Chambers 2014; Martello and Smith 2014). The first

property facilitates the lengthy process of gene

targeting while the latter allows the engineered cell

to contribute to the germline after transfer into the

early embryo (Capecchi 1989).

HR and ESCs transformed mouse-based research in

the 1980s and until recently formed the mainstay for

this research community, enabling the development of

huge and important research resources. The race was

on to achieve similar progress in livestock. But there

was a hurdle. Livestock ESCs had not and still have

not been isolated (Malaver-Ortega et al. 2012). For

reasons that remain a mystery no robust livestock

ESCs have ever been demonstrated, even though huge
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advances in our understanding of both rodent and

human ESC biology (Torres-Padilla and Chambers

2014) and the requirements for their maintenance in

culture has been achieved (Buehr et al. 2008). An

alternative method of producing ESC-like cells

through a process involving regression of differenti-

ated cells was developed in 2006 (Takahashi and

Yamanaka 2006). These induced pluripotent stem

cells (iPSC) can self-renew and like ESCs can

differentiate into many different cells types including

the germline but are not derived from the early

embryo. Again this development was pioneered in

mice—winning the second Nobel Prize in the field—

and was quickly transferred into human biology.

However, while there have been some limited suc-

cesses in livestock, iPSCs remain surprisingly difficult

to isolate and even harder to maintain (Telugu et al.

2011; Ezashi et al. 2012; Nowak-Imialek and Nie-

mann 2012).

Cloning first enabled gene targeting in livestock

Since robust pluripotent livestock cells have to-date

proven beyond reach, the livestock research commu-

nity had to come up with an alternative—which they

did in the mid-1990s. That alternative manifested in

the birth of Dolly the sheep (Wilmut et al. 1997). Next

year will be the 20th anniversary of Dolly and in these

intervening years considerable use of somatic cell

nuclear transfer (SCNT), more commonly referred to

as cloning, has been the method of choice for many

teams engaged with producing transgenic livestock

(Kues and Niemann 2011; Prather 2013; Wolf et al.

2014). SCNT utilises primary cells grown in culture.

During this in vitro phase manipulation of the donor

genome utilising methodologies based on HR can be

applied, with the selected transgenic cell then used to

reconstitute an enucleated oocyte. The resulting

transgenic animals are clones, derived from geneti-

cally identical parental cells. SCNT has enabled

transgenic livestock research to develop since the late

1990s. Nevertheless, even with technical advances to

simplify the technique such as handmade cloning

(Peura and Vajta 2003), SCNT remains technically

difficult and only a few labs around the world have

truly mastered it.

By the turn of the millennium we were able to do

gene addition, gene KO and gene KI—the latter two

only by SCNT—in livestock. Given the cost involved

in these studies, the need for SCNT and the complexity

of HR driven gene targeting, transgenic livestock

research has focussed primarily on biomedical appli-

cations. Here notable progress has been made in the

extent of resources now available for xenotransplan-

tation applications (Klymiuk et al. 2010; Satyananda

et al. 2013; Cooper et al. 2014) and the commercial

success of animal bioreactor derived products (Bösze

et al. 2008). Agricultural applications, however, have

lagged behind primarily due to concerns over public

acceptance of livestock containing transgenes in the

food chain.

The revolution that is genome editors

1996 was a watershed year for the generation of

engineered animals; not only did it include the birth of

Dolly but also the generation of the first programmable

nuclease (Kim et al. 1996). The former was trumpeted

loudly by the media with reverberations still echoing

around this field. It was over a decade for the latter to

emerge as the technical revolution it is. Nearly

20 years on we now have a variety of tools and

techniques at our disposal for the generation of

engineered livestock species. Until recently we have

only been able to dream of the ability to change a

specific base in the genome without leaving any other

DNA footprint; or the ability to induce precise

insertions or deletions easily and efficiently in the

germline of livestock. With the advent of the genome

editors this is now possible.

Designer nucleases are used to generate a double

strand break (DSB) at a desired genomic locus and can

be divided into two broad categories; synthetic and

natural. The first category includes the original zinc

finger nuclease (ZFN; Kim et al. 1996) and the newer

transcription activator like effector nuclease (TALEN;

Christian et al. 2010) both of which are modular

proteins containing an adaptable DNA binding domain

fused to the nuclease domain of FokI. In the case of

ZFNs each individual zinc finger binds three DNA

bases whereas each TAL repeat binds a single base.

Both ZFNs and TALENs are employed as pairs which

recognise opposing DNA strands and orientate such

that their fused FokI monomers are brought together

on the intervening sequence to form an active enzyme

dimer that cleaves both strands. In a refinement of this
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system the FokI monomers have been mutated such

that heterodimerisation is obligate for FokI cutting

(Miller et al. 2007; Doyon et al. 2011).

The second category includes meganucleases

(Smith et al. 2006) and the newest, and currently the

most popular of the designer nucleases, the clustered

regularly interspaced short palindromic repeat/

CRISPR associated gene (CRISPR/Cas) system (Cong

et al. 2013; Mali et al. 2013; Jinek et al. 2013). Uptake

of meganucleases by the livestock research commu-

nity has not been widespread, presumably due to the

laborious protein re-design and optimisation that is

required to repurpose these molecules to a novel DNA

sequence (Smith et al. 2006), however, effort to

develop this nuclease tool continues (Ménoret et al.

2013). In contrast, the CRISPR/Cas system, which was

first described just over 2 years ago, has seen an

unprecedented exponential increase in its use (Serug-

gia and Montoliu 2014). This relatively simple system

is adapted from an innate immune mechanism com-

mon to many bacteria and archaea, the function of

which is to protect against invading viruses. The most

widely used system at present is based on the CRISPR/

Cas9 of Streptococcus pyogenes and involves a short

guide RNA (sgRNA) sequence complexed with Cas9

nuclease. Specificity is determined by hybridisation

between the 20 ribonucleotides of the complexed

Cas9/guide and the nascent DNA target sequence,

further restricted to sites immediately proximal to a

protospacer adjacent motif (PAM) sequence (Cong

et al. 2013; Mali et al. 2013; Jinek et al. 2013).

Following generation of a DSB at the desired locus,

repair can occur in one of two ways; non-homologous

end joining (NHEJ) or homology dependent repair

(HDR; Fig. 1). In most cases of DSBs are repaired by

NHEJ, with the two ends of the break being brought

together and ligated. As a consequence of endogenous

nuclease activity at the cut site this process is error

prone and often results in the introduction small

insertions/deletions (indels) at the repair site (Kanaar

et al. 1998). Alternatively, if a repair template is

provided in trans, evoking HDR in addition to NHEJ,

the introduction of desired changes to the sequence at

the targeted locus can be achieved (Kanaar et al.

1998). Deletion of regions of the genome can be

achieved by generating of a pair of DSBs flanking the

region to be deleted and their subsequent repair by

NHEJ (Carlson et al. 2012; He et al. 2015b;Whitworth

et al. 2014; Fig. 2).

Nickases are modified nucleases that only cut one

strand of DNA, and mutagenesis of both FokI and

Cas9 has resulted in nickase versions of these

enzymes. By designing reagents such that staggered

nicks are created at the target site (e.g. 2 pairs of

ZFNickases), a DSB still occurs (Kim et al. 2012) and

is repaired by either NHEJ or HDR. One potential

advantage of this approach is that binding at off-target

sites results in a nick rather than a DSB, with

subsequent repair by the break excision repair (BER)

pathway which leaves no mark on the genome. It is too

early to know how useful the nickases strategy will be

given the reduced efficiency associated with this Cas9

variant but the theoretical promise of reduced off-

targets seems to be real (Ren et al. 2014; Frock et al.

2015).

So much achieved in such a short period of time

In the last 5 years, genome editors have been used to

mediate the generation of more than 300 edited pigs,

cattle, sheep and goats (Table 1). These animals can

potentially serve as organ donors (Hauschild et al.

2011; Li et al. 2015), disease models (Tan et al. 2013),

bioreactors (Liu et al. 2013) or founder animals of

genetic lines with enhanced productivity (Proudfoot

et al. 2015) or disease resistance traits (Lillico et al.

2013;Wu et al. 2015). To achieve this, our community

NHEJHDR 

LIVESTOCK

Fig. 1 Routes to genome edited livestock. Designer nucleases

have been successfully used to modify both zygotes and somatic

cells. Modification and selection of fibroblasts coupled with

SCNT has resulted in the generation of HDR and NHEJ edited

livestock. NHEJ edited animals have been produced via zygote

CPI whereas, to date, HDR edited animals have not been

reported from edited zygotes
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Table 1 A list of published pigs, cattle, sheep and goats ever generated by genome editors

Gene(s)* Editor Route Genotypes** E.T./R/P*** Live/total

born

F0

edited/

live�

References

NHEJ

Pig

PPARc ZFN SCNT ± 1340/8/4 10/10 2/10 Yang et al. (2011)

a 1,3GT ZFN SCNT ±, -/- 272/3/2 2/2 2/2 Hauschild et al. (2011)

eGFP ZFN SCNT -/- 315/2/2 7/7 6/7 Whyte et al. (2011)

LDLR TALEN SCNT -/- n.a./9/7 18/22 18/18 Carlson et al. (2012)

a 1,3GT ZFN SCNT ±, -/- 304/3/2 3/4 3/3 Li et al. (2013)

RELA ZFN CPI -/- 109/3/2 9/9 1/9 Lillico et al. (2013)

RELA TALEN CPI ±, ±/-, =/- 393/11/6 41/46 5/41 Lillico et al. (2013)

CMAH ZFN SCNT ± 431/2/2 11/13 11/11 Kwon et al. (2013)

IL2RG ZFN SCNT -/Y 199/2/2 4/4a 4/4 Watanabe et al. (2013)

a 1,3GT CMAH ZFN SCNT -, -/-, - 477/4/1 4/5 4/4 Lutz et al. (2013)

DAZL TALEN SCNT -/- n.a./3/2 3/5c 3/3 Tan et al. (2013)

a 1,3GT TALEN SCNT -/- 1919/7/2 3/4 3/3 Xin et al. (2013)

a 1,3GT ZFN SCNT -/- 2093/11/8 15/15 3/15 Bao et al. (2014)

RAG1 TALEN SCNT -/- 1285/9/6 12/24 9/12 Huang et al. (2014)

RAG2 TALEN SCNT ±, -/- 3633/15/7 15/18 13/15 Huang et al. (2014)

RAG2 TALEN SCNT ±, -/- 1903/9/9 22/31 13/13d Lee et al. (2014)

GHR TALEN HMC -/- 654e/6/n.a. 10/12 7/10 Li et al. (2014)

DJ-1 TALEN SCNT ±, -/- 687/5/1 3/4 3/3 Yao et al. (2014)

vWF CRISPR/Cas9 CPI ±/- , =/- 76/5/3 16/16 11/16 Hai et al. (2014)

SLA-1,2,3 CRISPR/Cas9 SCNT -, -, -/- ,-, -, - 265/2/2b 3/3 3/3 Reyes et al. (2014)

CD163 CRISPR/Cas9 SCNT -/- 2734/13/8 37/39 34/37 Whitworth et al. (2014)

CD1d CRISPR/Cas9 SCNT -/- 1055/5/4 13/13 12/13 Whitworth et al. (2014)

CD163 CRISPR/Cas9 CPI -/- 96e/2/1 4/4 4/4 Whitworth et al. (2014)

CD1d CRISPR/Cas9 CPI -/-, =/- 110e/2/1 4/4 4/4 Whitworth et al. (2014)

TYR CRISPR/Cas9 SCNT -/- 1705/7/4 18/18 15/18 Zhou et al. (2014)

PARK2, PINK1 CRISPR/Cas9 SCNT -, -/-, - 1729/10/4 18/20 18/18 Zhou et al. (2014)

IgM CRISPR/Cas9 SCNT -/- 500e/5/2 3/5 3/3 Chen et al. (2015)

PKD1 ZFN SCNT ± 4987/13/5 20/25 13/20 He et al. (2015a)

a 1,3GT, CMAH

iGb3S

CRISPR/Cas9 SCNT -, -, -/-, -, - 179/2/2 10/12 5/10f Li et al. (2015)

Npc1l1 CRISPR/Cas9 CPI =/- 105/4/2 12/12 12/12 Wang et al. (2015)

Cattle

BLG ZFN SCNT -/- 995e/119/50 8/8 8/8 Yu et al. (2011)

GDF8 ZFN SCNT -/- 1336e/123/35 n.a./18 2/n.a. Luo et al. (2014)

GDF8 TALEN CPI ±/- 20e/11/2 2/4 � Proudfoot et al. (2015)

Sheep

GDF8 CRISPR/Cas9 CPI ±/- 213/55/31 35/35 2/35 Han et al. (2014)

GDF8 TALEN CPI ± 26e/9/8 12/12 1/12 Proudfoot et al. (2015)

Goat

GDF8 CRISPR/Cas9 SCNT -/- 269/21/7 3/3 3/3 Ni et al. (2014)

HDR

Pig

CMAH ZFN SCNT -/Neo 1619/7/4 7/7 5/7 Kwon et al. (2013)

DAZL TALEN SCNT -/in4 n.a./3/2 2/3 2/2 Tan et al. (2013)

APC TALEN SCNT in4/in4 n.a./3/2 5/6 5/5 Tan et al. (2013)
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has been progressively expanding the livestock

genome engineering toolbox to include state-of-the-

art technologies, first ZFNs (Yang et al. 2011; Whyte

et al. 2011), then TALENs (Carlson et al. 2012) and

CRISPR/Cas9 (Hai et al. 2014; Fig. 3).

The creation of the first genome edited animals

relied on the modification of primary cells which were

then used as nuclear donors for embryo reconstruction

in SCNT (Hauschild et al. 2011; Carlson et al. 2012;

Fig. 3). An efficient alternative, direct modification of

zygotes by cytoplasmic injection (CPI) of the editors,

soon followed (Fig. 4a; Lillico et al. 2013; Hai et al.

2014) rekindling the microinjection skills used for the

first transgenic livestock (Fig. 3). Adding to these

initial reports that described NHEJ events, the ability

to introduce defined sequences into a targeted locus

through HDR, using either single strand DNA

oligonucleotides (ssODN; Tan et al. 2013) or plasmids

as repair templates (Liu et al. 2013;Wu et al. 2015) has

been demonstrated for livestock. Rather than depend-

ing on random changes at the target site introduced by

the error prone NHEJ repair pathway, these defined

Table 1 continued

Gene(s)* Editor Route Genotypes** E.T./R/P*** Live/total

born

F0

edited/

live�

References

Cattle

CSN2 ZFN or ZFNickase SCNT ?/lst 1671e/559/140 14/19 14/14 Liu et al. (2013)

CSN2 ZFN SCNT ?/hLYZ 236e/118/20 5/5 5/5 Liu et al. (2014)

MAT1A-SFTPA1 g TALENickase SCNT ?/SP110 465e/147/50 23/23 13/13 Wu et al. (2015)

Goat

BLG TALEN SCNT -/hLFg n.a. 5/n.a. 2/5 Cui et al. (2015)

Publications were collected by searching the databases of Google Scholar and PubMed with keywords ‘‘ZFN’’ or ‘‘zinc finger

nuclease’’, ‘‘TALEN’’ or ‘‘TAL effector nuclease’’, or ‘‘Cas9’’ in combination with ‘‘pig’’, ‘‘cattle’’, ‘‘sheep’’, or ‘‘goat’’. We hope

that all published work by our dear colleagues are included as of early July 2015; we apologize if yours is unintentionally left out

n.a. not available, SCNT somatic cell nuclear transfer, CPI cytoplasmic injection, HMC hand-made cloning, NHEJ non-homologous

end joining, HDR homology directed repair

* APC Adenomatous polyposis coli, a 1,3GT a1,3-galactosyltransferase (GGTA1), BLG beta-lactoglobulin, CD163 cluster of

differentiation 163, CD1d cluster of differentiation 1d, CMAH CMP-N-acetylneuraminic acid hydroxylase, CSN2 b-casein, DAZL

deleted in azoospermia-Like gene, DJ-1 protein deglycase DJ-1 or Parkinson disease protein 7, GDF8 growth differentiation factor 8

or Myostatin, GHR growth hormone receptor, hLYZ human lysozyme, iGb3S iGb3 synthase, IgM immunoglobulin M, PKD1

polycystin-1, IL2RG interleukin-2 receptor gamma, LDLR low density lipoprotein receptor, lst lysostaphin, MAT1A-

SFTPA1 g introgenic sequence between gene MAT1A and SFTPA1 g, Npc1l1 Niemann-Pick C1-Like 1, PINK1 PTEN-induced

putative kinase 1, PPARc peroxisome proliferator-activated receptorgamma, RAG1/2 recombination activation gene �, RELA p65,

SLA-1,2,3 swine leukocyte Ags 1,2, and 3, TYR tyrosinase, PARK2 gene encoding parkin, vWF von Willebrand factor

** ± One allele modified by NHEJ, -/- both alleles modified by NHEJ, =/- mosaicism with up to 5 genotypes but no wt sequence

in a single animal, -/Y X-chromosome gene targeted in male cells, ±/- mosaicism with up to 6 genotypes including wt sequence;

-/Neo, -/in4, -/hLF: one allele modified by NHEJ while the other knockout by a Neo cassette, a 4 bp insertion or a human

lactoferrin expression cassette; ?/lst, ?/hLYZ, ?/SP110: mono-allelic insertion of a transgene, lysostaphin, human lysozyme, or

SP110 nuclear

body protein gene

*** E.T./R/P: total embryos transferred/total recipients/total pregnancies
� Only animals generated by the initial cloning rather than re-cloning are listed
a These are full term foetuses delivered by C-section
b This is accompanied by re-cloning using fibroblasts isolated from an aborted pregnancy
c The donor cells with NHEJ events were mixed with those with HDR alleles for cloning
d Genotyping of the rest of live born piglets were not described
e Only blastocysts were transferred
f The rest of the animals have NHEJ events at least in 2 out of 6 alleles
g -/hLF animals were generated on the – cells background
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sequence changes allow either more precise gene

knockout or targeted integration of various transgenes,

and importantly make allele swapping possible

(Fig. 2).

SCNT has been the primary method to deliver

nuclease mediated genetic changes into livestock. To

date, 33 out of 43 reported successes utilise SCNT and

resulted in 267 edited live animals (Table 1). This

focus on SCNT reflects the lead position this technol-

ogy has had for the last couple of decades in livestock

biology, especially for pigs, since one can apply

nucleases then pre-select editing events in vitro. At

time of writing, SCNT is the only published way to

create livestock with defined changes by HDR

(Fig. 3).

The combination of genome editors and SCNT has

proven to be powerful. It is possible to obtain cells

with bi-allelic modifications in one-step by marker-

free dilution cloning (Tan et al. 2013), or if necessary

FACS sorting (Whyte et al. 2011; Reyes et al. 2014) or

DSB

Deletion

HDRNHEJ

Disruption

Modification

Fig. 2 The utility of double strand breaks generated by genome

editors. A cartoon depiction of the double strand break (DSB)

repair mechanisms. Non homologous end joining (NHEJ) is an

error prone process that re-joins the end of the DSB, often

resulting in small insertions/deletions (blue) and subsequent gene

disruption. Homology dependent repair is a faithful process that

uses a homologous template to repair the DSB. Providing a repair

template, either as a single stranded oligonucleotide or double

stranded DNA, allows specific modifications (green) to be

introduced to the genome. Creation of simultaneous DSBs

flanking a region of the genome can result in deletion of the

intervening sequence (yellow) and repair of the DSBs by either

NHEJ or HDR. (Color figure online)

Fig. 3 A Timeline of genome edited livestock over the past 5 years highlighting specific milestones
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drug selection (Liu et al. 2013; Wu et al. 2015).

Moreover, simultaneous targeting of different genes

has allowed bi-allelic modification of up to three genes

at the same time (Reyes et al. 2014; Li et al. 2015).

Cloning using such cells has resulted in an average

76 % editing rate in live born pigs (Table 2); some of

these animals contain gene inactivating indels result-

ing from NHEJ (Lutz et al. 2013; Whitworth et al.

2014) or ssODN mediated HDR (Tan et al. 2013),

while others have site-specific insertions of transgenes

by HR (Kwon et al. 2013; Wu et al. 2015; Cui et al.

2015).

Production of editor modified animals via SCNT is

hugely successful, but remains tied to the drawbacks

associated with cloning. In the published reports using

editors and SCNT, cloning efficiency has been low,

being only 1.2 % (278/23,216) for pigs and 0.6 % (58/

10,510) for other livestock (Table 2). On average,

production of one edited live pig requires reconstruc-

tion of 130 embryos, which would be challenging

without ready access to abattoir-sourced oocytes. The

cloning efficiency is partly affected by donor cell

quality: prolonged culture and multiple manipulations

of the cells decrease their efficiency as nuclear donors.

Because of this, some studies have required re-cloning

to obtain more founder animals (Hauschild et al.

2011), especially when several genes were targeted

simultaneously (Lutz et al. 2013; Reyes et al. 2014). In

addition, SCNT (even in the absence of nuclease

treatment) is often associated with problems such as

birth defects, abortions and early postnatal death

(Keefer 2015).

To circumvent issues associated with cloning, some

research groups have adopted direct microinjection of

editing reagents to the cytoplasm of zygotes. This

approach has been effective in generating edited

livestock animals using all three designer nucleases

systems in pigs (Lillico et al. 2013; Hai et al. 2014;

Whitworth et al. 2014; Wang et al. 2015), cattle

(Proudfoot et al. 2015) and sheep (Han et al. 2014;

Proudfoot et al. 2015). Although application of CPI

has not been as widely used as SCNT in livestock

genome editing (41 edited animals by CPI vs 267

animals by SCNT (Table 1), its use is gaining

momentum. This shift presumably reflects the sim-

plicity and versatility of CPI over SCNT. While the

Table 2 A summary of edited animals created by SCNT or CPI

Edited/live born Pregnancy rate

A. Success percentages

Pig

SCNT 76 % (179/237) 55.3 % (62/112)

CPI 37 % (29/78) 56.5 % (13/23)

Cattle, sheep and goats

SCNT 81 % (43/53) 27.7 % (267/964)

CPI 8.2 % (4/49) 54.7 % (41/75)

Embryos/recipient Embryos/edited live Live born/pregnancy Edited/pregnancy

B. Ratio of desired outcome across different stages of methodology

Pig

SCNT 207 (23,216/112) 130 (23,216/179) 3.8 (237/62) 2.9 (179/62)

CPI 30 (688/23) 24 (688/29) 6 (78/13) 2.2 (29/13)

Cattle, sheep and goats

SCNT NA 244 (10,510/43) 0.20 (53/267) 0.16 (43/267)

CPI NA 128 (513/4) 1.2 (49/41) 0.10 (4/41)

Only entries with complete records in Table 1 are used for analysis. Pig SCNT data were calculated from 21 entries whereas CPI data

were added up from Lillico et al. (2013), Hai et al. (2014) and Wang et al. (2015). Pig CPI data from Whitworth et al. 2014 were not

included in the analysis because injected embryos were cultured to blastocysts before transfer. For other livestock species, SCNT data

were calculated from five reports whereas CPI data were generated from Han et al. (2014) and Proudfoot et al. (2015)

NA not applicable because in some experiments embryos were transferred shortly after reconstruction or injection while in others

embryos were cultured to blastocysts
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editing efficiency in live-born animals is lower for CPI

(in pigs 37 % for CPI vs 76 % for SCNT), reflecting

the lack of selection that takes place during the in vitro

phase of SCNT, CPI only requires an average of 24

embryos to produce one edited pig, a five-fold

improvement on that currently reported for SCNT

(Table 2). Furthermore, one of the biggest advantages

of CPI is that it can be applied to zygotes from any

desired parental cross, maintaining genetic diversity in

progeny. By contrast, SCNT tends to use genetic

material from a clonal cell population, resulting in

offspring that are genetically identical to the donor

cells and thus requiring subsequent outcrossing to

maintain genetic variation. SCNT, however, enables

selection of a specific mutation prior to production of

animals and potentially enables access to genetic lines

where the correct embryo donors are not readily

available. Thus, both CPI and SCNT offer the

opportunity to utilise the range of editing events that

are produced at a given locus.

Given that there is scope for improving the

proportion of live-born edited animals following

CPI, we anticipate that the numbers of both donor

and recipient animals required per edited offspring

will continue to be reduced. Combined with freedom

from cloning related problems and greater choice in

genetic background, CPI may prove to be the more

compelling method—at least for agricultural applica-

tions. In the meantime there are two areas that require

further investigation; founder mosaicism and efficient

HDR. Mosaicism is commonly observed in edited

animals produced by CPI (Lillico et al. 2013; Han

et al. 2014; Proudfoot et al. 2015), and while this could

be problematic with respect to analysis of phenotype

in the founder generation, our group routinely breed

CPI generated F0 pigs (homozygous, heterozygous or

mosaic) to produce F1 offspring with the desired

genotype (Fig. 4b; unpublished data). Other groups

have confirmed germline transmission from mosaics

by germ cell genotyping (Hai et al. 2014; Wang et al.

2015). Ideally mosaicism following CPI needs to be

reduced; options currently being explored include

maximizing editor concentration while controlling

toxicity and off-target mutations or alternatively

delivering Cas9 as protein rather than mRNA. HDR

mediated editing via CPI has yet to be reported in live-

born animals. However, given the high efficiency of

multiplexing editing events in rodents (Wang et al.

2013; Yang et al. 2013), the recent success by co-

injecting editors and ssODNs into in vitro cultured

bovine embryos (Wei et al. 2015), and data from our

own lab indicating that allele swap animals can be

produced in zygotes (unpublished results), this is

unlikely to prove a significant limitation.

Expanding current trends

Although most of the initial goals in livestock genetic

engineering focused on agriculture (Pursel et al.

1989), the combination of rudimentary (although at

the time innovative) tools, insufficient knowledge of

the genetic consequence of modifying the initial

targets (e.g. growth hormone: Pursel et al. 1989) and

lack of public support lead to a dearth of funding, both

public and commercial, in this area. The result was the

development of applications on the biomedical-

biotechnological interface: animal bioreactors,

Fig. 4 Live genome edited pigs produced by TALEN injection into zygotes. a Founder NHEJ animals born 2012 (Lillico et al. 2013).

b Third generation piglets derived from NHEJ founder animals
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xenotransplantation and, more recently, large animal

models of human disease (Jänne and Alhonen 1998;

Kind and Schnieke 2008; Cooper et al. 2014; Kostic

et al. 2013). Given this spectrum of applications,

impacts of genome editing may be quite variable. For

animal bioreactor projects genome editing technology

can enable refined expression strategies and possibly

be used to augment post-translational effects. While

editing technology could accelerate the development

of even more animal resources for xenotransplanta-

tion, it is perhaps at the interface of these two

applications that genome editing technology may

come to the fore. The remarkable report of chimeric

mice that carried a rat cell derived pancreas (Kobaya-

shi et al. 2010) reignited enthusiasm for the possibility

of animals producing human organs, or at least human

cells. The passage of time since the original report may

have dampened some of the initial optimism, but effort

in this direction continues. Success would be

spectacular.

Within the biomedical arena there is a growing

realisation that small animal models, although deliv-

ering great mechanistic insight into disease in the

model organism, are insufficient as translational tools

for converting this knowledge from bench research to

bedside applications. In many situations we would

benefit from the use of larger animals to model both

the development of disease pathology and the testing

of intervention strategies. Genome editing enables the

mutation of endogenous livestock gene homologues of

known causative or associated human disease loci.

Although there are no projects yet that have fully

exploited this new technology, there are already a

growing number of projects based on the ‘older’

transgenic technologies that have demonstrated that

this belief in large animal disease models is justified

(Wolf et al. 2014; Aigner et al. 2010).

A path to agriculture

Man has pursued the selective breeding of animals for

a long time. Initially our Mesolithic ancestors identi-

fied animals for their ability to breed in captivity based

on aspects of temperament and social structure. Now

engineering enables the targeting introduction of

mutations providing increased genetic variation for

the animal breeder to utilise. Although some agricul-

tural applications of GM have been pursued by the

research community, industry has been shy of engag-

ing with the traditional transgenic technologies. That

reluctance to directly engage with projects involving

livestock appears to have eased with the advent of

genome editing technology.

Historically animal breeding relied on selection by

individual farmers of breeding stock with visibly

desirable traits. Bioinformatic use of genetics allows a

more refined selection process but still relies on

selection of randomly segregating loci that are

predicted to underlie advantageous traits (Daetwyler

et al. 2013; Van Eenennaam et al. 2014; Hill 2014).

Genome editing enables introgression of single

genetic loci in contrast to current breeding regimes.

It enables access to inaccessible variation: variation

that doesn’t exist in a given breeding population

(Lillico et al. 2013), i.e. variation out-with the

breeding gene pool (a currently discussed scenario is

introgression of the polled trait into elite Holstein

cattle). It also offers solutions to non-segregation of

beneficial and undesirable traits due to physical

proximity of the underlying loci in the genome.

Alternatively, genome editing offers a route to elim-

inate deleterious alleles from a gene pool.

Genome editing could also be used to modify

quantitative traits that are affected by many loci

(associated with a number of quantitative trait

nucleotides). In the natural state low levels of recom-

bination will limit the rate favourable alleles will arise

together in selected individuals. This presents chal-

lenges for breeding regimes aiming to improve such a

quantitative trait. Simulations show that even rela-

tively modest multiplexing of genome editing targets

has great potential for increasing the response to

selection in breeding programmes over improvement

by genomic selection alone (Jenko et al. 2015).

Many sectors of the animal agriculture industry,

including those working with pigs, cattle, and chick-

ens are now actively engaged with the technology

through collaborations with the academic community.

There remain the perceived barriers to adoption of

these technologies in animal agriculture including

public opinion and the regulatory environment; but

these factors are in flux. Public opinion is often largely

influenced by a vocal minority of concerned members

of our society, but within society there also exists

support and interest in the potential for genetically

engineered livestock to make a contribution to the

global challenge of food security. This is increasingly
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being reflected by the constructive media portrayal of

this biotechnology. In turn, the political mood is also

changing; for example, the headline in the UK press

early 2015 ‘‘EU regulation on GMOs not ‘fit for

purpose’ say UK MPs’’. Nevertheless, at time of

writing, we still see the regulatory approval for

arguably the world’s lead GM product (the AquAd-

vantage salmon) in the quagmire that occurs when

politics overrides the scientific evidence-based posi-

tion and the approved regulatory process (Van

Eenennaam and Muir 2011).

It is hoped that genome edited livestock (Fahrenk-

rug et al. 2010), with their lack of introduced

transgenes, will find a smoother path through the

regulatory system. In plants the regulatory bodies view

this enzyme-based technology as they would chemical

or radiation induced mutagenesis; the latter two

methods have a long history of unregulated use but

lack the specificity afforded by genome editing tools.

We believe that in this regulatory environments, and

based on the specificity and ‘footprintless’ nature of

genome editing, gene editing animals will successfully

navigate both the political and regulatory landscape.

What is next for genome engineering

Transgenic livestock were first produced in the mid-

1980s and subsequently through the use of HR and

SCNT, gene targeting in large animals has been

possible since the late 1990s (Clark and Whitelaw

2003). Gene editing brings nothing conceptually new

to the table. Rather, this set of tools greatly facilitates

what was already possible with traditional methods,

increasing the rate at which new projects can be

delivered. This is fast becoming reality with an

incredible pace of progress being evident—for those

engaged with the literature there is the real feeling that

as many new lines of engineered large animals have

been produced in the last few years as in the previous

three decades.

Some believe genome editing tools provide the best

imaginable technology for mutating the germline.

Indeed it is hard at the moment to imagine what could

be better. Nevertheless there are remaining challenges.

We need to improve efficiency of editing within a

given population of cells (destined for SCNT) and in

the zygote and overcome mosaicism. In our work with

zygotes we regularly achieve 30 % editing frequency

with delivery of editors—ZFN, TALEN and CRISPR/

Cas9—to the cytoplasm of livestock. We should aspire

to at least[50 % and why not frequencies approach-

ing or even achieving 100 %.

We need to further refine our predictive editor

design algorithms. The scope to expand the repertoire

of editing reagents continues through the development

of Cas9 variants (Kleinstiver et al. 2015; Ran et al.

2015) and meganucleases (Ménoret et al. 2013) is

already materializing with the promise that manymore

will be forthcoming. For real utility in addressing

multi-quantitative nucleotides underlying a quantita-

tive locus we will need the ability to multiplex editing

events. Conceptually this could be challenging, given

the possibility for multiple target sites in a given

genome to undergo inter-site events, resulting in

deletion or other forms of recombination, yet the

production mice with of three consecutively edited

sites has been reported.

For reasons both practical and public perception

based, the concern about off-targets must be

addressed. Off-target effects occur because the editing

complex relies on base-recognition affinity for target-

ing but can cut at a lower frequency at similar non-

target sites (analogous to the star activity exhibited by

restriction endonucleases). Although a much dis-

cussed point, the emerging evidence now suggest that

off-targets may be rare events in mice (Iyer et al.

2015), supporting previous human cell data (Kim et al.

2015). Nevertheless there is probably still room for

improvement, although the debate about what could be

tolerated for a given application remains to be

resolved. To address this aspect a multitude of

strategies are being evaluated. For example, masking

Cas9 with a fusion peptide preventing activity until

cleaved by a small molecule (Davis et al. 2015),

expanding the TALEN RDV repertoire (Miller et al.

2015), dimerisation of the editing enzyme (Wright

et al. 2015; Zetsche et al. 2015), use of nickases which

cause single strand-breaks rather than double-strand

breaks therefore evoking different DNA repair pro-

cesses (Frock et al. 2015) and, further in this vein, the

inhibition of NHEJ (Maruyama et al. 2015; Chu et al.

2015).

Continued development of genome editing tools

will accelerate livestock biotechnology through their

ease of use. Where it took several painfully taxing

years for several groups around the world to produce

alpha-1,3 galactosyltransferase null pigs, this can now
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rapidly and easily be achieved through the use of

genome editors. This ‘catch-up’ phenomenon is not

unique to these tools and reflects all aspects of

technological advance (most obvious in our ability to

sequence genomes). And like other significant tech-

nology leaps, this results is more and greater diversity

in applications. Concerns of off-targets are reducing

and the political landscape increasingly supportive.

Although currently there is a crowded intellectual

property landscape enveloping the genome editors

(e.g. Sherkow 2015), paths through this legal envi-

ronment will resolve with time.We are only at the start

of this wave of advance—the world for livestock

biotechnology is about to get very exciting.
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Anegon I (2013) Generation of Rag1-knockout immun-

odeficient rats and mice using engineered meganucleases.

FASEB J 27(2):703–711

Miller JC, Holmes MC, Wang J, Guschin DY, Lee Y-L, Rup-

niewski I, Kim KA (2007) An improved zinc-finger

nuclease architecture for highly specific genome editing.

Nat Biotechnol 25(7):778–785

Miller JC, Zhang L, Xia DF, Campo JJ, Ankoudinova IV,

Guschin DY, Lam SC (2015) Improved specificity of

TALE-based genome editing using an expanded RVD

repertoire. Nat Methods 12(5):465–471

Nagy A, Mar L, Watts G (2009) Creation and use of a cre

recombinase transgenic database. In: Wurst W, Kühn R
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