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Abstract 
The COVID-19, MERS-CoV, and SARS-CoV are hazardous epidemics that have resulted in many deaths which caused a 
worldwide debate. Despite control efforts, SARS-CoV-2 continues to spread, and the fast spread of this highly infectious 
illness has posed a grave threat to global health. The effect of the SARS-CoV-2 mutation, on the other hand, has been char-
acterized by worrying variations that modify viral characteristics in response to the changing resistance profile of the human 
population. The repeated transmission of virus mutation indicates that epidemics are likely to occur. Therefore, an early 
identification system of ongoing mutations of SARS-CoV-2 will provide essential insights for planning and avoiding future 
outbreaks. This article discussed the following highlights: First, comparing the omicron mutation with other variants; second, 
analysis and evaluation of the spread rate of the SARS-CoV 2 variations in the countries; third, identification of mutation 
areas in spike protein; and fourth, it discussed the photonics approaches enabled with artificial intelligence. Therefore, our 
goal is to identify the SARS-CoV 2 virus directly without the need for sample preparation or molecular amplification proce-
dures. Furthermore, by connecting through the optical network, the COVID-19 test becomes a component of the Internet of 
healthcare things to improve precision, service efficiency, and flexibility and provide greater availability for the evaluation 
of the general population.

Key points 
• A proposed framework of photonics based on AI for identifying and sorting SARS-CoV 2 mutations.
• Comparative scatter rates Omicron variant and other SARS-CoV 2 variations per country.
• Evaluating mutation areas in spike protein and AI enabled by photonic technologies for SARS-CoV 2 virus detection.
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Introduction

In 2020, the severe acute respiratory syndrome coronavi-
rus (SARS-CoV 2) caused a global epidemic. The original 
virus strain was identified in Wuhan, Hubei Province, China 
(Loo et al. 2021). Although vaccinations have been intro-
duced throughout the world, the number of infected cases 
continues to increase due to the effects of new SARS-CoV-2 
variations. From an evolutionary point of view, Variations 
of Concern (VOCs) are variants with selected evolution-
ary advantages (Lauring and Hodcroft 2021). These new 
variations appeared in different places at the same time in 
September 2020 but are not related to each other. A mutate 
called B.1.1.7 first appeared in the UK (Tang et al. 2021). 
Then, it was the B.1.351 in South Africa, B.1.617 in India, 
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and P.1 in Brazil (Samarasekera 2021; Thye et al. 2021). 
Consequently, the World Health Organization (WHO) recog-
nized variant B.1.1.529 as a worrying variant on November 
26, 2021 and renamed it as Omicron. Figure 1 describes the 
coronavirus disease (COVID-19) mutations that occur. An 
initial imaging of the newly discovered COVID-19 variant 
Omicron, manufactured and published by the famous Bam-
bino Gesu Hospital in Rome, was recently reported in the 
literature. Different strains, on the other hand, contain sev-
eral changes in their spike protein, suggesting that they are 
more pathogenic. Mutations in the gene can potentially alter 
receptors to achieve cell entry and viral immune evasion and 
immunogenicity, as the SARS-CoV 2 spike protein binds 
to the angiotensin converting enzyme 2 (ACE2) (Watanabe 
et al. 2020). Interestingly, changes in the spike protein are of 
particular concern as vaccination encourages the formation 
of antibodies against its contents. SARS-CoV 2 identities are 
based on spike sequences generated from the early Wuhan 
strain and include recombinant protein, inactivated virus, 
RNA, and virally vectorized platforms (Krammer 2020). 
This current version contains significantly more mutations 
than the delta version. Preliminary research states that Omi-
cron latent infection may be more difficult for those who 
previously had COVID-19 than other worrying variations. 
On the other hand, the virus has shown us in the past that 
different strains can cause different degrees of disease and 
different symptoms. For example, Alpha, which was discov-
ered in the UK, was more transmissible than previous vari-
ations, but the symptoms were the same. The Delta which 
was originally discovered in India is much more contagious 
and deadly than COVID-19. The genomes and proteins of 
numerous people were also compared and contrasted using 
various bioinformatic methods (Srinivasan et al. 2020). 
This research helped identify the virus’ close association 
with other people using a SARS-CoV 2 protein informa-
tion database in open sources. It studied numerous muta-
tions in these proteins in isolates from various geographical 
regions. Understanding the alterations in the virus’ multiple 

proteins can aid in unraveling the riddle of the increased 
COVID-19 transmission rates that resulted in the pandemic 
and give direction for targeted viral management (Consor-
tium 2021). However, two of the most common symptoms 
of COVID-19, chronic cough and loss of smell and taste, 
are less common, but more people are reporting them. Omi-
cron virus has been identified as a worrying variant to the 
extent that the WHO issues recommendations for nations 
around the globe, including increased surveillance and case 
sequencing. Collaboration in the publication of genomic 
sequences in publicly accessible databases has been done. 
However, future pandemic threats will require the develop-
ment of diagnostics, drugs, and vaccinations to counter them 
(Jakhmola et al. 2021). Furthermore, not every healthcare 
center or hospital, particularly smaller organizations with 
limited resources, can handle the massive workload caused 
by increased demand due to insufficient PCR testing capa-
bilities. Finally, the number of kits and reagents available is 
inadequate to meet spiking demand in general (Wan et al. 
2021). Medical telemonitoring provided help to the caregiv-
ers staff to monitor and decipher the patient’s therapeutic 
indications. Practical or automated methods can be used 
to perform these tasks. Therapeutic demonstrations which 
can be helpful towards doctors can be conducted remotely 
with the assistance of a doctor/health practitioner. Patients 
in need of medical attention can seek advice from a doctor 
by phone or computer screenshot.

COVID‑19 mutations

Many viruses, including SARS-CoV-2, which is responsible 
for COVID-19, evolve over time. Most changes have little 
to no effect on the properties of the virus. However, spe-
cific changes can affect the characteristics of the virus, such 
as the speed of spread, the severity of comorbidities or the 
performance of vaccinations, therapeutic drugs, diagnostic 
tools, or other public health and welfare measures. Although 

Fig. 1   Timeline describes the 
COVID-19 mutations
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various systems for detecting COVID-19 particles come in 
handy, many problems limit their usefulness. In addition, 
there are the following challenges: Sensitivity and accuracy 
are reduced, preparation and cleaning of the samples require 
time, and the complex operation of the devices. Hence, 
detection methods for COVID-19 need to be improved 
urgently. These methods need to be implemented for greater 
precision, service efficiency, and flexibility, as well as wide-
spread availability for the assessment of the general popula-
tion (Taha et al. 2021a, b). A mutation is a single change in 
the genome or genetic code of a virus. Mutations are com-
mon but rarely affect the properties of the virus. Many muta-
tions in SARS-CoV 2 cause changes in the properties of the 
virus and affect the response to the pandemic. Preliminary 
analysis shows that at least one mutation, common to three 
new worrying variants, appears to increase transmission 
efficiency (Unlu et al. 2021). It is imperative that vaccines 
are produced as soon as possible and that genetic monitor-
ing needs to be stepped up to detect variations when they 
first emerge and wander around the world. Since its discov-
ery in December 2020, the Delta variety has become the 
most common variety in India and the UK. In addition, the 
CDC estimates that more than 20% of cases in the USA have 
been assigned to this strain. However, medical profession-
als assume that the Delta strain is more contagious than the 
other variants of the virus. WHO organization has identified 
five mutations in the SARS-CoV 2 virus. They were named 
after their Greek alphabet, Beta, Gamma, and Delta, start-
ing with Alpha. However, in the Omicron variant, the 15th 
letter was used instead, which classifies it as a very risky 
variant worldwide. Delta variation, while being the most 
common, accounts for more than 99% of sequenced cases 
worldwide (Almubaid and Al-Mubaid 2021; Teng et al. 
2020). In their thorough study of the mechanisms of viral 
mutation, Sanjuan and colleagues found that RNA viruses 
mutate faster than DNA viruses (Sanjuán and Domingo-
Calap 2016). The D614G mutation makes a particular cavity 

between the spike protein subunits of the repeating unit. On 
the contrary, the intermolecular hydrogen bonding potential 
between the spike protein subunits at that location is abol-
ished when S982A is substituted. Therefore, mutations in 
B.1.1.7 increase the affinity of SARS-CoV 2 for ACE2, and 
substitutions for A570D, D614G and S982A can improve 
the dynamic viral fusion process by reducing the intermo-
lecular stability of the spike protein subunits (Ostrov 2021). 
The spike protein D614G mutation can be identified based 
on quantitative PCR high-resolution melting (qPCR-HRM). 
Six SARS-CoV-2 RNA samples were converted to DNA 
and analyzed using the qPCR-HRM method to determine 
whether the spike protein contained the D614G mutation. 
The primers designed are to target the D614G mutated spike 
region selectively (Gazali et al. 2021). A study in England 
reported that variant B.1.1.7 had a 4390% higher reproduc-
tion rate than previous forms (Davies Nicholas et al. 2021). 
Compared to the precursor isolate with D614G exchange, 
Hoffman et al. observed that B.1.1.7, B.1.351, and P.1 show 
no significant differences in spike protein stability or entry 
kinetics (Hoffmann et al. 2021). As seen in Fig. 2, SARS-
CoV 2 has been changing, as have all viruses, since its dis-
covery in late 2019. Changes in the genetic coding of the 
spike protein can affect its capacity to infect cells.

Omicron contrast to other variants

B.1.1.529, a novel SARS-CoV 2 variant, was discovered 
in Botswana and South Africa at the beginning of Novem-
ber 2021 and classified by the WHO as VOC Omicron on 
November 26, 2021. This is in order to determine the trans-
ferability, severity, and ability to bypass the immune system 
in this strain, due to its improvement to the spike protein (Gu 
et al. 2021). The spike protein, the main focus of the immune 
response, has been modified and highlighted in this strain. 
Changes in invariants such as Delta and Alpha have increased 

Fig. 2   Mutations D614G 
indicates that the viral spike 
proteins’ amino acid at position 
614 has been altered from D 
(aspartate) to G (glycine)
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infectivity and show a better ability to avoid infection-block-
ing antibodies (Callaway 2021). The latest finding of the 
SARS-CoV 2 Omicron variant (B.1.1.529) is contributing 
to the apparently ongoing wildfire of the almost 2-year-old 
global COVID-19 pandemic. At least 32 mutations occur in 
the spike protein alone compared to the sixteen mutations 
in the already highly infectious Delta version. Additional 
proteins such as NSP12 and NSP14, which are important 
for virus replication, are also found. It is estimated to be at 
least three times as infectious as the original SARS-CoV 2 
strain and maybe even more so than the Delta strain. There 
have been reports of it in many nations, including Australia, 
Belgium, Botswana, Germany, Hong Kong, Israel, Italy, the 
Netherlands, and the UK. Additionally, numerous countries 
have implemented tight quarantine policies for patients (Gao 
et al. 2021; Rao and Singh 2021). Recent published research 
has highlighted the variant mutated in the Delta variant in 
the literature. It is discovered that a spike mutation E465A 
was present in 15 Delta variation sequences and that n = 1756 
of Delta (B.1.617.2) variant mutations comprise 20% of the 
viral genome (Kannan et al. 2021). Furthermore, it has sev-
eral mutated forms, but the Omicron variant is unique in that 
it is the heaviest of them all. Table 1 shows a comprehensive 
comparison of Omicron with other variants. Although SARS-
CoV 2 vaccines are developing rapidly, little is known about 
the immunological correlates of protection or the virus’ abil-
ity to escape the human immune response through mutation 
and recombination (Kottier et al. 1995). According to a report 
of the B.1.1.7 variant in England, this variation has a 43–90% 
greater reproduction rate than prior forms.

Analysis for SARS‑CoV 2 variants

Viruses are subject to mutation and evolution in response 
to selection forces from their environment, resulting in 
variations that can be more virulent. Health professionals 
are particularly concerned about the spread of these novel 

strains and their reinfection rates, the severity of the dis-
ease, and the effectiveness of vaccination (Volz et al. 2021; 
Zhou et al. 2021). Omicron GR/484A (B.1.1.529) exhib-
its a particularly interesting combination of spike amino 
acid changes as it includes those previously identified as 
affecting receptor binding and antibody loss. It must con-
stantly monitor all low-frequency variations with poten-
tially important changes to see whether the distribution of 
these variants is influenced by immune escape or altered 
receptor contacts (Yurkovetskiy et al. 2020). Researchers in 
Botswana, Hong Kong, and South Africa made important 
contributions to the rapid discovery of Omicron protein sub-
units SARS-CoV 2 spike glycoprotein trimer in combina-
tion with the human host cell receptor ACE2 (1 unit shown, 
green band). Figure 3 shows the protein subunits SARS-
CoV 2 spike glycoprotein trimer in combination with the 
human host cell receptor ACE2 (1 unit shown, green band). 
The colored spheres mark the places where the B.1.1.529 
line has changed. In addition, bright orange or cyan is used 
for deletions and green for inserts to distinguish between 
changes that have phenotypic effects and those that do 
not. We collected information from the GISAID website, 
which facilitates the quick exchange of information on all 
influenza viruses, including COVID-19. It contains genetic 
sequences and associated clinical and epidemiological data 
for human viruses and regional and species-specific data 
for avian and other animal viruses. This information helps 
researchers understand how viruses change and spread dur-
ing epidemics and pandemics. Data is available on GISAID 
(https://​www.​gisaid.​org/). However, the functional charac-
terization of these mutations remains unclear.

D614G mutation of the spike protein

Similarity between SARS-CoV 2, severe acute respira-
tory syndrome coronavirus (SARS-CoV), and Middle 
Eastern respiratory syndrome coronavirus (MERS-CoV) 

Table 1   A summarized 
comparison of omicron with 
other variants

Categorize of variant Diagnostic Rate of speed Countries 
spread

Spike 
muta-
tions

Alpha
B.1.1.7

UK,
Sep 2020

 < 0.1% 197 11

Beta
B.1.351

South Africa,
Oct 2020

 < 0.1% 146 10

Gamma
P.1

Brazil, Nov 2020 0.1% 103 12

Delta
B.1.617.2

India, Dec 2020 99.8% 196 10

Omicron
B.1.1.529

Multiple countries,
Nov 2021

Unknown 10 32*
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have been discovered, all of which induce life-threaten-
ing respiratory diseases. The ORFs genome is roughly 
30 kb in length and encodes around 16 non-structural 
and four structural proteins, including the envelope (E), 
the membrane (M), the nucleocapsid (N), and the spike 
(S) (Dearlove et  al. 2020). However, due to the rapid 
spread of virus mutations, there are uncertainties about 
whether vaccination will be effective worldwide. When 

the virus mutates, it can spread these varieties in popu-
lations and over long periods of time. Furthermore, the 
ACE2 receptors on the surface of host cells are occupied 
by the receptor binding domain (RBD) of the S1 subunit 
of the S protein, and this interaction facilitates the entry 
of virus into the host cell. It has been suggested that it 
affects the infectivity of the virus. The rapid spread of 
the mutated D614G virus was related to the increased 

0

20

40

60

80

100

120

U
SA

Tu
rk

ey
N

et
he

rl
an

ds
Sl

ov
en

ia
Fi

nl
an

d
R

us
sia

N
ew

 Z
ea

la
nd

Ba
hr

ai
n

Q
at

ar
G

ib
ra

lta
r

Fi
ji

Et
hi

op
ia

M
oz

am
bi

qu
e

U
.S

. V
ir

gi
n 

Is
la

nd
s

M
on

te
ne

gr
o

M
or

oc
co

C
hi

na
M

ay
ot

te
Ja

m
ai

ca
G

uy
an

a
U

ni
te

d 
A

ra
b

Ir
an

Ta
iw

an
M

ol
do

va
En

gl
an

d
Sa

in
t V

in
ce

nt
C

yp
ru

s

Sp
re

ad
 r

at
e 

Countries

Delta  (B.1.617.2) 

0

0.5

1

1.5

2

2.5

So
ut

h 
A

fr
ic

a
R

eu
ni

on
Fi

nl
an

d
N

et
he

rl
an

ds
N

or
w

ay
Sp

ai
n

A
ng

ol
a

Is
ra

el
Si

ng
ap

or
e

Po
rt

ug
al

A
us

tr
al

ia
G

re
ec

e
Es

to
ni

a
Sl

ov
en

ia
C

ro
at

ia
Sa

ud
i A

ra
bi

a
Le

so
th

o
Li

th
ua

ni
a

O
m

an
Sr

i L
an

ka
G

ab
on

G
ua

de
lo

up
e

G
ua

m
M

al
ta

Be
ni

n
Fr

en
ch

 G
ui

an
a

G
ui

ne
a-

Bi
ss

au
M

or
oc

co
Br

un
ei

G
eo

rg
ia

Sp
re

ad
 r

at
e

Countries 

Beta (B.1.351 )

0
0.5

1
1.5

2
2.5

3
3.5

4

U
ni

te
d 

K
in

gd
om

C
an

ad
a

Be
lg

iu
m

Is
ra

el
C

ro
at

ia
Bu

lg
ar

ia
Br

az
il

Ic
el

an
d

R
us

sia
M

ar
tin

iq
ue

Ja
m

ai
ca

N
ew

 Z
ea

la
nd

Jo
rd

an
Se

rb
ia

In
do

ne
sia

Ta
iw

an
Su

ri
na

m
e

C
ay

m
an

 Is
la

nd
s

G
ui

ne
a-

Bi
ss

au
V

ie
tn

am
D

om
in

ic
an

U
ga

nd
a

A
lg

er
ia

So
m

al
ia

Za
m

bi
a

Fi
ji

Be
la

ru
s

Fa
ro

e 
Is

la
nd

s
So

ut
h 

Su
da

n
Li

by
a

Sp
re

ad
 r

at
e

Countries

Alpha (B.1.1.7)

0
10
20
30
40
50
60
70
80
90

Sp
re

ad
 r

at
e

Countries

Omicron (B.1.1.529) 

0
1
2
3
4
5
6
7
8
9

Br
az

il
C

hi
le

A
rg

en
tin

a
Sp

ai
n

C
ol

om
bi

a
Tr

in
id

ad
Ec

ua
do

r
U

ni
te

d 
K

in
gd

om
Sw

ed
en

Ja
pa

n
D

en
m

ar
k

A
us

tr
ia

M
al

ta
Po

la
nd

C
ze

ch
 R

ep
ub

lic
Sa

in
t V

in
ce

nt
So

ut
h 

K
or

ea
N

or
w

ay
A

us
tr

al
ia

C
ro

at
ia

Ph
ili

pp
in

es
G

re
ec

e
M

on
te

ne
gr

o
H

on
du

ra
s

R
us

sia
Bo

na
ir

e
G

ha
na

Th
e 

Ba
ha

m
as

Ba
ng

la
de

sh
Th

ai
la

nd
G

ua
m

Sp
re

ad
 r

at
e

Countries

Gamma (P.1) 

A B

C

Fig. 3   Shows the spike protein to the Omicron variant and the rate of 
spread with other variants: A. Amino acid changes change the 3-D 
structure of a spike. B. Monitoring of Omicron by country penetra-

tion rate. C. Representation of the comparative scatter rates SARS-
CoV 2 variations: Alpha, Beta, Gamma, and Delta sequentially. Data 
available on GISAID (https://​www.​gisaid.​org/)
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infectivity of SARS-CoV 2, which carries this mutation 
(Grubaugh et  al. 2020), (Weissman et  al. 2020). The 
biology of SARS-CoV 2 is significantly affected by the 
D614G mutation, and the development of new tools to 
identify it quickly and accurately is crucial. SARS-CoV 2 
and its D614G mutation are essential to contain the pan-
demic. Researchers have used surface plasmon resonance 
(SPR) as a potential tool to study how the binding of the 
protein from SARS-CoV 2 to human ACE2 is affected by 
the D614G mutation (Yurkovetskiy et al. 2020; Zhang 
et al. 2021). Like antibodies, the N protein of SARS-CoV 
2 can be detected using aptamers in ELISA and colloidal 
immunochromatographic gold strips (Zhang et al. 2020b). 
According to a study using fiber optic biosensors, SARS-
CoV 2 may be identified in vivo. The suggested catheter-
like probe is designed to eliminate the requirement for 
sample storage and other ancillary issues (Biswas 2021). 
Figure 4 shows the D614G mutation of SARS-CoV 2 and 
the surface spike (S) protein structure.

Spike protein and infection

The coronavirus infection cycle begins with receptor bind-
ing and membrane fusion, which are critical. SARS-CoV 2 
is covered with spike proteins. The S protein facilitates viral 
attachment to ACE2 as a cellular receptor during virus entry. 
Then, a type 2 TM serine protease helps the virus enter the 
host cell. Polyproteins are formed when the virus’ RNA 
genome enters the cell and is translated into single-stranded 
RNA. The viral genome replication and transcription take 
place in the following stage by cleaving viral proteins and 

assembling the transcription complex (RTC). Ultimately, the 
host cell assembles the viral DNA into proteins, which are 
then packaged and released into the environment. In addi-
tion, virions from infected cells can infect new cells (Zandi 
et al. 2021; Boopathi et al. 2021; Hasan et al. 2021). How-
ever, several well-designed trials and promising results are 
required to ensure such a procedure. Indeed, investigating 
the virus’ propagation is critical for avoiding future out-
breaks. The COVID-19 virus spreads faster than the SARS-
CoV virus and quickly attacks those previously infected (Fu 
et al. 2020). Figure 5 illustrates the mechanism by which the 
SARS-CoV 2 spike protein enters the host cell.

Distribution mutations of SARS‑CoV 2 spike

 The spiking protein consists of an N-terminal S1 subunit 
and a C-terminal S2 subunit located near the membrane. The 
S1 subunit comprises the S1A, S1B, S1C, and S1D domains. 
The S1A domain, sometimes referred to as the N-terminal 
domain (NTD), detects carbohydrates such as sialic acid 
required for viral attachment to the host cell membrane. 
The SARS-CoV 2 spike protein’s S1B domain, commonly 
referred to as the receptor-binding domain (RBD), interacts 
with the human ACE-2 receptor (Zhang et al. 2020a; Wang 
et al. 2020a). Human SARS-CoV 2 spike proteins have been 
shown to contain mutations and changes at the glycosylation 
site (Kaushal et al. 2020). Research indicates that the D614G 
mutation is a proportionally more common mutation (Korber 
et al. 2020; Plante et al. 2021; Yang et al. 2021). Figure 6 
shows the mutation density calculated as a function of the 
number of unique mutations found for each sequence length 

Fig. 4   D614G mutation of 
SARS-CoV 2 and the surface 
spike (S) protein structure
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corresponding to the various regions of the spike protein as 
a function of the length of the sequence. In the spike pro-
tein, the protease cleavage site (between residues 675 and 
692) is associated with the highest possible mutation density. 
Viruses that are proteolytically cleaved by a large number 
of host enzymes can benefit from changes that occur at this 
point in the spike protein during their evolutionary develop-
ment. Furthermore, the NTD (S1A domain) is another part 
of the spike protein in which mutations have accumulated in 
a more significant number than the rest of the sequence of 
the spike protein. Despite the significant number of SARS-
CoV 2 spike protein sequences, it is now accessible in the 

NCBI virus database to better understand the current spike 
protein mutation scenario (https://​www.​ncbi.​nlm.​nih.​gov/​
labs/​virus/​vssi/).

AI enabled by photonics technologies

Artificial neural networks (ANN) that can mimic the struc-
tural, functional, and biological properties of human neural 
networks are urgently needed to meet the growing needs 
of brain research and artificial intelligence (Zhang et al. 
2019). Nanophotonics is a potential technique for studying 

Fig. 5   Illustrate the mechanism 
of Spike protein SARS-CoV 2 
to enter the host cell

Fig. 6   Mutations areas in spike 
protein
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biological neural networks (BNNs) using optical imag-
ing. The advancement of optical imaging, in particular the 
development of super-resolution optical far-field micros-
copy (awarded the Nobel Prize in Chemistry in 2014), 
has sparked interest in neural networks on the nanoscale 
(Hell and Wichmann 1994; Betzig et al. 2006). Photonic 
biosensor technologies have high precision, low-cost, ease 
of use, and ready-to-use mode. Thus, it can be necessary 
to rapidly detect harmful viruses like COVID-19 and give 
creative techniques to suppress emerging viral outbreaks 
(Lukose et al. 2021; Taha et al. 2020; Taha 2021; Samarrai 
et al. 2021; Serag and El-Zeftawy 2021). The development 
of intelligent systems such as biological neural networks 
(BNNs) continued shortly after the invention of the mod-
ern computer. Most research on artificial neural networks 
is carried out through computer software simulations. Von 
Neumann computers are used in most of this work. The idea 
of ​​using electronic or photonic hardware to look like BNNs 
was first suggested in the late 1980s (Psaltis et al. 1990; 
Mead 1990). Light has unique characteristics such as maxi-
mum transmission speed, no mutual interference side effects, 
and optical signals can be time-multiplexed (Deng and Liu 
2014). Integrated optical circuits on a chip provide an appro-
priate platform for high-compactness, high-stability ANNs. 
It can fabricate integrated lasers, photodetectors, and non-
linear optical devices (Mesaritakis et al. 2016). It provides 
several advantages for establishing free space and waveguide 
interconnections, notably high bandwidth, low loss, and low 
crosstalk. Photodetectors can form photonic somas to trans-
fer optoelectrical and electro-optical signals (Tait et al. 2017; 
Shen et al. 2017). In addition, modulators and light sources 
(LED and laser) include lasers, optical amplifiers, saturable 
absorbers. Optical switches such as holograms and Mach 
Zehnder interferometers (MZI) can perform the weighing 
function (Rosenbluth et al. 2009; Li and Cai 2010; Muhanad 
Fadhel et al. 2021). Artificial intelligence-based face mask 
classification algorithms have been developed to help man-
age the COVID-19 pandemic. It used a mask detector that 
evaluates whether or not a person is wearing a mask using 
a machine learning face classification algorithm. It can be 
connected to a surveillance system to guarantee that only 
mask-wearing individuals are admitted (Gupta et al. 2021). 
A smart sensor system based on machine learning tech-
niques and data collection devices has also been designed. 
Computational sensing systems reduce the data load and at 
the same time improve sensing capabilities, allowing inex-
pensive and compact sensors (Ballard et al. 2021). On the 
other hand, there are many applications of photonics (Xin 
et al. 2020), such as optical fiber tweezers were devised for 
the trapping and manipulation of small objects ranging from 
dielectric particles (Constable et al. 1993; Zhao et al. 2020). 
Carbon nanotubes and metallic particles are implanted in 
biological targets such as single cells, viruses, and bacteria 

(Zhang et al. 2018; Li et al. 2015). Furthermore, evanescent 
fields around optical waveguides/subwavelength optical fib-
ers allow long-distance propagation and detection of nano-
particles and microbes (Yu et al. 2018; Muda et al. 2018). 
The combination of fiber optic and fluidic forces in an opto-
fluidic platform enables size-dependent sorting of nanopar-
ticles and shape-selective bacterial sieving (Xin et al. 2013; 
Shi et al. 2018a). A strategy to search for bacterial binding 
agents such as antibodies is also used at the single-bacterial 
level (Shi et al. 2018b).

COVID‑19 diseases monitoring system

The rural area of many developing nations lacks access to 
high-quality health services. Thus, it causes early death 
due to several undiagnosed and untreated conditions. 
Detecting infectious diseases early is critical to contain 
disease transmission through increased self-isolation and 
early treatment. Currently, most diagnostic techniques 
involve collecting nasal secretions, saliva, or blood, fol-
lowed by a nucleic acid-based test to detect ongoing infec-
tions or blood-based serological detection for previous ill-
nesses. For nucleic acid-based diagnostics, despite their 
remarkable sensitivity, samples may be required that are 
collected several days after exposure to obtain clear posi-
tive evidence (Sethuraman et al. 2020). In addition, they 
cannot be used cost-effectively over the long term and are 
hampered by the increasing scarcity of critical reagents. 
Disposable wearable devices are an accurate and widely 
used technology for determining individual baseline health 
indicators to detect significant deviations from baseline 
physiology at the onset of an infection (Li et al. 2017; 
Dunn et al. 2018). Given the above, we recommend the 
following: First, understanding the virus better is needed 
to identify, diagnose, and predict mutations. Second, 
monitoring and contact tracing help prevent or delay the 
transmission of the virus. Third, coping with health crises 
through individualized information and education. Fourth, 
assessing the recovery process and improving early warn-
ing systems. A specific study has shown that the risk of 
SARS-CoV 2 infection from a single point of contact is 
low. It is mentioned that repeated testing of such surfaces 
could give an early warning of impending breakouts (Har-
vey et al. 2021). In other studies, SARS-CoV 2 has been 
shown to be viable on surfaces for up to 28 days in labora-
tory tests with high initial viral loads and under optimal 
environmental conditions, with half-lives of hours to days 
on plastic and stainless steel (Kampf et al. 2020; Zou et al. 
2020; Aboubakr et al. 2021). Although eye cells express 
the ACE2 receptor, these researchers believe that eye infec-
tion or tear-induced virus spread would be quite rare. It is 
hypothesized that tears would wash away the virus and that 
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an immune response in the eyes led by antibodies and a 
protein called lactoferrin would prevent widespread infec-
tion (Liu and Sun 2020). Finally, in most COVID-19 vac-
cines, spike proteins stimulate antibody production, either 
made with an adjuvant or encoded in messenger RNA or 
DNA encoded in an adenoviral vector. The difficulty with 
this strategy is a potential problem. On the other hand, 
spike proteins are key to stopping the pandemic, and our 
approach has been summarized below.

Pillar 1: A. Photonics detection: Nano-sized scatter sig-
nals are weak due to their tiny size and optical wave-
length, making it impossible to observe nano-sized 
objects with light methods directly. Various techniques 
have been employed to address this issue. Many papers 
have been published on bio-sensing for SARS-CoV-2, 
which uses direct immunoassays for amplification-free 
DNA or RNA biosensing (Pinheiro et al. 2021). Further-
more, many studies indicate single-molecule and parti-
cle detection on actual portable microscopy platforms 
such as a smartphone based on fluorescence (Wei et al. 
2013), a 3D printed platform for free lens holographic 
imaging (McLeod et al. 2014), a smartphone based on 
fluorescence spectroscopy (Yu et al. 2014), a smartphone 
based on plasmonic nanohole array (Cetin et al. 2014), a 
smartphone based on dark-filed microscopy (Sun and Hu 
2018), a smartphone based on surface-enhanced Raman 
spectroscopy with cloud network (Mu et al. 2019), home-
made smartphone using total internal reflection micros-
copy (Varra et al. 2020), and multi-modal smartphone 
(bright-field, oblique illumination dark-field, and total 
internal reflection dark-field) on a single platform (Rabha 
et al. 2021). An optical sensor device connecting through 
the 5 G network allows the Internet of Things (IoT) to 
identify single nucleic acids SARS-CoV 2 (Guo et al. 
2021). Microfluidics is a significant advantage for porta-
ble optical detection employing fluorescent tags. It allows 
for quick mixing, filtration, and other liquid sample prep-
aration on tiny amounts in the field. Mobile microscopy 
and spectroscopy systems can be combined with opto-
fluidic chips for assay methods (Yang et al. 2019). There 
are also optical waveguides method using spectroscopy 
(Wang et al. 2020b).
B. Optical band pass filter ( pinhole): pinhole collima-
tors or practical diameter concept is used to image nano-
particles and tiny biological (Metzler et al. 2001). This 
study aimed to determine whether pinhole micro-single-
photon emission computed tomography (PM-SPECT) 
can accurately diagnose certain medical conditions. The 
results show an exact localization and quantification of 
the viral infection and are able to replace more time-con-
suming and expensive analyses (Penheiter et al. 2012). 
Other than that, single-photon emission through a pinhole 

computed tomography are used to support the develop-
ment of novel equipment for biological assessment (Wu 
et al. 2003). Pinhole collimator for imaging of tiny ani-
mals of different sizes was also successfully designed. 
The results indicated the high resolution and efficiency 
of the detection (Seng Peng et al. 2005). Multi-pinhole 
fluorescence x-ray computed tomography using a 2-D 
detector and full-field volumetric beam are used to expe-
dite data acquisition and improve signal-to-noise ratios 
for molecular imaging projections. The system detected 
a concentration of 0.038 mg/ml in vivo imaging (Sasaya 
et al. 2017).
C. CMOS/APS technology: CMOS image sensors are 
used in various medicalapplications; CMOS imaging sys-
tems have attracted significant interest fromcompanies 
and universities due to the growing demand for compact 
and low-powerimaging systems. In addition, CMOS 
image sensors have better integrationcapabilities com-
pared to charge-coupled devices (CCDs) (Campos 2011). 
DNA microarray detection based onCMOS technology 
is reported. The methodology used an integrated active-
pixelsensor (APS) to detect a change in thickness when 
an invisible nanoparticle wasat the same spot as precisely 
matched DNA samples. In addition, the platform sensi-
tivitymay be increased by using a longer silver deposi-
tion duration and can detect alow concentration of 10 pM 
(Wang et al. 2005). A study showed tested an ArrayPixel 
Sensor (APS) to build a detector for transmission elec-
tron microscopy (TEM). The result was that the APS 
could make a short readout time, therebyproviding data 
collection at a much higher rate than a standard CCD-
basedcamera (Milazzo et al. 2005). Researchers presenta 
neuromorphic active pixel image sensor array (NAPISA) 
chip using an oxidesemiconductor that emulates human 
visual memory. The methods may successfullyshow the 
visual memory and forgetting characteristics utilizing the 
pulsedlight stencil approach without any software or sim-
ulation. It will be helpfulto other neuromorphic devices 
and systems for next-generation artificialintelligence 
technologies (Hong et al. 2021). A novel active-pixel 
sensor for electron counting in cryo-EM has success-
fully integrated the camera toacquire single-particle and 
tomographic cryo-EM data automatically. The resultss-
how that enabling the high-speedgathering of highsignal 
noise ratio and ease of use of on-chip electron counting 
lowers theoverall cost of this camera, making high-reso-
lution cryo-EM equipment moreaffordable (Bammes and 
Bilhorn 2021).
Pillar 2: Connection: Fiber optic technologies enable 
remote detection and control of virus epidemics through 
surface/environmental testing and in vitro diagnosis of 
human diseases (Taha et al. 2021b). Our proposed pho-
tonic system, based on artificial intelligence to track and 
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detect COVID-19 on surfaces, will assist medical teams 
by providing real-time monitoring and detection, improv-
ing the efficiency and accuracy of optical biosensors, and 
improving the quality of healthcare in public spaces such 
as Universities, Supermarkets Ports, and Food Quality 
Checks.
Pillar 3: Big data empowering: Expanding medical pro-
cedures and activities during the COVID-19 pandemic, 
including remote monitoring, remote screens, remote 
consultation, and remote management, can improve the 
estimation and control of SARS-CoV2 mutations. Opti-
cal fiber cables are suitable for extended transmission 
operations, data, and communication networks. Opti-
cal fiber is the transmission medium of choice for most 
backbone providers in developed countries due to its key 
advantages: high bandwidth, higher speed, high reliabil-
ity, and security. Intelligent optical networks that collect 
vast amounts of data from detection lasers are the link 
between hospitals and endpoint locations. In addition, 
laser-based optical detection can help in the future with 
environmental monitoring, measuring virus concentra-
tions in the air, and checking food quality. For example, 
data for COVID-19 tracking can be collected via an intel-
ligent network of medical biosensors, which improves 
the quality of healthcare. Integrating telehealth services 
to meet COVID-19 requirements and validating healthcare 
technologies are critical steps to improve utility and com-
plete the implementation of clinical virus assessment sys-
tems. Telemedicine technology is being discussed to track 
COVID-19 patients with mild symptoms who are sent 
home to recover, to monitor COVID-19 patients at home 
and at risk of deterioration due to disease progression. Tel-
emedicine systems have reduced the risk of hospitalization 
delays due to the spread of the disease and helped patients 
self-assess. The telemedicine approach lowered the dan-
ger of late admission owing to illness spread and aided 
patients in self-evaluation. Patients can keep the multidis-
ciplinary team informed via online telehealth forms (Xu 
et al. 2020). Developing a system to manage emergency 
dental treatment patients using recent research and previ-
ous experiences, the authors offered general information 
about the COVID-19 illness and recommendations for 
treating emergency dental operations to prevent cross-
infections in the dental office. They also discussed their 
experience and the possibility of telemedicine for dental 
practitioners (Giudice et al. 2020). Telehealth was advised 
to screen suspicious patients to reduce exposure risks and 
maximize medical staff protection. This study devised a 
method to decrease COVID-19 exposure in the emergency 
room. First, in compliance with a telehealth screening 
policy, the patient examination room is equipped with an 
intercom and iPad tablets for communication. Second, 

through intercom or video conferencing, physicians are 
able to make visual assessment of patients (Chou et al. 
2020). The possible dangers in teleconsultation services 
during the COVID-19 epidemic and how to avoid them 
are highlighted. They examined the future of telehealth in 
health care systems and proposed acceptable settings with 
improved documentation, adequate training, information 
exchange, and observation criteria to minimize remote 
consultation concerns (Iyengar et al. 2020). The assessed 
teleconsultation system was in plastic surgery clinics dur-
ing the COVID-19 epidemic. Plastic surgeons received 
a survey to evaluate the efficacy, modality, safety, and 
usability of virtual consultations. The data suggested that 
teleconsultation was both time and cost-effective, allowing 
patients to continue receiving therapy (Sinha et al. 2021). 
Finally, some challenges include telehealth data privacy 
and security, a lack of integration of telehealth systems, 
telehealth infrastructure, tele examination equipment, and 
a clear path to use telehealth after COVID-19 (Negrini 
et al. 2020). Improving telehealth infrastructure and sys-
tems will help provide more excellent quality treatment 
and control to many patients. Our objective is to obtain 
direct detection of the SARS-CoV 2 virus without the 
requirement for sample preparation or molecular ampli-
fication techniques. Furthermore, by connecting via the 
5G network, testing for COVID-19 becomes a part of the 
Internet of Healthcare Things as shown in Fig. 7.

Conclusions

The COVID-19 epidemic has spread rapidly around the world 
since 2019, and people’s lives are becoming more difficult 
and uncomfortable because of the epidemic. Numerous peo-
ple have died as a result of this infection. One of the reasons 
the virus is spreading is the scarcity of antiviral drugs. This 
disease spreads constantly and quickly from infected people 
through common acts such as breathing, coughing, and sneez-
ing. The main symptom is regular flu and loss of taste and 
smell. In summary, the integration of lighting technologies 
into artificial intelligence systems contributes to the three 
main benefits: the ability to identify and isolate infected indi-
viduals, track viral mutations by detecting genetic sequencing 
changes, and monitor contaminated surfaces. In addition, pho-
tonic technology can enable the capture and transmission of 
big data, where data can be transmitted from anywhere. As a 
result, future biological applications will benefit from the use 
of photonics. Photonics has already made significant advances 
in biological research from in vitro to in vivo. It is forecast that 
optical technology will continue to have many new positive 
effects in various fields in the coming years.
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