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Abstract: Green route is an economic, facile and eco-friendly method, employed for the synthesis
of various types of nanoparticles, having it as a starting point biological entity, especially as a plant
extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic
extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural
characterization exhibited that both the reaction temperature and the concentration of metal salt,
contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized
nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal
activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell
lines (breast cancer cells—MCF7 and lung carcinoma epithelial cells—A549). Results have shown that
the green-synthetized Pg-AgNPs_S2 (obtained at 60 ◦C, using AgNO3 of 5 M) induced a substantial
decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to
5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.

Keywords: green synthesis; Populus nigra L.; silver nanoparticles; antimicrobial potential;
antiproliferative activity
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1. Introduction

Nowadays, nanotechnology is receiving more and more interest as a field of study deal-
ing with the production of nanomaterials, useful in a variety of areas including biomedicine,
drug-delivery, bioimaging, pharmaceutic, optoelectronics, catalysis, bio-sensing devices,
food technology and cosmetology, due to their high biocompatibility, rapid productivity
and cost-effectiveness [1–9]. Nanotechnology is considered an important tool in the pro-
duction of materials with interatomic structural features. Nanoparticles (NPs) are atomic
or molecular scale solid materials that exhibit superior physical characteristics in com-
parison to bulk materials, relying on their size and shape [10]. Owing to their tailorable
physicochemical properties, NPs may be used in the pharmaceutical industry to improve
drug delivery and regulate drug release [11]. Especially, NPs of gold (Gd), silver (Ag) or
platinum (Pt) (noble metals), are recognized to gain popularity due to their outstanding
properties and versatility [12]. When compared to larger particles with the same chemical
composition, AgNPs possess a significant surface area, which results in notable activity
(biological and/or catalytic), and atomic behavior [13]. Numerous techniques for the
generation of NPs have been documented, including chemical (precipitation, reduction,
sol-gel or polyol synthesis) and physical approaches (microwave-assisted combustion, laser
pyrolysis or laser evaporation) [14,15]. Although their widespread usage, chemical and
physical procedures have multiple disadvantages, such as: the use of toxic raw materials,
the emanation of hazardous secondary products, increased production cost and limited
yield [14]. To address the aforementioned issues, the approach of green bio-synthesis of
NPs is regarded as state of the art within the nanotechnology field [16]. Biological synthesis
referred to as green synthesis, outperforms conventional synthesis methods by being a
simple, cheap, viable and biocompatible technique. It is regarded as environmentally
and ecologically sustainable since it makes use of readily accessible resources such as
fungus, bacteria, algae or plant extracts that serve as reducing and/or capping/stabilizing
agents [17]. Moreover, it’s also simple to scale up, employs nontoxic solvents and is devoid
of unwanted by-products [14,15,18–20].

The Plant Kingdom is well recognized for producing plant-derived NPs due to the
large number of phytocompounds contained in plant extracts, such as aldehydes, ketones,
amides, flavonoids, carboxylic acids, phenols, terpenoids and ascorbic acids [21]. Up to
this point, NPs have been synthesized using a wide variety of plant extracts (e.g., Ocimum
sanctum L., Ginkgo biloba L., Equisetum arvense L. leaves extract, Salvia hispanica L. seed
extract; Bauhinia acuminate L., Datura inoxia Mill. flower extract, etc.) [15,22–27]. Plant-based
techniques include combining a plant extract with the aqueous solution of a metal salt. This
procedure occurs at room temperature, and might take anything from a few minutes to a
few hours to finish [28].

Green chemistry techniques for AgNPs synthesis have recently advanced, demon-
strating promising activity in the medical field due to their anticancer, anti-inflammatory,
anti-diabetic, antimicrobial, anti-angiogenic, wound-healing and anti-coagulating prop-
erties [29,30]. For instance, the group of Sankar et al. [31], has obtained AgNPs using
Origanum vulgare L. aqueous extract, which has been shown to possess antibacterial and
anticancer activities in a dose-dependent manner. Moreover, AgNPs produced from Salvia
officinalis L. extract have been shown to possess an effective anti-angiogenic potential when
applied to chick chorioallantoic membrane (CAM) by decreasing blood hemoglobin lev-
els [32]. Additionally, plant-based AgNPs have emerged as strong antibacterial agents
owing to their efficiency, which exceeds that of commonly used antibiotics. For instance,
Abalkhil et al. [33] synthesized AgNPs from Aloe vera L., Portulaca oleracea L. and Cynodon
dactylon L. aqueous extracts and assessed their antibacterial activity towards Gram-positive
and Gram-negative human pathogenic bacteria. The research group demonstrated that
cell wall destruction was the primary event occurring during the antibacterial activity of
AgNPs. Moldovan et al. [34] used Viburnum opulus L. fruit extract to produce AgNPs. They
have shown an in vitro anti-inflammatory effect against the human epidermal keratinocyte
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(HaCaT) cell line. The synthesized AgNPs from Viburnum opulus L. exhibited an inhibitory
effect against cyclooxygenase (COX), a key mediator of inflammation.

Populus nigra L. (Populi gemmae), popularly known as the black poplar tree, is a resource-
ful participant of the Salicaceae family. The Populus genus is made up of about 40 species
that are found across the world, particularly in Europe and Asia [35]. Different types of
extracts obtained from leaves and bark of Populus nigra L. may all be employed as active
components in pharmaceuticals, although in recent years, the resinous buds have been in
the spotlight of numerous research studies [36–38]. Due to their extensive phytochemical
profile, black poplar buds have been used in ethnopharmacology to treat several diseases
namely, bronchitis, cough, tracheas, laryngitis, sore throat, ulcers, hemorrhoids, anal fis-
sures, rheumatism, etc. This vegetal product has been endowed with anti-inflammatory,
antipyretic, analgesic, antiallergic, antimicrobial, expectorant and capillary-protective prop-
erties [39–41]. Starting from these foundational shreds of evidence, an ever-growing num-
ber of research studies have portrayed novel pharmaceutical applications of black poplar
buds serving as an antioxidant, antibacterial, antifungal, anti-inflammatory, antidiabetic,
anticancer, hepatoprotective and hypouricemic agents [38,42–46].

In this context, the goal of the current study consists of the preparation through green
synthesis and structural characterization of two types of Ag nanoparticles, starting from an
ethanolic extract of Populi gemmae, as well as the preliminary assessment of the antibacterial
and antiproliferative (on two different cancer cell lines—breast cancer cells (MCF7) and
lung carcinoma epithelial cells (A549) potential.

2. Experimental Part
2.1. Populi Gemmae Extract Preparation

Populi gemmae (Pg) were harvested from the western part of Romania (Timis, oara,
coordinates: 45◦44′58′′ N latitude, 21◦13′38′′ W longitude) and identified at the Faculty
of Pharmacy, “Victor Babes, ” University of Medicine and Pharmacy Timisoara (voucher
specimen code Pg 3/2019). The extraction methodology was extensively detailed in a
previous study, conducted by our research team [38]. First, 100 mL of 70% ethanol was
added to 10 g of dried and ground plant material and left to soak for 10 min. at 24 ◦C. For a
more efficient extraction, the mixture was introduced for 30 min. in the ultrasonic water
bath (at 50 ◦C) (FALC LBS 2, Treviglio, Italy). Filtration was performed using a vacuum
pump (Vacuubrand) through filter paper (Whatman no. 4). After sonication, the ethanolic
mixture was concentrated in a rotary evaporator (HEIDOLPH Laborata 4000 efficient WB
eco, Schwabach, Germany), at 50 ◦C and reduced pressure. The solid extract obtained
was placed in an oven (Genlab N40c, Widnes, England) for several hours at the same
temperature, in order to achieve better drying. Finally, 2.300 g of Pg extract was obtained.
The sample was deposited in the freezer at −4 ◦C until use [47].

2.2. Green Synthesis of AgNPs from Populi gemmae Extract

In order to prepare AgNPs by green synthesis, the slightly modified protocol of Ruiz-
Baltazar et al. was employed [48]. Aliquots of Pg extract (10 mg/mL) were dispersed in
70% ethanol and subjected to a magnetic stirrer, using a magnetic bar. Over the first sample
(S1) at 25 ◦C and 250 rpm was added an aqueous solution of 1 M AgNO3 in a thin thread
and the whole mixture was left for 2 h at magnetic stirring. Over the second sample (S2)
at 60 ◦C and 500 rpm was added an aqueous solution of 5 M of AgNO3 in a thin thread,
following the mixture to stand for 2 h at thermo-magnetic stirring. The volume ratio of
AgNO3:Pg extract was 1:2 in both cases. After 2 h, the color change of the post-reaction
mixtures occurred, from light brown to black-brown, which confirmed the reduction of
AgNO3 to AgNPs. The synthesized Pg-AgNPs_S1 (obtained at 25 ◦C) and Pg-AgNPs_S2
(obtained at 60 ◦C) starting from Pg ethanolic extract, were separated by centrifugation
6000 rpm for 30 min, and dried at 40 ◦C, using an oven (POL-EKO Aparatura, Wodzisław
Slaski, Poland). Both formed Pg-AgNPs were further physicochemical analyzed.
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2.3. Physicochemical Characterization of Pg-AgNPs

After biosynthesis, both types of nanoparticles were subjected to thermal analysis
in order to assess the stability of phytocompounds from Pg extract and of pre-formed
Pg-AgNPs. The thermal behavior of samples was studied using a Netzsch STA 449 C
instrument (Netzsch-Gerätebau GmbH, Selb, Germany), in the range of 10–1000 ◦C and a
20 mL/min flow rate of air atmosphere. To record the thermogravimetric (TG, Netzsch-
Gerätebau GmbH, Selb, Germany), derivative thermogravimetric analysis (DTA, Netzsch-
Gerätebau GmbH, Selb, Germany) and differential scanning calorimetry (DSC, Netzsch-
Gerätebau GmbH, Selb, Germany) curves, aluminum crucibles were used.

The functional molecules who participated in the formation of Pg-AgNPs were
recorded by Fourier-transform infrared spectroscopy (FT-IR), using a Shimadzu Prestige-21
spectrometer (Shimadzu Europa Gmbh, Duisburg, Germany), at 24 ◦C. The FT-IR spec-
trometer operated at a resolution of 4 cm−1 within the range of 400–4000 cm−1, using
KBr pellets. The interpretation of the bands revealed by FT-IR spectra was accomplished
in accordance with the Characteristic IR Absorption Frequencies of Organic Functional
Groups [49].

The aspects regarding morphology and ultrastructure of Pg-AgNPs were determined
by scanning electron microscopy (SEM), using a Hitachi SU8230 cold field emission gun
STEM (Chiyoda, Tokyo, Japan) microscope with EDX detectors X-MaxN 80 from Oxford
Instruments (Abingdon, UK), in high-vacuum mode (HV) and acceleration voltage 200 kV.
The identified chemical species, expressed in atomic percent (At%), were assessed by EDX.
The particle sizes of Pg-AgNPs were evaluated by transmission electron microscopy (TEM,
Chiyoda, Tokyo, Japan), using a Hitachi HD2700 cold field emission gun STEM (Chiyoda,
Tokyo, Japan) equipped with two windowless EDX detectors (X-MaxN 100).

2.4. Antimicrobial Activity Tests

The antimicrobial activity for tested compounds was initially assessed by disk diffu-
sion method followed by dilution method [38,50–52]. The selected strains are the following:
Streptococcus pyogenes (ATCC 19615), Staphylococcus aureus (ATCC 25923), Escherichia coli
(ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (ATCC 10231) and
Candida parapsilosis (ATCC 22019).

2.4.1. Disk-Diffusion Method

The microbial suspensions were prepared to a concentration of 0.5 McFarland, then
0.1 mL of each suspension were inoculated on Mueller–Hinton agar plates (bioMérieux,
Marcy-l’Étoile, France), supplemented with sheep blood (for Streptococcus strain) or methy-
lene blue and glucose (for Candida species). Three blank disks (BioMaxima, Lublin, Poland)
impregnated with 0.01 mL of each compound were added on the top of the agar inoculated,
central. The plates were incubated at 35 ± 2 ◦C, for 24 h. The sensitivity was considered for
a diameter larger than 15 mm.

2.4.2. Determination of the Minimum Inhibitory Concentrations (MIC) and the Minimum
Bactericidal Concentrations (MBC) or Minimum Fungicidal Concentrations (MFC)

The MIC was determined by dilution method in Mueller–Hinton broth (supplemented
according to species) using a final microbial suspension of 500,000 µorganisms/mL and
final serial dilutions of compounds from 50 to 3.125 mg/mL. After 24 h of incubation,
MIC was considered the lowest concentration without visible growth. The MBC/MFC
were determined only from the test tubes that showed no bacterial growth in the dilution
method. From these test tubes, 0.001 mL was inoculated on Columbia agar +5% sheep
blood or Sabouraud and the plates were incubated for 24 h at 35 ± 2 ◦C. The MBC or MFC
was considered for the concentration which killed 99.9% of the microorganisms.
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2.5. Cell Culture

The lung adenocarcinoma cell line (A549, ATCC® CCL-185TM) and human breast
adenocarcinoma (MCF7, ATCC® HTB-22TM) were purchased from the American Type
Culture Collection (ATCC). The A549 cells were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM; Sigma-Aldrich, Darmstadt, Germany) and the MCF7 cells in RPMI-1640
medium (ATCC® 30-2001™). Both cell lines were supplemented with 10% fetal bovine
serum (FBS; Sigma-Aldrich, Taufkirchen, Germany) and 1% penicillin/streptomycin mix-
ture (P/S, 10,000 IU/mL; Sigma-Aldrich, Darmstadt, Germany) and further preserved at
37 ◦C and humidified atmosphere with 5% CO2.

2.6. MTT Assay

The selected concentrations of Pg-AgNPs were evaluated for their in vitro anticancer
activity against A549 and MCF7 cell lines, using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) assay [53]. Approximately 1 × 105 cells/well from each
cell line were seeded in a flat-bottomed 96 well plate and allowed to adhere overnight at
37 ◦C in a 5% CO2 incubator. After incubation, the cells were stimulated with the selected
concentrations (10, 25, 50, 75, 100 and 150 µg/mL) of Pg-AgNPs (in the medium). After 24
and 72 h of incubation, respectively, the cells were treated with 10 µL of 5 mg/mL MTT
solution (Sigma-Aldrich, St. Louis, MO, USA) and were incubated for another 3 h. After
this time, 100 µL of lysis solution (from the MTT kit) was added to each well in order to
obtain the formazan crystals. Samples were left at room temperature for additional 30 min.
The absorbance was read at 570 nm, using a microplate reader (Tecan, Spectrophotometer,
Durham, NC, USA) 24 and 72 h post exposure. Control cells were considered the untreated
cells (cells treated only with cell culture medium).

2.7. Statistical Analysis

GraphPad Prism 5.0 Software (GraphPad Software, San Diego, CA, USA) and Origin
2020b (Origin Lab—Data Analysis and Graphing Software, Origin 2020b, Szeged, Hungary)
were the statistical software used in the current study. The in vitro experiments were
carried out in quadruplicate. The results were expressed as a mean ± standard deviation
(SD). For the MTT assays, the statistical differences were performed using the One-way
ANOVA test followed by Tukey’s test. A p-value of ≤0.05 was considered to be of statistical
significance (* p ≤ 0.05; ** p ≤ 0.01; **** p ≤ 0.0001). The IC50 values were determined by
employing AAT Bioquest’s online IC50 calculator [54].

3. Results
3.1. Physicochemical Screening of Pg-AgNPs
3.1.1. Thermal Behavior

Figure 1 shows the TG-DSC curves of both types of Pg-AgNPs obtained by green
synthesis, as well as the TG-DSC curves of AgNO3 and Pg ethanolic extract.

Regarding the thermal behavior of the synthesized Pg-AgNPs (Figure 1A,B), it can be
observed that independent of reaction conditions, both graphics are very similar. Both sam-
ples recorded a mass loss in two stages, but, the second stage of mass loss, is accompanied
with an exothermic effect, recorded on a DSC curve.

The first mass loss in both samples, highlighted on the TG curves, which has no
effect on the DSC curve, is due to the water elimination from the samples. In the case
of the sample Pg-AgNPs_S1, in which the AgNPs were obtained at 25 ◦C, an exothermic
effect with a maximum of 511.1 ◦C was recorded, with a mass loss of 54.74% on a TG
curve. Meanwhile, in sample Pg-AgNPs_S2, in which the AgNPs were obtained at 60 ◦C,
the exothermic effect on a DSC curve was at 463.1 ◦C, with 47.76% mass loss noticed on
a TG curve. These processes are assigned to the degradation of aromatic compounds,
carbohydrates, conjugated acids, alkenes, aromatic esters and aromatic amino acids present
at the surface of AgNPs, coming from the extract of Pg, as well as to nitrogen compounds
from AgNPs.
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Figure 1. TG—DSC curves: (A)—Pg-AgNPs_S1 curves from Pg extract at 25 ◦C by green synthesis;
(B)—Pg-AgNPs_S2 curves from Pg extract at 60 ◦C by green synthesis; (C)—Pg ethanolic dried
extract; (D)—AgNO3 curves.

In Figure 1C is, depicted. the TG-DSC curves of Pg ethanolic dried extract, extensively
explained in our previous study [38]. It can be observed that the thermal behavior of Pg
extract is similar with those of Pg-AgNPs, in the temperature range of 400–800 ◦C, when
the Pg extract complete degradation take place due to the largest mass loss recorded on a
TG curve (44.2%) alongside with the exothermic effect (547.3 ◦C), recorded on a DSC curve.
After 800 ◦C no mass loss or exothermic process were noticed.

Regarding the thermal behavior of AgNO3 (Figure 1D), it can be observed an en-
dothermic effect at 174.3 ◦C on a DSC curve, without mass change on a TG curve. This
process corresponds to the polymorphic transformation of AgNO3. Another endothermic
effect recorded with mass change can be observed at 214.5 ◦C on a DSC curve, which
corresponds to solid AgNO3 melting to liquid AgNO3. The last endothermic effect noticed
on a DSC curve, recorded at 462.8 ◦C, with a mass loss of 36.32% highlighted on a TG curve,
corresponds to the decomposition of AgNO3 in metallic Ag and nitrogen oxides. Regarding
all three graphics (Figure 1A,B,D), at around 960 ◦C can be observed an endothermic effect,
without mass loss on TG curves, in which take place the metallic Ag melting, a process
noticed also in the photographs overlapped on the first two graphics (Figure 1A,B).

3.1.2. FT-IR Investigations

The FT-IR analysis was performed in order to determine the functional molecules of
Populi gemmae ethanolic extract which act as capping and reducing agents, being involved
in the green synthesis of AgNPs. The evidence of the phytocompounds associated with
the Populi gemmae showed by FT-IR spectra AgNPs obtained, is presented in Figure 2.
As showed in Figure 2, the FT-IR spectrum of Pg-AgNPs_S1 (Figure 2A) was similar to
the FT-IR spectrum of Pg-AgNPs_S2 (Figure 2B). For comparison, we attached the FT-IR
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spectrum of the Pg ethanolic dried extract (Figure 2C), explained in detail in a previous
study published by our research team [38].
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ethanolic dried extract; (D)—AgNO3 spectrum.

From the FT-IR spectra of both Pg-AgNPs (Figure 2A,B), it can be seen that, the peaks
recorded at 2920.23 and 2850.79 cm−1, corresponds to the C-H stretching vibration of satu-
rated aliphatic groups from Pg extract (recorded at 2926.01 and 2854.65 cm−1—Figure 2C).
The band around 1700 cm−1 corresponds to C=O stretching vibration of conjugated acids
formed at the surface of Pg-AgNPs, observed at 1685.79 cm−1 on Pg extract FT-IR spectrum.
It can be observed in the AgNO3 spectrum (Figure 2D) a band located at 1761.01 cm−1,
due to the conjugation of acids, the absorption peaks are moved to a lower wavenumber
(1707.00 cm−1 in the case of Pg-AgNPs_S1 and 1701.22 cm−1 in the case of Pg-AgNPs_S2).
The peaks recorded around 1600 cm−1 are assigned to the C=C stretching vibration from
aromatic compounds contained in Pg extract, due to the multiple bands recorded and the
medium-weak intensity of the peaks. The peaks around 1500 cm−1, as well as the peaks
around 1300 cm−1, are attributed to the N-O stretching vibration; these peaks demonstrate
that the AgNPs were synthesized. The medium intense bands recorded around 1400 cm−1

on both Pg-AgNPs spectra (Figure 2A,B) are associated with the C-N stretching vibration of
the aromatic amine groups. The aromatic amine groups are evidenced on Pg extract FT-IR
spectrum at 1267.23 as well as 1163.08 cm−1 (Figure 2C). The absorbance peaks evidenced
by FT-IR on both spectra, located between 1300–1000 cm−1, indicate the residual moieties
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of the phytocompounds present in Pg extract, which are found on the surface of the formed
Pg-AgNPs, namely carbonyl acids (C-O stretching vibration bands); phenolic acids (C-N
bands from aromatic amines); monoterpenes and non-terpenes (C-O stretching vibration
bands from alcohol function groups); flavonoids/flavonols (C-O stretching vibration bands
from aromatic esters functional groups). The rest of the absorbance peaks located between
400–1000 cm−1, on both Pg-AgNPs spectra (Figure 2A,B), are assigned to alkene functional
groups (bending vibration of =C-H bands from aldehydes and/or to the stretching vibra-
tion of C-Cl/C-Br bands from halo compounds). These peaks are also noticed on Pg extract
FT-IR spectrum (Figure 2C).

On both spectra of Pg-AgNPs, can be appreciated the presence of several peaks at
698.23 cm−1 vs. 696.30 cm−1; 833.25 cm−1 vs. 831.32 cm−1; 765.74 cm−1 vs. 761.88 cm−1,
which corresponds to the stretching vibration of N-O in plane from (NO3)−1 ion. In addition,
on FT-IR spectrum of AgNO3 (Figure 2D), it can be observed a peak at 821.68 cm−1. This
result represents another confirmation that the AgNPs in both samples were synthesized.

3.1.3. Electron Microscopy Analysis

Figure 3A,B shows representative SEM images of Pg-AgNPs obtained by green syn-
thesis at 25 ◦C and 60 ◦C and Figure 3C,D shows the chemical composition of Pg-AgNPs
obtained by green synthesis.
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Figure 3. SEM-EDX images of Pg-AgNPs obtained by green synthesis, at 25 ◦C (Pg-AgNPs_S1—A
and C) and at 60 ◦C (Pg-AgNPs_S2—B and D).

The nanoparticles were carefully placed on a glass coverslip and let to be air-dried,
followed by a sputter-coated with carbon using a coater (Agar Automatic Sputtercoater,
Essex, UK). Different shapes of AgNPs were obtained due to the different temperatures
set in the synthesis process as well as the different concentrations of an aqueous solution
of AgNO3 (25 ◦C and 1 M for the obtaining of Pg-AgNPs_S1 vs. 60 ◦C and 5 M for the
obtaining of Pg-AgNPs_S2). The Pg-AgNPs_S1 (Figure 3A) obtained at 25 ◦C by using 1 M
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AgNO3, are spherical or cvasi-spherical compared to the NPs obtained at 60 ◦C with 5 M
AgNO3—which seems to have an irregular shape (rhombohedral, triangular and spherical).
A similar trend is also observed in the TEM images (Figure 4A,B).

Materials 2022, 15, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 4. TEM images of Pg-AgNPs obtained by green-synthesis, starting from Pg extract, at 25 °C 
(A—Pg-AgNPS_S1) and at 60 °C (B—Pg-AgNPs_S2). 

3.2. Antimicrobial Activity 
Another purpose of this study was to analyze the antimicrobial activity of the se-

lected nanoparticles (Pg-AgNPs_S1 and Pg-AgNPs_S2), which are shown in Tables 1 and 
2. It can be seen that both Pg-AgNPs presented an antibacterial activity on Gram-positive 
bacteria as well as on fungi. Lack of activity can be seen for Pg-AgNPs_S1 on Gram-neg-
ative bacteria. Based on the different wall structures of the respective microorganisms, 
this can be elucidated by the fact that the Gram-negative bacteria have a complex mem-
brane structure (the outer membrane is non-existent in Gram-positive bacteria and fungi), 
therefore the compounds may penetrate only through its porins (if the compounds are 
large molecules they can no longer cross the membrane through the porins, as a result, 
they become inactive). 

Table 1. Antimicrobial activity of Pg-AgNPs_S1. 

Microbial Strains 
Inhibition Diameters 

(mm) MIC (mg/mL) 
MBC or MFC 

(mg/mL) 
Streptococcus pyogenes 17 25 25 
Staphylococcus aureus 16 50 50 

Escherichia coli 10 - - 
Pseudomonas aeruginosa 9 - - 

Candida albicans 17 25 25 
Candida parapsilosis 16 25 25 

Table 2. Antimicrobial activity of Pg-AgNPs_S2. 

Microbial Strains Inhibition Diameters 
(mm) 

MIC (mg/mL) MBC or MFC 
(mg/mL) 

Streptococcus pyogenes 21 12.5 12.5 
Staphylococcus aureus 20 12.5 25 

Escherichia coli 17 25 25 
Pseudomonas aeruginosa 16 25 25 

Candida albicans 18 12.5 25 
Candida parapsilosis 17 12.5 25 

The difference in the antibacterial activity between Pg-AgNPs-S1 and Pg-AgNPs-S2 
is attributed to the particle size of Pg-AgNPs. Pg-AgNPs-S1 was synthesized using 1 M 
AgNO3, resulting in nanoparticles with smaller dimensions than Pg-AgNPs-S2, which 
were designed using 5 M AgNO3. The antimicrobial effect of Pg-AgNPs on Gram-negative 
bacteria can be explained by the fact that silver nanoparticles are able to bind the lipopol-
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(A—Pg-AgNPS_S1) and at 60 ◦C (B—Pg-AgNPs_S2).

The EDX profile recorded from the Pg-AgNPs shows microelements present in the
sample (C, Ag, O and Cu), identified by the peak amplitude, from where it is observed that
the silver signal is stronger than oxygen. The strong carbon and copper signals obtained
can come from the phytocompounds bound to the surface of Pg-AgNPs, but the presence
of carbon signal is also due to the carbon sputter-coated for better conductivity. The EDX
spectra revealed the presence of peak amplitudes of silver at approximately 3 keV, 22 keV
and 25 keV.

The TEM images of Pg-AgNPs (Figure 4) obtained by green synthesis, points out the
pre-formed AgNPs starting from Pg extract. In the case of Pg-AgNPs_S1 obtained at 25 ◦C,
it can be observed that the NPs are polydisperse, spherical or cvasi-spherical with the
particle size distribution between 3 to 60 nm (Figure 4A). Regarding the Pg-AgNPs_S2,
obtained at 60 ◦C (Figure 4B), these are also polydisperse with irregular shape and particle
size distribution between 5 to 150 nm.

3.2. Antimicrobial Activity

Another purpose of this study was to analyze the antimicrobial activity of the selected
nanoparticles (Pg-AgNPs_S1 and Pg-AgNPs_S2), which are shown in Tables 1 and 2. It can
be seen that both Pg-AgNPs presented an antibacterial activity on Gram-positive bacteria
as well as on fungi. Lack of activity can be seen for Pg-AgNPs_S1 on Gram-negative
bacteria. Based on the different wall structures of the respective microorganisms, this
can be elucidated by the fact that the Gram-negative bacteria have a complex membrane
structure (the outer membrane is non-existent in Gram-positive bacteria and fungi), there-
fore the compounds may penetrate only through its porins (if the compounds are large
molecules they can no longer cross the membrane through the porins, as a result, they
become inactive).

The difference in the antibacterial activity between Pg-AgNPs-S1 and Pg-AgNPs-S2
is attributed to the particle size of Pg-AgNPs. Pg-AgNPs-S1 was synthesized using 1 M
AgNO3, resulting in nanoparticles with smaller dimensions than Pg-AgNPs-S2, which were
designed using 5 M AgNO3. The antimicrobial effect of Pg-AgNPs on Gram-negative bac-
teria can be explained by the fact that silver nanoparticles are able to bind the lipopolysac-
charides on the surface of the external membrane, thereby inducing a delayed bactericidal
response compared to the Gram-positive bacteria or Candida spp., where Pg-AgNPs pene-
trate directly into the internal structures of bacteria/fungus.
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Table 1. Antimicrobial activity of Pg-AgNPs_S1.

Microbial Strains Inhibition Diameters (mm) MIC (mg/mL) MBC or MFC (mg/mL)

Streptococcus pyogenes 17 25 25
Staphylococcus aureus 16 50 50

Escherichia coli 10 - -
Pseudomonas aeruginosa 9 - -

Candida albicans 17 25 25
Candida parapsilosis 16 25 25

Table 2. Antimicrobial activity of Pg-AgNPs_S2.

Microbial Strains Inhibition Diameters (mm) MIC (mg/mL) MBC or MFC (mg/mL)

Streptococcus pyogenes 21 12.5 12.5
Staphylococcus aureus 20 12.5 25

Escherichia coli 17 25 25
Pseudomonas aeruginosa 16 25 25

Candida albicans 18 12.5 25
Candida parapsilosis 17 12.5 25

3.3. Antiproliferative MTT Assay

The outcomes of the present in vitro cytotoxicity study against the selected cancer cell
lines (MCF7 and A549) disclosed that Pg-AgNPs can act as a potential candidate in the
management of these two types of cancer. The control group was considered to be the
cells treated only with cell culture medium. Figure 5 presents the activity of Pg-AgNPs_S1
(obtained at 25 ◦C, using AgNO3 of 1 M) against MCF7 and A549 cancer cell lines after a
stimulation period of 24 and 72 h. It can be seen that 72 h of incubation with Pg-AgNPs_S1
provoked a dose-dependent decrease in cell viability in both cancer cell lines, however, the
most affected was the A549 cell line.
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Figure 5. MCF7 and A549 cells viability after 24 and 72 h stimulation with Pg-AgNPs_S1 (10, 25,
50, 75, 100 and 150 µg/mL), (A)—24 h treatment of MCF7 cells; (B)—72 h treatment of MCF7 cells;
(C)—24 h treatment of A549 cells; (D)—72 h treatment of A549 cells. The results are expressed as cell
viability percentage (%) related to the Control cells. Comparison among groups was made using the
One-way ANOVA test followed by Tukey’s test. A p value of ≤0.05 was considered to be of statistical
significance (* p ≤ 0.05; ** p ≤ 0.01; **** p ≤ 0.0001).
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The IC50 values for Pg-AgNPs_S1 were 40.23 µg/mL and 48.92 µg/mL (for 24 and
72 h, respectively, of incubation of MCF7 cell line) as against 16.14 µg/mL and 4.39 µg/mL
(for 24 and 72 h, respectively, of incubation of A549 cell line). One can be seen that the
A549 lung cancer cell line was more sensitive to Pg-AgNPs_S1 than the MCF7 breast cancer
cell line.

Figure 6 presents the activity of Pg-AgNPs_S2 (obtained at 60 ◦C, using AgNO3 of
5 M) against the two selected cancer cell lines after a stimulation period of 24 and 72 h.
The IC50 values for Pg-AgNPs_S2 were 3.24 µg/mL and 4.93 µg/mL (for 24 and 72 h,
respectively, of incubation of MCF7 cell line) in comparison to 5.03 µg/mL and 5.07 µg/mL
(for 24 and 72 h, respectively, of incubation of A549 cell line). It can be noticed that the
MCF7 breast cancer cell line is more sensitive to Pg-AgNPs_S2 when compared to the A549
cell line. These results indicated that an increased incubation period may be associated
with significantly better results.
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Figure 6. MCF7 and A549 cells viability after 24 and 72 h stimulation with Pg-AgNPs_S2 (10, 25,
50, 75, 100 and 150 µg/mL). (A)—24 h treatment of MCF7 cells; (B)—72 h treatment of MCF7 cells;
(C)—24 h treatment of A549 cells, (D)—72 h treatment of A549 cells. The results are expressed as cell
viability percentage (%) related to the Control cells. Comparison among groups was made using the
one-way ANOVA test followed by Tukey’s test. A p-value of ≤0.05 was considered to be of statistical
significance (* p ≤ 0.05; ** p ≤ 0.01; **** p ≤ 0.0001).

In terms of the antiproliferative IC50 values, the present study shows that Pg-AgNPs_S2
were more active on both studied cell lines. Statistically significant values appeared from
3.24 µg/mL (24 h incubation time of MCF7 cells) and 5.03 µg/mL (24 h incubation time of
A549 cells). Pg-AgNPs_S1 showed a much weaker antiproliferative activity with higher
IC50 values, the statistically significant values can be observed from 4.39 µg/mL (72 h
incubation time of A549 cells) and 40.23 µg/mL (24 h incubation time of MCF7 cells).

4. Discussion

Nowadays, nanotechnology plays a major role in modern medicine, offering a wide
range of benefits for treating human diseases through target-oriented delivery of different
compounds. Nanomaterials can be defined as a material with different sizes ranging
from 1 up to 100 nm that can exhibit unique chemical and biological properties [55].
Nowadays, among the major metallic-based nanoparticles utilized can be enumerated
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palladium, iridium, osmium, rhodium, copper, platinum, silver and gold nanoparticles [56].
It has been identified that gold and silver nanoparticles are the most commonly used in
various fields of biomedical science because of their long-term stability and particular
biocompatibility [57]. The AgNPs present tailorable physical and chemical properties such
as size, morphology and stability. Their synthesis method plays an essential role in the
preparation of less toxic AgNPs. Throughout time, the chemical and physical methods
have exhibited some disadvantages (abundant energy requirement, high temperature
and pressure, toxic solvents, harmful by-products, high cost and so on) toward the green
method [58]. Green synthesis is a friendly method to the environment, in which plant
phytocompounds act as capping, reducing and stabilizer agents, to controlling the size
and prevent agglomeration of the resulted biocompatible nanoparticles. In addition, is
a rapid, economical, easy and eco-friendliness method that employs natural ingredients,
which are safe and less harmful to humans and nature [59]. Several parameters must be
taken into account for the green synthesis of AgNPs such as: temperature, reaction time
between plant extract and metal salt, pH, metal salt and plant extract concentrations. All
of these factors are crucial to determine the quality, yields, morphology, size and shape
of AgNPs. Characterization techniques are a crucial part for the analysis on the new
synthetized nanoparticles in order to confirm the formation, and to define their structure
and composition as well.

On this matter, the current study presents the preparation of silver NPs through the
green route, using a volume ratio of 1:2 AgNO3 to plant extract, at two different tempera-
tures (25 ◦C and 60 ◦C). The synthesized AgNPs were surface coated with biomolecules
from plant extract (Populi gemmae), which makes them biocompatible for medical appli-
cations. A physicochemical screening of the obtained AgNPs was performed, such as
TG-DSC analysis, FT-IR investigation and electron microscopy investigations (TEM and
SEM-EDX), in order to confirm the stability, the functional groups attached on NPs surface,
as well as the size and shape of the newly synthesized Pg-AgNPs.

The thermal analysis exhibited that independent of reaction conditions, both graph-
ics (Figure 1A,B) exhibit the degradation of acids, alkenes, carbohydrates and aromatic
compounds (esters, amino acids) highlighted by an exothermic effect around 450–550 ◦C.
This phenomenon is noticed also on the TG-DSC curves of the dried Pg extract (Figure 1C),
which confirms that the Pg extract encapsulates the pre-formed AgNPs and prevents it
from oxidation and agglomeration. In addition, the formation of Pg-AgNPs was confirmed
by the endothermic effect at around 960 ◦C without mass loss on a TG curves, highlighted
on all three graphics (Figure 1A,B,D), attributed to the metallic Ag melting.

To study the ability of the capping phytocompounds from Pg extract on the surface of
AgNPs, FT-IR studies were carried out. The phytochemical fingerprints of black poplar
buds have depicted a plethora of phytoconstituents that are considered responsible for the
therapeutic applications of this vegetable product. According to the scientific literature,
black poplar buds comprise flavones (apigenin and chrysin) and flavanones (pinocembrin
and pinostrombin), along with phenolic phytocompounds, including caffeic and ferulic
acids, and their derivatives [60,61]. Moreover, other phytochemical investigations have
shown the existence of additional natural molecules in black poplar bud extract such as
tannins, oligosaccharides, triterpenes, glucose, fructose, resins and waxes. In addition, ex-
tracts also include essential oils abundant in cadinene, cineol, bisabolol, humulin, farnesol
and bisabolene [62–64]. The FT-IR analysis of dried Pg extract (Figure 2C), extensively
explained by our research team in a previous study [38], demonstrates the identification of
flavonoids/flavonols, phenolic acids, phenolic glycosides and tannins. By corroborating
the results from our previous study with the results of the present study, one can assume
that the C=O, -C=O, C=C, =C-H and C-N functional groups were responsible for the re-
duction of Ag+ to Ag0. In addition, the broadening of some peaks and their intensity, on
both Pg-AgNPs spectra established the capping of bioactive compounds on the surface of
AgNPs. The presence of several peaks between 650–850 cm−1, which are corresponding
to the stretching vibration of N-O in-plane from (NO3)−1 ion, represent another confir-
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mation of the AgNPs formation in both samples. Our data are in agreement with the
literature [48,65–67].

Regarding the study of the synthesized Pg-AgNPs size, shape and elemental composi-
tion, the TEM and SEM-EDX analysis revealed that the reaction conditions (temperature
and/or metal salt concentration) influence the formation of newly AgNPs. Previous stud-
ies [68–70] demonstrates that with increase the concentration of the metal ion, increase
the particle size. Another studies [71,72] sustain the fact that at higher temperature, the
conversion of the metal ion to nanoparticles occurs. Regarding our study, it is possible that
the concentration of AgNO3 salt actually determines the size and shape of the nanoparticles.
Future investigations regarding the influence of each parameter on the optimization of
AgNPs synthesis, with the desired shape and dimensions, are mandatory. The electron mi-
croscopy examination showed that the Pg-AgNPs_S1, obtained at 25 ◦C with 1 M AgNO3,
are polydisperse, spherical/quasi-spherical with particle size between 3–60 nm; while
Pg-AgNPs_S2, obtained at 60 ◦C with 5 M AgNO3, are polydisperse with irregular shape
and a particle size between 5–150 nm. The EDX analysis showed that in both samples the
compounds found were C, Ag, O and Cu. Our findings are similar to the results reported
in the literature [73–75].

According to the literature, AgNPs are potential against a wide range of bacteria’s,
including Gram-negative as well as Gram-positive bacteria. Due to the small size and the
increased contact surface, their spreading into bacterial cells is easy. Literature reported
a varied antibacterial spectrum of AgNPs including the following strains: Streptococcus
pyogens [76], Staphylococcus aureus [77,78], Bacillus subtilis [79], Escherichia coli [80], Pseu-
domonas aerugionosa [81] and Klebsiella pneumonia [82]. In recent years, Okafor et al. [83]
pointed out that the AgNPs antibacterial effect is more pronounced for Escherichia coli than
for Staphylococcus aureus. The present study confirms the above-mentioned findings of the
antibacterial activity of Pg-AgNPs, however, a lack of activity can be seen in the case of the
Gram-negative bacteria’s, particularly Escherichia coli and Pseudomonas aeruginosa, which
presented a weak inhibitory activity in case of Pg-AgNPs_S1. The antibacterial activity of
AgNPs can be explained by the interaction with different cellular biomolecules such as
lipids, proteins or DNA. It can be also correlated with cellular structures, which may lead
to the dysfunction of bacterial cells [84]. Morones et al. [85] demonstrated the bactericidal
capacity of AgNPs. Their results explained that the activity can be influenced by the size of
nanoparticles (which was in the range of 10 and 100 nm) and a significant antimicrobial
effect was achieved against both Gram-positive and negative bacteria. Agnihotri et al. [86]
established that the antibacterial efficacy was increased when the particle sizes were low.
Their study indicated that the 5 nm size AgNPs presented the fastest bactericidal activ-
ity (when it was compared with other sizes, namely 7 and 10 nm). In the present study,
Pg-AgNPs exhibited decent antibacterial activity against the tested pathogens. Based on
our results, the Pg-AgNPs_S1 and Pg-AgNPs_S2 were able to kill tested bacteria such as
Streptococcus pyogenes and Streptococcus aureus and fungi such as Candida species. The antimi-
crobial effect of Pg-AgNPs can be related to their size or shape, therefore a larger surface
area improves the interaction of Pg-AgNPs with bacterial cells. In this case, Pg-AgNPs_S2
presented a significant antimicrobial activity which can be due to their size included in the
interval 5–150 nm. However, a lack of activity can be seen for Pg-AgNPs_S1 on the tested
Gram-negative bacteria which can be due to their smaller size (3–60 nm) and to their cell
wall structure which is different from Gram-positive bacteria. Gram-negative bacteria have
a cytoplasmic membrane with a peptidoglycan layer and an outer membrane containing
lipopolysaccharide [87].

Nevertheless, various aspects, including bioavailability, adverse responses, cellular in-
teractions, biodistribution and biodegradation, must be considered in translational research.
Accumulation of these NPs in the ecosystem and their absorption by living organisms
might have fatal repercussions since several studies demonstrate that NPs can cause DNA
and membrane damage, protein misfolding and mitochondrial dysfunction. A comprehen-
sive toxicological assessment of NPs on plants and animals is required before they may be
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used in a variety of sectors [88]. Nevertheless, the mechanisms of action of AgNPs have
not been fully understood until now, their structure are very complex and different, and
can modulate many pathways in cancer cells. In a recent study, it has been reported that
AgNPs can regulate signaling pathways or can block tumor cell metastasis by inhibiting
angiogenesis [89]. Rakowski et al. [90] demonstrated that AgNPs can modulate the metas-
tasis of MCF-7 breast cancer cells across the EMT pathway and can modify the metabolism
of breast cancer cells by inducing reactive oxygen species (ROS) generation. Furthermore,
Lee et al. [91] have shown that the anticancer mechanism involves also the down-regulation
of the antiapoptotic proteins, such as BCL-2, and upregulation of ROS, caspase 3 and P53
proteins. Rosarin et al. [92] demonstrated the activity of green-synthetized AgNPs and
highlighted that there is an association between oxidative stress, ROS generation, apoptotic
morphological changes and apoptotic potential. Based on their shape and unique physical
properties (such as the nanometric dimensions) AgNPs can be beneficial in developing
alternative therapeutic and diagnostic strategies of cancer treatment [93]. This current work
focuses on the investigation of the anticancer potential of two types of AgNPs obtained
by green synthesis from ethanolic extract of Populi gemmae. The anticancer activity of
Pg-AgNPs can be affected by physical properties, including size or shape. Compared
with other shapes, spherical AgNPs exhibit better cytotoxicity due to the larger surface-to-
volume ratio [94]. The synthesized Pg-AgNPs were almost spherical or quasi-spherical with
sizes between 3–60 nm (Pg-AgNPs_S1) and irregular shapes (rhombohedral, triangular
and spherical) with sizes between 5–150 nm (Pg-AgNPs_S2). Our results indicate that both
Pg-AgNPs elicited an antiproliferative activity, however, Pg-AgNPs_S2 was more effective
in decreasing breast and lung cancer cell viability than Pg-AgNPs_S1. This activity may
be due to their spherical, triangular and rhomboedral shapes. Generally, AgNPs with a
diameter between 10 and 100 nm can be considered suitable for anticancer treatment due
to their effective delivery and permeability effects. Sizes smaller than 10 nm may undergo
fast release from the normal vessels and can damage the healthy cells [95]. Consequently,
based on our data, sizes between 5 and 150 nm (Pg-AgNPs_S2) can be a promising can-
didate for anticancer treatment. This aspect was underlined by Gomathi et al. [96] who
evaluated the anticancer activity of green synthesized AgNPs (using Tamarindus indica fruit
shell extract). The AgNPs were spherical in shape and approximately 20–52 nm in size.
They have revealed that 5–120 µg/mL of AgNPs reduced the viability of MCF7 cells in a
dose-dependent manner, with an IC50 of 20 µg/mL. Other authors have suggested that the
biologically synthesized AgNPs from Alternanthera sessilis have significant cytotoxic activity
against MCF7 breast cancer cell line. Different concentrations of AgNPs (0.1, 10 and 100 µM)
showed potential anticancer activity with an IC50 value of 3.04 µg/mL when compared to
the standard medicine used in breast cancer (Cisplatin). In accordance with the study, the
higher activity can be due to the spherical shape and reduced size of particles, which was
between 10 and 30 nm [97]. Another study was focused on the in vitro anticancer activity
of synthesized AgNPs using pomegranate extract (Punica granatum L.). The AgNPs were
spherical in shape, with an average size of 15.6 nm. According to the results, it was pointed
out that both the extract separately, as well as the AgNPs (10–500 µg/mL), presented high
toxicity against the MCF7 cancer cell line, however, the AgNPs showed higher cytotoxi-
city [98]. A preliminary experiment conducted by Venugopal et al. [99] determined the
cytotoxic activity of AgNPs (spherical in shape with size ranging from 10 to 20 nm) against
several cancer cell lines (MCF7, A549 and Hep2 cell lines). The research group has revealed
that compared to the utilized aqueous extract, the viability of the selected cell lines was
decreased with increasing the concentration of AgNPs (10 to 100 µg/mL) with an IC50 of
47.6, 48.2 and 47.1 µg/mL, respectively.

AgNPs that have sizes between 5 and 40 nm, respectively, possess predominantly
spherical shapes, have been described to show cytotoxic activity through a mechanism
that involves arrest in one of the phases of the cell cycle. In A549 human lung cancer cells,
the nanoparticles downregulated protein-kinase C which determined cell cycle arrest at
G2/M phase [100]. As previously reported in the literature, AgNPs have a significant
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effect in A549 lung cancer cell apoptosis. A549 cells treated with green synthesized AgNPs
from Gossypium hirsutum (cotton) leaf extract that have a spherical shape with size range
between 13 to 40 nm, induced apoptosis, achieving the cell cycle arrest in the G2/M phase.
It was also pointed out that they activate the intrinsic apoptotic pathways, decreasing the
Bcl-2 and Bax genes [101]. Another paper confirmed that the biosynthesized AgNPs with a
spherical arrangement in shape and size of 10 to 20 nm, have been very effective against
A549 cells in a concentration-dependent manner. Increasing the concentration, the A549
cell viability was decreased, and an inhibition percentage of 94% was achieved at 80 µg/mL
concentration [102].

Medicinal plants are frequently considered to be of lower risk compared to synthetic
drugs [103]. Regarding the vegetal product Populus nigra L. buds, it is generally considered
to be safe, but due to the phytochemical composition, administration may be limited in
some cases. It is important to mention that patients with allergies/sensibility to salicylate
derivatives, or pregnant women and those who are breastfeeding should avoid the use
of products containing black poplar [104]. At the same time, there are some drugs that
can cause interactions; therefore, it should avoid the concomitant administration of black
poplar extract together with NSAIDs, different anticoagulants, hypoglicemiants and antihy-
pertensives [105,106]. NPs, in general, can quickly be accumulated in different human
organs, such as the liver, kidney, spleen, even heart or brain, and may cause a potential
toxic effect [107,108]. Recently it was described that there are some specific factors that
can mediate the mechanism of their toxicity, among which can be listed the generation
of ROS, necrosis, apoptosis and inflammation, however, these pathways need to be ac-
knowledged better [109]. In vitro toxicity studies suggested that AgNPs can be toxic to the
lung, liver, brain and reproductive organs cells, however, the in vivo toxicity action needs
to be elucidated, as AgNPs showed significant toxicity in case of inhalation, ingestion or
intravenous administration [110,111]. Nevertheless, there are some important factors that
are responsible for their toxic potential, such as the size, shape, dose and surface area of the
NPs [112]. The toxicity of metallic nanoparticles may also depend on different environmen-
tal conditions, solubility, oxidation state or ligands [95,113]. Accordingly, as was already
indicated in this work, the green synthesis of AgNPs using different plant extracts can be
assessed as a replacement for the chemical and physical synthesis methods used at this
time. Until now, many researchers interpreted and used various vegetal products, such as
leaves, barks, fruits, roots and seeds, for the synthesis of NPs [114,115]. Given the fact that,
green synthesis is environment friendly and having no toxicity effects, this approach opens
a new era of safe nanotechnology [95].

To the best of our knowledge, no prior studies have examined the in vitro antibacterial
and antiproliferative effect on selected cell lines of the green synthesized nanoparticles
obtained from Populus nigra L. buds. Consequently, our findings seem to be promising
since the use of AgNPs is considered an effective anticancer approach, however, upcoming
investigations of these preliminary reports are necessary to investigate the mechanism
of action.

5. Conclusions

The current study describes the distinguished design of AgNPs by green synthesis
using an ethanolic extract of Populi gemmae. The physicochemical analysis showed that
the obtained Pg-AgNPs are stable, polydisperse and small in size, suitable for biomedical
applications. It was demonstrated that the size and shape of nanoparticles can be adjusted
by controlling the reaction temperature and metal salt concentration. The results have
shown that the newly Pg-AgNPs exhibited a good antibacterial activity on Gram-positive
bacteria as well as on fungi, Pg-AgNPs_S2 being more reactive. A good antibacterial
activity is associated with a good particle size distribution, due to the high interaction
between the cell membrane of bacteria or fungi and AgNPs. In the set experimental
conditions, Pg-AgNPs provoked, in a dose-dependent manner, an antiproliferative potential
against the selected cancer cell lines. The Pg-AgNPs_S2 (obtained at 60 ◦C, using AgNO3
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of 5 M) presented a stronger antiproliferative activity on both studied cancer cell lines.
Additional investigations need to be performed that include in vivo analysis in order to
have a full snapshot of the possible therapeutic potentials and benefits in the management
of different cancers.
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