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The macrocyclic molecules with terthiophene (TTH) isomers unit exhibit intriguing

properties in terms of aromaticity, stability, and absorption. In this work, we theoretically

designed a series of macrocyclic molecules featured with TTH and dithienothiophene

(DTT) π-conjugated building units, which are used to permute pyrrole unit in porphyrin

skeleton. Density functional theory and time-dependent DFT methods are used to

evaluate the performance of the designed molecules. Our simulations show that

molecules 1–3 exhibit excellent optoelectronic performance. Specifically, the molecule

with the DTT unit is more stable than the one with TTH unit in terms of aromaticity and

aromatic stabilization energy. This is because DTT unit enhances the coplanarity of the

molecular material, facilitating electronic communication. Calculation of vertical electronic

excitations suggests the absorption feature of these molecules is mainly contributed

by the electronic excitations of higher occupied molecular orbital (HOMO)→lowest

unoccupied molecular orbital (LUMO)+1 and HOMO-1→LUMO. Judging from the

key parameters determining the overall performance, 3 stands out because of its

good planarity, large HOMO–LUMO gap, and strong aromaticity among all molecules.

Interestingly, molecule 1 has the current density flow distributes around the outer section

of TTH unit; in contrast, molecule 3 with DTT unit has the current density flow located

at the inner section of DTT, which is beneficial for stability and aromaticity. Second-order

perturbation energies are calculated to rationalize this observation. We expect that these

research results can provide valuable insights into the rational design of novel molecular

materials for a variety of applications.

Keywords: porphyrin, DFT/TD-DTF, aromaticity, macrocyclic molecules, molecular modification

INTRODUCTION

Porphyrins, the tetrapyrrolic macrocycles with 18 π-electrons, have attracted the attention of
chemists for a long time in view of their diverse applications such as material science and medicine
(Drain et al., 2009; Barona-Castaño et al., 2016; Bryden and Boyle, 2016; Tang et al., 2019).
Porphyrins feature the highly conjugated macrocycles composed of four modified pyrrole subunits
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interconnected at α carbon atoms via methine bridges.
Sapphyrins are an important group of expanded porphyrin with
22 π-electrons that show anion binding characteristics (Richter
and Lash, 2004). Since the first synthesis by Johnson et al.
(Broadhurst et al., 1972) sapphyrins have been well-established
in recent years because of the availability of easy and efficient
synthetic methods (Chatterjee et al., 2017).

Carbasapphyrin (Richter and Lash, 1998), benzosapphyrin
(Panda et al., 2005), and dithiabenzisapphyrin (Jeong et al., 2008)
belong to the most popular sapphyrins series, and they are
obtained by modifying the pyrrolic subunits. Carbasapphyrins
feature a strong diatropic ring current due to the presence of 22
π-electrons delocalization pathways (Chatterjee et al., 2017). The
optical absorption spectrum of dioxabenzosapphyrin exhibits
both Q (600–800 nm) and Soret (approximately 400 nm) bands
(Cho et al., 2008). Many of the modified sapphyrins show
dramatically different canonical properties such as aromaticity,
absorption features, and metal cation complexation behavior.
It has been shown these properties have strong relation to the
frontier orbital energy levels, which depends on fundamental
structures. It is noteworthy that terthiophene (TTH) is usually
used as the π-conjugated building unit to permute pyrrole
unit in porphyrin skeleton (Moriaty et al., 1985). In addition,
dithienothiophene (DTT) is an electron-rich rigid fragment
that has been frequently used in electronic and optoelectronic
materials (Frey et al., 2002). Therefore, it would be particularly
interesting to develop novel macrocyclic molecules based on
TTH and DTT subunits.

Center to the performance of macrocycle is aromaticity (Chen
et al., 2019). Theoretically, various parameters such as geometric
(Listunov et al., 2018), energetic (Rakhi and Suresh, 2016;
Nowroozi and Rad, 2017), magnetic (Torrent-Sucarrat et al.,
2017), and electronic properties (Poater et al., 2005) have been
developed to evaluate aromaticity and antiaromaticity. Because
of the simplicity and applicability, nucleus-independent chemical
shift (NICS) (Schleyer et al., 1996) analysis was also developed
to determine the magnetic properties of molecules. The NICS
values can be calculated at the geometrical center of a ring
or above a molecular plane. As for the stability of macrocycle,
aromatic compounds are, generally, substantially more stable
than antiaromatic compounds. The higher occupied molecular
orbital (HOMO)–lowest unoccupied molecular orbital (LUMO)
gap value is also indicative of the stability ofmacrocyclemolecule.

In this work, we theoretically designed three macrocycle
molecules 1–3 (Scheme 1) based on TTH and DTT. The
aromaticity, stability, and photophysical properties of these
molecules are investigated carefully using high-level quantum
chemistry calculations. The potential high-efficiency macrocyclic
molecules are screened. We hope these theoretical studies
could pave the way for designing novel materials for a variety
of applications.

COMPUTATIONAL DETAILS

All calculations are performed using density functional theory
(DFT) and time-dependent DFT (TD-DFT) methods as

implemented in Gaussian 09 software package (Frisch et al.,
2009). Full optimization of 1–3 was carried out using the
B3LYP/6-311G (d, p) level of theory using DFT. Vibrational
frequencies are calculated for the optimized structure at the same
theory level to confirm the local minima. Vertical electronic
excitations are calculated using TD-DFT at range-separated
CAM-B3LYP functional together with 6-311G (d, p) basis set.

To avoid the in-plane components, the NICS values are
calculated at 1 Å above the thiophene ring of DTT (points a, b,
c, d, e, and f), pyrrole ring of TTH (points g and h), molecular
center (point m), and intramolecular (points i, j, k, and l) using
the flow around the gauge-independent atomic orbital method
at the B3LYP/6-311G (d, p) level of theory. Illustration of the
different critical points is detailed in Scheme 1. The critical points
were analyzed by means of the atoms in molecules theory as
implemented in the AIM2000 package (Bader et al., 1994).

RESULTS AND DISCUSSION

The optimized ground state structures of 1–3 are presented in
Figure 1. Both TTH and DTT have three thiophene rings, and
the difference is that TTH has the C-C single-bond bridge. For
1, presence of two TTH units permutes the pyrrole group of the
porphyrin ring, whereas for 2, both TTH and DTT replace the
pyrrole unit of the porphyrin ring. For 3, two DTTs replace the
pyrrole unit of the porphyrin ring. To quantitatively evaluate
the structure difference of all molecules, we listed the selected
geometrical parameters in Table 1. As can be seen from Table 1,
the N7-N8 bond lengths of 1, 2, and 3 are 11.594, 9.820, and
8.351 Å, respectively. The C13–C26 bond lengths in 1, 2, and 3

are 8.065, 7.036, and 5.732 Å, respectively. It is apparently that
N7–N8 and C13–C26 bond length decrease in the order of 1 < 2

< 3. We also find similar observations for bond angles, which
are 131.4, 131.0, and 126.0◦ (C9–C17–C37 bond angle) and
134.1,128.1, and 126.0◦ (C39–C19–C21 bond angle), respectively.
It should be noted that the C9–C17 and C19–C21 bond lengths
have the similar values of 1.4 Å and are rather intolerant to the use
of either TTH or DTT units. From these data, we can conclude
that macrocyclic rings get smaller from 1 to 2 and to 3.

The calculated dihedral angles of C9-C17-C37-N7, C39-
C19-C21-S4, and S5-C26-C32-S6 of 1 are 5.6, 0.5, and 13.1◦,
respectively. Figure 1 shows that 1 adopts a propeller structure.
In contrast, all dihedral angles in 2 and 3 are almost
zero, indicating that 2 and 3 would have good coplanarity.
Aromatic stabilization energy (ASE) is an important parameter
for understanding stability and aromaticity from an energetic
perspective (Yang et al., 2012). Here ASE values are calculated
and listed in Table 2. We choose TTH, DTT, and 5-membered
ring as the reference structures that present localized single and
double bonds (see Scheme 2). Generally, the molecule with a
smaller (more negative) ASE value (in absolute value) would have
stronger stability. It is shown from Table 2 that the calculated
ASE values decrease in the order of 1 > 2 > 3, indicating that
stability of molecules increases in an inverse order.

In order to gain deep understanding toward the stability,
the aromaticity of atomic rings of all molecules is calculated.
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SCHEME 1 | Sketch structures of molecules 1–3.
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FIGURE 1 | Optimized molecular structures of 1–3 in their ground states.

TABLE 1 | Main optimized geometry structure parameters of 1–3.

1 2 3

Bond lengths (Å)

N7-N8 11.594 9.820 8.351

C13-C26 8.065 7.036 5.732

C9-C17 1.394 1.391 1.396

C19-C21 1.394 1.398 1.399

Bond angles (◦)

C9-C17-C37 131.4 131.0 126.0

C39-C19-C21 134.1 128.1 126.0

Dihedral angles (◦)

C9-C17-C37-N7 5.6 0.0 0.0

C39-C19-C21-S4 −0.5 0.0 0.0

S5-C26-C32-S6 −13.1 0.0 -

Research on aromaticity can help us to understand the stability
essence of aromatic compounds (Aihara, 1999). More negative
(smaller) NICS value denotes better aromaticity (Chang et al.,

TABLE 2 | Computed aromatic stabilization energy (ASE, in kcal/mol) of

molecules 1–3.

1 2 3

ASE −365.4 −387.3 −415.6

2005; Kirilchuk et al., 2017; Akaishi et al., 2018). The calculated
results, as listed inTable 3, show that NICS (1) values at 1 Å above
the critical points a, c, d, and f for 1–3 are similar. An exception
is that the NICS (1) value of 1 at 1 Å above the critical point of
ring b is more negative, whereas NICS (1) values of 2 and 3 at 1
Å above the critical point of ring b have smaller absolute values
compared with 1. It shows that the middle thiophene moiety in
TTH has good aromaticity than in DTT. In addition, the NICS
(1) values of 1 and 2 at 1 Å above the critical points of ring e have
more negative values, whereas the 3 has a smaller negative value.
It also indicates that the middle thiophene moiety in TTH has
good aromaticity than in DTT. Moreover, the absolute NICS (1)
values of 1–3 at 1 Å above the critical points of rings g and h are
generally small and similar. The intramolecular 1 Å above critical
points i, j, k, and l for 1–3 has the similar observation as 1 Å
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SCHEME 2 | The isodesmic reactions of 1–3.

above critical points of rings g and h. As for the molecular center
1 Å above critical point, the NICS (1) values are −15.12, −15.56,
and −16.23 ppm for 1, 2, and 3, respectively, as listed in Table 3.
It can be concluded from the abovementioned discussions that
all molecules have strong aromaticity in the order of 1 < 2 <

3. And the NICS value of porphyrin is −14.98 ppm (Wei et al.,
2012). This also shows that 1, 2, and 3 have good aromaticity
than porphyrin.

Energy levels of HOMO, LUMO, and HOMO–LUMO energy
gap (1H−L) are meaningful to characterize optical and electronic
properties. The frontiermolecular orbital diagrams and1H−L for
1–3 are shown in Figure 2. Inspection of Figure 2 reveals that,
for all molecules, both HOMO and LUMO spread over the whole
π-conjugated backbones. Specifically, HOMO is a π orbital

and exhibits bonding, whereas the LUMO is a π
∗ orbital with

antibonding character. This type of distribution is beneficial for
intramolecular charge transfer process. A larger HOMO–LUMO
energy gap would hamper the optical excitation, which induces
better stability. The HOMO–LUMO energy gaps are 1.35, 1.65,
and 1.98 eV for 1, 2, and 3. Interestingly, the positive correlation
between NICS (in absolute value) and HOMO–LUMO energy
gaps can be observed, which is the molecule with the larger
HOMO–LUMO gaps would have the larger absolute NICS value.
This agrees well with previous work (Wei et al., 2019).

TD-DFT method is used to calculate the vertical electronic
excitations. The simulated electronic configurations are reported
in Table 4. From Table 4, it is obvious that the absorption
features of all molecules are in the visible region. The
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major electronic excitations are from HOMO-1→LUMO and
HOMO→LUMO+1 transition, which is in contrast to typical
HOMO→LUMO transitions of most porphyrin molecules. One
can also observe that the absorptions are significantly red-
shifted and broadened when incorporating TTH moiety. For

TABLE 3 | NICS (1) values for 1–3.

NICS (ppm) 1 2 3

a Thiophene ring NICS (1) −23.82 −23.64 −22.19

b Thiophene ring NICS (1) −24.82 −0.42 −0.53

c Thiophene ring NICS (1) −23.82 −23.64 −22.19

d Thiophene ring NICS (1) −23.82 −23.72 −22.19

e Thiophene ring NICS (1) −24.82 −25.36 −0.56

f Thiophene ring NICS (1) −23.82 −26.43 −22.19

g Pyrrole ring NICS (1) −0.26 −0.16 −0.72

h Pyrrole ring NICS (1) −0.26 −0.16 −0.72

i Intramolecular critical point NICS (1) −23.76 −23.34 −23.12

j Intramolecular critical point NICS (1) −23.76 −23.34 −23.12

k Intramolecular critical point NICS (1) −23.76 −24.42 −23.12

l Intramolecular critical point NICS (1) −23.76 −24.42 −23.12

m Molecular ring center NICS (1) −15.12 −15.56 −16.23

3, the lowest-lying excitation is calculated to be 758 nm, and
the major transition of HOMO→LUMO+1 has an oscillator
strength of 0.0205.

The aromaticity of all molecules is further confirmed by
the anisotropy of the induced current density (AICD) analysis,
which is a very popular method to investigate and quantify the
delocalization in organic molecules (Herges and Geuenich, 2001;
Geuenich et al., 2005)The AICD plots of 1–3, with an isosurface
value of 0.03, are shown in Figure 3. In general, aromatic species
exhibit clockwise diatropic circulation, whereas antiaromatic

TABLE 4 | Calculated absorption features of molecules 1–3.

Molecule E/nm (eV) Major
contribution

Oscillator
strength

1 1,041 (1.19) HOMO-1→LUMO

(45%)

HOMO→LUMO

+1 (55%)

0.0041

2 892 (1.39) HOMO-1→LUMO

(46%)

HOMO→LUMO+1 (54%)

0.0087

3 758 (1.64) HOMO-1→LUMO

(48%)

HOMO→LUMO+1 (51%)

0.0205

FIGURE 2 | Molecular orbital distributions and diagrams of the frontier molecular orbitals (from HOMO-3 to LUMO+3) for 1–3.
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FIGURE 3 | Computed AICD plots of 1–3 with an isosurface value of 0.03. Aromatic species exhibit clockwise diatropic circulations.

compounds have paratropic circulations. The clockwise current
density vectors plotted on the AICD isosurface confirm the
presence of aromaticity in 1–3. Figure 3 also shows that, for 1,
the current density flow locates around the outer section of rings
a, b, and c of TTH. For 2, the current density flow is around the
inner section of rings a and b and rings a and c of DTT, while the
current density flow is around the outer section of rings d, e, and
f of TTH. For 3, the current density flow is distributed around the
inner section of rings a, b, and c of DTT. For 1–3, the current path
passes flow around the outer section of the two pyrrole rings.

On the other hand, for 1, there is an important stabilizing
interaction (second-order perturbation energy is about 2.32
kcal/mol) between the lone pairs of sulfur atom in the thiophene
and the two closermesoπ

∗ antibonding C-C. Small second-order
perturbation energy results in the current density flow located
around the outer section of TTH. For 3, the stabilizing interaction
of thiophene and two closer meso π

∗ antibonding C-C is much
larger (about 25.48 kcal/mol), which enables current density flow
distributed around the inner section of rings a, b, and c on DTT
moiety. For 2, the second-order perturbation energies between
sulfur atom and the meso π

∗ antibonding C-C of TTH and DTT
are 2.08 and 24.18 kcal/mol, rationalizing the involvement of
different location (outer section of TTH vs. inner section of DTT)
in current density flow distribution.

CONCLUSION

In summary, we have investigated the stability, aromaticity, and
photophysical properties of 1–3 with TTH and DTT units using
DFT and TD-DFTmethods. All molecules show high aromaticity
and excellent photophysical properties. The calculation data
suggest that the molecule with DTT is more stable than the

one with TTH because of the better coplanarity in the former.
The absorption features of the molecules are all located in
the visible region. The major transitions for all molecules are
fromHOMO→LUMO+1 andHOMO-1→LUMO, beneficial for
intramolecular charge transfer process. Compared to molecules
1 and 2, 3 stands out because of the increased HOMO–LUMO
energy gap, more planar structure, and stronger aromaticity.
Moreover, the current density flow for 3 is distributed around the
inner section of DTT, in contrast to 1 in which the outer section
of TTH dominates the current density flow; this arises from
the different stabilizing interaction of thiophene and two closer
meso π

∗ antibonding C-C, rationalizing the origin of different
planarity, stability, and aromaticity. These theoretical results pave
the way for future development of novel porphyrin molecules.
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