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1  | INTRODUC TION

Science has long been viewed as a progressive endeavor in which 
knowledge accumulates through time via the collective efforts 
of multiple investigators. For example, in 1637 Descartes wrote: 
“I hoped that each one would publish whatever he had learned, 
so that later investigations could begin where the earlier left off” 
(Descartes, 1960). A superficial look at the recent explosion of sci-
entific journals and published studies therein might suggest that 
knowledge is now accumulating quite rapidly. However, clear think-
ers have periodically reminded us that large numbers of studies and 
associated findings do not necessarily reflect successful accumu-
lation of knowledge. Poincare (1905) wrote: “Science is built up of 

facts, as a house is with stones. But a collection of facts is no more 
a science than a heap of stones is a house.” Extending this struc-
tural metaphor in his essay “Chaos in the Brickyard,” Forscher (1963) 
wrote of the “edifice” of accumulated knowledge, built with the 
“bricks” of individual study results. Forscher (1963) warned that the 
bricks were becoming ends unto themselves and ended his essay 
with the comment: “And, saddest of all, sometimes no effort was 
made even to maintain the distinction between a pile of bricks and 
a true edifice.” We contend that most ecological investigations are 
viewed as stand-alone studies, with inadequate attention devoted 
to accumulation of evidence and subsequent knowledge. This worry 
has consequences for the related applied disciplines of conservation 
and wildlife management as well. In this essay, we describe our view 
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Abstract
Many published studies in ecological science are viewed as stand-alone investiga-
tions that purport to provide new insights into how ecological systems behave based 
on single analyses. But it is rare for results of single studies to provide definitive re-
sults, as evidenced in current discussions of the “reproducibility crisis” in science. The 
key step in science is the comparison of hypothesis-based predictions with observa-
tions, where the predictions are typically generated by hypothesis-specific models. 
Repeating this step allows us to gain confidence in the predictive ability of a model, 
and its corresponding hypothesis, and thus to accumulate evidence and eventually 
knowledge. This accumulation may occur via an ad hoc approach, via meta-analyses, 
or via a more systematic approach based on the anticipated evolution of an informa-
tion state. We argue the merits of this latter approach, provide an example, and dis-
cuss implications for designing sequences of studies focused on a particular question. 
We conclude by discussing current data collection programs that are preadapted to 
use this approach and argue that expanded use would increase the rate of learning in 
ecology, as well as our confidence in what is learned.
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of the status quo in ecological science, document problems with the 
current approach, describe approaches to accumulating evidence, 
and then make recommendations for increased emphasis on accu-
mulation of evidence.

Throughout this paper, we discuss the accumulation of “evidence” 
and “knowledge.” We view these two terms as closely related, but 
not interchangeable. Our operational definition of “evidence,” for 
the purpose of this particular paper, is the degree of consistency of 
observations with predictions based on a priori hypotheses. These 
predictions are usually generated by mathematical models devel-
oped to represent the parent hypotheses. Accumulated evidence 
refers to multiple tests or analyses directed at the same hypothesis 
in which consistency between observations and predictions is ob-
served. We operationally define “knowledge” as confidence in the 
predictive ability of a hypothesis developed through accumulated 
evidence. We do not define knowledge relative to unknowable truth. 
Instead, it reflects provisional human understanding of how some 
natural process or system works, as assessed via predictive ability. 
That understanding is conditional on the set of hypotheses devel-
oped for that process or system.

2  | STATUS QUO: ONE-AND -DONE IS 
WHAT WE DO

The majority of published studies in ecological journals appear to 
be viewed by their authors as stand-alone investigations. This is 
understandable for exploratory analyses, the prevalence of which 
has been criticized through the years (e.g., Platt, 1964; Romesburg, 
1981; Yoccoz, Nichols, & Boulinier, 2001). The primary role of such 
studies in science is hypothesis generation, so at best they represent 
a starting point for any accumulation of evidence.

In this paper, we focus on studies that seek to test predictions 
of a priori hypotheses and contend that most of these are viewed 
by their authors as stand-alone endeavors (Murad & Montori, 2013). 
Introduction sections of papers often cite previous papers that deal 
with the focal subject, but frequently for the purpose of (a) emphasiz-
ing the inadequacies in previous work as motivation for the current 
effort, or (b) noting differences that distinguish the current work from 
previous efforts. Similarly, Discussion sections frequently cite-related 
work, sometimes noting results that did and did not agree with those 
of the current effort. However, Discussion sections seldom include 
rigorous assessments of the degree to which results have contributed 
to an overall body of evidence or knowledge for the studied subject.

This emphasis on stand-alone studies extends to the literature 
on statistical inference and related design issues. In criticizing “the 
cult of the isolated study,” Nelder (1986) wrote “Most statistical 
books and papers place enormous emphasis on the analysis of the 
unique experiment or study. Much statistical expertise is deployed 
to make inferences from a single isolated data set, treated as if it 
were essentially unique.” Inference methods for animal popula-
tion dynamics focus on estimating key parameters based on single 
data sets (e.g., Kery & Royle, 2015, in press; Seber, 1982; Williams, 

Nichols, & Conroy, 2002). Most of the literature on model selection 
is similarly focused on candidate models fit to single data sets (e.g., 
Burnham & Anderson, 2002; Hooten & Hobbs, 2015; Link & Barker, 
2006). Texts on statistical design reflect the single study emphasis, 
typically focusing on a design criterion (e.g., maximize test power) for 
single experiments or sets of observations (see Nelder, 1986). In con-
trast, we have seen relatively few formal efforts to draw inferences 
from evidence accumulated across multiple studies, and very few to 
design sequences of studies with a focus on accumulated evidence 
(but see Chaloner & Verdinelli, 1995; Dietze et al., 2019; Hooten, 
Johnson, & Brost, 2019). “This emphasis on the isolated study, with 
the corresponding lack of emphasis of problems of combining infor-
mation from many experiments, is, I believe, an unsatisfactory fea-
ture of much statistical writing” (Nelder, 1986). We agree.

3  | MOTIVATION: ONCE IS NOT ENOUGH

We believe that there are few important questions in ecology or 
conservation that can be definitively answered with a single study, 
for example via one of Platt's (1964) “crucial experiments.” Although 
single experiments in ecology sometimes yield definitive results 
(e.g., Paine, 1976), these are uncommon. The common inability to 
conduct true manipulative experiments in ecology (especially for 
vertebrate field studies and the large spatial scales that they require) 
distinguishes it from other disciplines such as biomedical research, 
for which well-designed clinical trials can be viewed as gold stand-
ards (Begley & Ioannidis, 2015). Hypotheses in ecology tend to be 
complex relative to those in some other disciplines, such that it is 
unusual to hypothesize a single posited cause as both necessary 
and sufficient for a system response. Instead, most hypotheses in 
ecology are multifactorial (e.g., Hilborn & Stearns, 1982; Lidicker, 
1991), leading to a focus on relative contributions of factors to focal 
responses. In addition, ecologists frequently note “context depend-
ence” of results, in which key factors elicit system responses in some 
situations but not others. This idea of context dependence is related 
to the century-old discussion of hidden or lurking covariates (e.g., 
Fisher, 1958; Yule, 1903) and includes the important possibility of 
treatment by covariate interactions. Context dependence is an om-
nipresent possibility in observational studies, which dominate many 
areas of ecological research.

As noted above, most of the recommended approaches to model 
selection focus on candidate models fit to a single data set, with se-
lection statistics based on model fit to the data and model parsimony 
(e.g., Burnham & Anderson, 2002; Hooten & Hobbs, 2015; Link & 
Barker, 2006). Recent discussions of model selection have empha-
sized the utility of “out-of-sample” prediction (Hooten & Hobbs, 
2015), and our recommendation is to extend this thinking beyond 
the data in hand, to data not yet collected. This emphasis is consis-
tent with traditional views of science (e.g., Chamberlin, 1897; Platt, 
1964; Popper, 1959) in which hypotheses are subjected to repeated 
tests using new data independent of those used to create the asso-
ciated model(s).
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A compelling motivation for focusing on accumulation of evi-
dence and knowledge based on multiple studies is provided by inves-
tigations of scientific reproducibility carried out over the last 15 years 
in multiple disciplines (e.g., Begley & Ioannidis, 2015; Ioannidis, 2005; 
Open Science Collaboration, 2015). In the case of biomedical re-
search, 75%–90% of preclinical research results published in quality 
outlets could not be reproduced in subsequent studies (Begley & 
Ioannidis, 2015). When observational studies were considered, re-
sults were even worse, with 0 of 52 predictions of such studies con-
firmed in randomized clinical trials (Begley & Ioannidis, 2015; Young 
& Karr, 2011). Such results prompted Young and Karr (2011) to assert: 
“Any claim coming from an observational study is most likely to be 
wrong.” These findings should be of great concern, as observational 
studies, as well as related quasi-experimental and constrained-design 
studies, are so common in ecology. In the field of psychology, replica-
tion of 100 studies found that replication effects were half the size of 
original study effects, and only 39% of these effects were judged to 
have replicated original results (Open Science Collaboration, 2015). 
There is growing recognition that reproducibility is likely to be an im-
portant problem in ecology as well (Ellison, 2010; Fidler et al., 2017; 
Ives, 2018; Parker et al., 2016; Schnitzer & Carson, 2016). The lead 
entry in a list of proposals developed by Begley and Ioannidis (2015) 
to deal with the reproducibility crisis and improve quality of scientific 
research was for editors to solicit replication bids, rewarding inves-
tigators willing to undertake serious efforts at replicating published 
results (Wagenmakers & Forstmann, 2014).

Our emphasis here is on the science of ecology, but we note that 
these various problems with relying on results from stand-alone 
studies also extend to the applied disciplines based on ecological 
science. Specifically, management actions and policy development 
may be based on nonreproducible results of single studies, resulting 
in wasted time and management effort expended on conservation 
problems (e.g., Walsh, Wilson, Benshemesh, & Possingham, 2012). 
We suspect that this kind of problem is widespread in conservation 
and wildlife management.

4  | APPROACHES TO ACCUMUL ATING 
E VIDENCE

Given these problems associated with a discipline dominated by 
one-and-done studies, how can we begin to pay more attention 
to the accumulation of evidence in ecology and conservation? 
Methodological approaches that have been used in ecology can 
be categorized as ad hoc, meta-analyses, and evolving information 
state.

4.1 | Ad hoc

Prior to the 1990s, ecological science was dominated by hypothesis-
testing approaches, and these are not uncommon today. Studies 
usually entail a focal hypothesis tested against either a null or an 

omnibus alternative. Under this approach, ecologists develop in-
creased confidence in hypotheses that withstand repeated efforts 
at falsification (e.g., Popper, 1959, 1963). Popper (1959, 1972) intro-
duced the biological analogy of natural selection of hypotheses in 
which some hypotheses survive falsification efforts and many do 
not. Such an approach leads to a set of hypotheses that survive and 
become our provisional ecological knowledge, and many that do not 
and are discarded.

This approach to accumulating knowledge has been prevalent in 
ecology and has led to most of the theories and even laws that ap-
pear in ecological texts. The approach requires that different inves-
tigators subject some of the same basic hypotheses to tests in order 
to provide the repeated testing that can engender confidence. This 
reliance on independent decisions by ecologists about what to study 
does not lend itself to designing programs to accumulate evidence, 
but the approach has seemed to “work” for ecology in a general way.

We note the special cases of long-term ecological studies in 
which single investigators or groups study a particular system over 
a long period of time (e.g., Cooke, Rockwell, & Lank, 1995; Rotella, 
Link, Chambert, Stauffer, & Garrott, 2012; Spendelow et al., 2016). 
Such long-term efforts nearly always investigate multiple hypoth-
eses, but they also revisit past study results by comparing new 
observations with model-based predictions. Because such investi-
gations are often led by the same investigators or teams, there is an 
increased tendency to incorporate repeated tests into study design, 
providing an opportunity for faster, directed accumulation of evi-
dence and consequent learning.

4.2 | Meta-analyses

Meta-analyses represent attempts to assess accumulated knowledge 
at specific points in time and were adapted from other disciplines 
by ecologists in the early 1990s. The term “meta-analysis” has been 
used in multiple ways, with one definition: “the statistical analysis of 
a large collection of analysis results from individual studies for the 
purpose of integrating the findings” (Glass, 1976:3). Meta-analyses 
of this type are conducted using results from multiple published 
papers focusing on a specific question (Gurevitz, Curtis, & Jones, 
2001; Gurevitz, Koricheva, Nakagawa, & Stewart, 2018; Korichava, 
Gurevitz, & Mengersen, 2013). Summary statistics from selected 
papers are subjected to secondary analysis intended to provide an 
overall inference. These summary statistics may be test statistics, 
their associated probability levels, or estimates of effect sizes and 
their associated variances. Such meta-analyses are useful in provid-
ing assessments of accumulated evidence at specific points in time 
(Gurevitz et al., 2018), and they have seen use in both ecology (e.g., 
Korichava et al., 2013) and conservation (e.g., Walsh et al., 2012).

Such meta-analyses rely on available published studies and 
hence can suffer from the various forms of selection and inter-
pretation bias that characterize published research (e.g., Begley & 
Ioannidis, 2015; Fidler et al., 2017; Gurevitz et al., 2018; Palmer, 
1999; Whittaker, 2010). Integration of results of multiple studies 
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with different study scales, designs, sources of bias, and degrees of 
relevance to the focal hypothesis can be a complex task. The bio-
medical community has devoted substantial attention to this issue, 
developing several promising approaches for dealing with different 
sources of study bias, for example (Turner, Spiegelhalter, Smith, & 
Thompson, 2009). Nonetheless, the following claim by Ioannidis 
(2016) is sobering: “Few systematic reviews and meta-analyses are 
both non-misleading and useful.” Recent calls for transparency in re-
porting ecological research have been directed largely at increasing 
the utility of published investigations for research summaries and 
meta-analyses (Ellison, 2010; Fidler et al., 2017; Parker et al., 2016; 
Schnitzer & Carson, 2016). Importantly from the perspective of this 
essay, the opportunistic nature of most meta-analyses precludes 
design of component studies and does not provide natural oppor-
tunities for designing sequences of studies. The biomedical research 
community has begun to use the concept of value of information 
(Raiffa & Schlaifer, 1961) as a basis for design of future studies (Ades, 
Lu, & Claxton, 2004; Jackson, Presanisa, Contib, & Angelisa, 2019).

Another kind of meta-analysis entails periodic modeling of long-
term data sets from multiple study locations, as practiced for spotted 
owls (Strix occidentalis) in the western United States (e.g., Anthony et al., 
2006; Blakesley et al., 2010; Dugger et al., 2016; Forsman et al., 2011; 
Franklin et al., 2004). Not only are analyses based on multiple study 
sites, but they are also repeated periodically, with each successive anal-
ysis based on a longer time series of data. The spotted owl meta-analy-
ses were originally focused on estimation of trend statistics, rather than 
on evaluating mechanistic hypotheses. However, the planned periodic 
nature of these meta-analyses should permit design focus on accumu-
lation of evidence associated with selected hypotheses.

4.3 | Evolving information state

A more formal approach to accumulating evidence is based on a mul-
tiple-hypothesis approach to the conduct of science (e.g., Burnham 
& Anderson, 2002; Chamberlin, 1897). As with the Popperian single-
hypothesis approach to science, the key step in multiple-hypothesis 
science is the comparison of observations against model-based pre-
dictions for the different hypotheses being considered. However, 
instead of rejecting or provisionally accepting a single hypothesis 
(e.g., relative to a null), inferential results can be presented as model 
“weights” reflecting the relative (to other models in the considered 
set) degree of correspondence between observations and predic-
tions, and sometimes model parsimony as well. Information–theo-
retic methods of model selection and multimodel inference for 
single analyses were introduced to ecologists in the early 1990s 
(e.g., Burnham & Anderson, 1992; Lebreton, Burnham, Clobert, & 
Anderson, 1992) and have become widely adopted in ecology, con-
servation, and various other disciplines (Burnham & Anderson, 2002 
has been cited >45,000 times). Bayesian approaches to model selec-
tion have begun to see substantial use in ecology as well (Barker & 
Link, 2013; Brooks, Catchpole, Morgan, & Harris, 2002; Hooten & 
Hobbs, 2015; Link & Barker, 2006, 2009). However, these general 

Box 1 Model weight updating with Bayes' Theorem

Define the “information state” as a vector of model 
weights, πt (model i) for model i at time t, that reflect the 
relative predictive abilities of models in the model set. In 
the case of M models in the set:

We have more confidence in the models with higher 
weights and view them as more likely to represent reason-
able abstractions of the modeled natural processes. Initial 
weights prior to the first set of observations can be based 
on historic information, intuition, or simply set equal (1/M) 
for each model.
Subsequent model weights typically change with each new 
set of observations, evolving according to:

where Pr (datat+1|model i) is the probability that the new ob-
servations at time t + 1 would have arisen, given that model 
i was a good representation of the actual process that gen-
erated them. The updating of model weights is based on 
the relative confidence in the model that has accumulated 
through time t, πt (model i), and the consistency of the new 
set of observations with that model, Pr (datat+1|model i). If 
the model set includes a good approximating model that pre-
dicts reasonably well, then the weight for that model should 
evolve to approach 1, whereas the weights of models that 
predict more poorly should eventually approach 0.
If the model set includes no models that are reasonable ap-
proximations to underlying processes, then we do not ex-
pect model weights to evolve as described above. Instead, 
nonmonotonic fluctuations in model weights may be in-
dicative of a need for additional, better models. Often, the 
directions of differences between model-based predictions 
and observations provide clues to the sorts of new model 
components that may be needed. Temporal changes in 
predictive abilities of models (e.g., becoming less predic-
tive over time) may indicate the need for additional model 
components that deal with global change (e.g., Nichols et al., 
2011; Zhao, Silverman, Fleming, & Boomer, 2016). Periodic 
assessments of the evolution of the information state are 
useful and may lead to deletion of some models and inser-
tions of new ones. Although decisions are required about 
adjusting and setting model weights immediately after such 
changes to the model set, the described process readily ad-
mits such changes.

(1)
M∑

i=1

�t (model i)=1

(2)

�
�t+1 (model i) �datat+1
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applications of a multiple-hypothesis approach in ecology and else-
where have been largely focused on single studies and not on the 
accumulation of evidence across studies.

The information state approach to accumulating evidence is 
based on the relative performance of multiple models (hence mul-
tiple hypotheses) in predicting observations obtained during a se-
quence of comparisons or studies conducted in either the same or 
multiple locations. This approach has been advocated in fisheries 
and wildlife sciences since the mid-1970s (Hilborn & Walters, 1992; 
Johnson et al., 1993; Walters, 1986; Walters & Hilborn, 1976, 1978; 
Williams, 1996; Williams et al., 2002; Williams, Szaro, & Shapiro, 
2007), and more recently in ecology (Dietze et al., 2019; Hilborn & 
Mangel, 1997), but has seen very little use. Model weights compris-
ing the information state do not reflect both model parsimony and 
fit to a single data set, as in single study model selection. Instead, 
the information state at any time t carries the results of a sequence 
of observations or studies conducted prior to t, with model-specific 
weights reflecting the degree to which model-based predictions 
have been consistent with past observations of the sequence. As ob-
servations from a new (t + 1) comparison or study become available, 
their consistency with model-based predictions is assessed and then 
combined with prior model weights via Bayes' theorem to update 
model weights with the new information (Box 1). Updated model 
weights are larger than previous weights for models that predicted 
well and smaller for models that predicted poorly. Model weights are 
scaled to sum to 1 (or to integrate to 1 for model sets expressed as a 
continuum) for all of the models in the set. If one of the models in the 

set approximates the underlying process well and is a good predictor, 
then its weight should approach 1 over time, whereas the weights of 
relatively poor predictor models should eventually approach 0.

Figure 1 shows the evolution of model weights for an actual 
example from 23 years of study in the applied ecological sciences 
(Box 2). In this example, initial model weights were set equal for four 
competing hypotheses and annually updated based on comparisons 
of model-based predictions with population size estimated from an 
extensive monitoring program. 2018 model weights are relatively 
small for two of the hypotheses, but some uncertainty remains for 
the two remaining hypotheses. The evolution depicted in Figure 1 is 
based on a system manipulated to achieve management objectives, 
rather than scientific objectives. More rapid evolution is expected 
when the focal system is manipulated for the purpose of facilitat-
ing model discrimination. Note also that the four hypotheses were 
based on effects of hunting and density on the vital rates survival 
and reproduction, respectively, whereas monitoring data used in 
Equation 1 were estimates of the state variable, population size. 
Changes in population size represent the integrated effects of fac-
tors such as hunting and density on survival and reproduction, mak-
ing discrimination among competing models more difficult than if 
the vital rates themselves had been estimated and compared with 
predictions. Despite these two handicaps, model discrimination was 
possible over the 23-year sequence of observations (Figure 1).

The models of Figure 1 represent distinct hypotheses about how 
variation in hunting mortality affects population dynamics. The com-
ponent hypothesis of strongly density-dependent reproductive rate 

F I G U R E  1   Upper panel: population estimates of mid-continent mallards (in millions) compared to predictions of each member of the 
model set (SaRw = additive mortality and weakly density-dependent reproduction, ScRw = compensatory mortality and weakly density-
dependent reproduction, SaRs = additive mortality and strongly density-dependent reproduction, ScRs = compensatory mortality and 
strongly density-dependent reproduction). The gray shading represents 95% confidence intervals for observed population estimates. The 
arrow represents a weighted mean annual prediction based on the entire model set. Lower panel: annual changes in model weights for each 
member of the mid-continent mallard model set; weights were assumed to be equal in 1995
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was represented by a single model structure (Box 2) in the 4-model 
set. However, different structural forms of this basic hypothesis 
could have been incorporated into the model set also, as different 
forms may indeed lead to different management decisions in some 
cases (Runge & Johnson, 2002). Thus, the approach of the evolving 

information state can be used to discriminate among models that 
represent very different hypotheses or simply different forms of a 
single hypothesis. Of course the more similar the predictions of dif-
ferent hypotheses, the more difficult it will be to discriminate among 
them, regardless of the approach used.

Box 2 Mid-continent mallard (Anas platyrhynchos) harvest management in North America

The U.S. Fish and Wildlife Service (FWS) sets annual hunting regulations for harvested migratory birds in the United States. 
Regulations are sometimes contentious, with some stakeholders favoring restrictive regulations and others favoring very liberal 
regulations. In the 1960s and early 1970s, these diverse views led to arguments about appropriate hunting regulations for mallard 
ducks, fueled by substantial uncertainty about population-level effects of hunting (Nichols, 2000a). As a result, seminal research was 
conducted to develop analytical methods to determine the impact of harvest mortality on waterfowl populations (e.g., Anderson 
& Burnham, 1976; Burnham & Anderson, 1984). Comprehensive efforts to apply these techniques to existing large-scale data sets 
led to mixed results with some evidence supporting the compensatory harvest mortality hypothesis (Anderson & Burnham, 1976; 
Burnham & Anderson, 1984). Over time, these analyses were repeated with updated datasets, and newly developed methods were 
applied, but the results were still equivocal (Sedinger & Rexstad, 1994; Smith & Reynolds, 1992). In response to this continued uncer-
tainty, researchers performed meta-analyses to systematically review these studies, in an effort to synthesize the evidence describ-
ing the relationship between harvest mortality and survival (Nichols, Conroy, Anderson, & Burnham, 1984; Nichols & Johnson, 1996; 
Pöysä, Elmberg, Gunnarsson, Nummi, & Sjöberg, 2004). Given the inferential limitations to these approaches and the ambiguous 
results, managers had to develop harvest regulatory decisions in the face of substantial uncertainty.
The inability of ad hoc and meta-analytical approaches to reduce key uncertainties critical to regulatory decisions led the harvest 
management community to apply the principles of adaptive management (Walters, 1986) to harvest decisions. Under the leadership 
of a FWS scientist (F. A. Johnson), a program for adaptive harvest management (AHM) was formally adopted in 1995 (Johnson et 
al., 1993, 1997; Nichols, Johnson, & Williams, 1995; Williams, Johnson, & Wilkins, 1996). This framework provides a means of mak-
ing decisions in the face of uncertainty, while learning about population responses to harvest decisions via the use of the evolving 
information state. AHM has been operational for >20 years and is viewed by many observers as an important success story (Johnson, 
2011; Johnson, Boomer, Williams, Nichols, & Case, 2015; Nichols, Johnson, Williams, & Boomer, 2015; Nichols, Runge, Johnson, & 
Williams, 2007; U.S. Fish & Wildlife Service, 2018).
The AHM approach to resolving uncertainty is based on the evolving information state as described in the text and Box 1. During 
the summer of each year, an optimal regulatory decision for mallard harvest regulations is identified with dynamic optimization (e.g., 
Bellman, 1957; Puterman, 1994; Williams, 1996) based on weighted projections of system responses from multiple models. Given an 
observation of the current system state (mallard spring breeding population size and the amount of breeding habitat, Smith, 1995), 
the appropriate hunting regulation is selected. Each model is then used to predict the population size for the following spring. Model 
weights are then updated with Equation 2, comparing model-based predictions with observed abundance. Weights increase for 
models that perform well and decrease for those that predict poorly. These weights are then incorporated into the derivation of the 
next optimal regulatory decision, ensuring that the updated information state informs the next decision.
Four models of system response are used in the AHM program for mid-continent mallards based on contrasting hypotheses about 
survival and reproduction. Annual survival rate is modeled under an additive (Sa; additive instantaneous competing risks) or com-
pensatory (Sc) mortality hypothesis (Anderson & Burnham, 1976; Cooch, Guillemain, Boomer, Lebreton, & Nichols, 2014; Johnson et 
al., 1997). Annual reproductive rate is modeled as strongly (Rs) or weakly (Rw) density-dependent (Johnson et al., 1997; U.S. Fish & 
Wildlife Service, 2018). Combined, these hypotheses result in four models: SaRs (additive mortality, strongly density-dependent re-
production), SaRc (additive mortality, weakly density-dependent reproduction), ScRs (compensatory mortality, strongly density-de-
pendent reproduction), and ScRw (compensatory mortality, weakly density-dependent reproduction). In 1995, initial model weights 
were assigned to be equal at 0.25 for each of these models. After 23 years of experience with AHM, model weights have evolved 
based on model-specific predictions, with hypotheses reflecting strongly density-dependent reproduction (SaRs, ScRs) showing 
decreases in model weight reflecting low relative predictive ability (Figure 1). Of the two hypotheses including weakly density-
dependent reproduction, the one with additive mortality (SaRw) has the largest model weight, but ScRw has a non-negligible model 
weight as well. Figure 1 reflects learning about mallard responses to hunting and is thus useful to management. Evolving model 
weights reflect changes in which models have most influence on each year's hunting regulations, with SaRw and to a lesser extent 
ScRw dominating the optimization at present.
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The use of an approach to accumulating evidence based on the 
evolving information state provides a good response to the moti-
vating arguments discussed in the previous section. For example, 
model selection can be based on model performance in repeated 
predictions, and reproducibility is assessed periodically with each 
confrontation of observations and model-based predictions (e.g., 
Ioannidis, 2005). The implementation of an evolving information 
state in our mallard example occurred in direct response to the 
failure of ad hoc approaches and crude meta-analyses to resolve 
arguments about competing hypotheses important to manage-
ment (Box 2). Gurevitz et al. (2018) suggested that meta-analyses 
have caused authors to view each individual study “as a contribu-
tion toward the accumulation of evidence rather than revealing 
the conclusive answer to a scientific problem.” Although this view 
may be held by some ecologists, our reading of the current ecolog-
ical literature leads us to doubt the generality of this perspective. 
The role of each comparison of data against model-based predic-
tions is acknowledged explicitly in the evolving information state 
approach.

A major advantage of the information state approach over ad 
hoc and meta-analytic approaches to accumulating evidence is the 
potential to optimize study design. We operationally define a “pro-
gram of inquiry” as a sequence of studies designed to discriminate 
among the competing models of a specified model set. A typical ob-
jective for a single study with two hypotheses would be to maximize 
test power. For the case of multiple (>2) competing hypotheses, a 
reasonable objective would be to minimize a diversity index based 
on model weights (see Box 3), where minimization would reflect a 
weight approaching 1 for a single model and weights approaching 0 
for the remaining models.

Study design for such a sequence of studies can be viewed as a 
dynamic Markov decision problem (Puterman, 1994; Williams et al., 
2002) where the decision can take the form of a study treatment, 
a management action, a set of observations to collect, etc. This ap-
proach requires projecting the information state forward through 
time, accomplished in this case through use of Equation 2 (Box 1). 
Framing study design in this manner allows the decision at any deci-
sion point, t, to be a function of information state at that time. This 
is important, as certain aspects of optimal study design are expected 
to vary depending on model weights (Box 4). This dependence of 
design on information state should seem intuitively reasonable, as 
different distributions of uncertainty across models should lead 
to differing approaches to discrimination. Formal study objectives 
could be to minimize terminal (final time step of study) diversity, min-
imize time-averaged diversity, or perhaps minimize time required to 
achieve a threshold diversity value (e.g., Dt < 0.05). The focus of the 
dynamic decision problem would be to select appropriate actions. 
For manipulative studies, actions would be such factors as whether, 
how, and where (in the case of multiple study locations) to manip-
ulate the system (Box 4). For both manipulative and observational 
studies, actions would include selection of parameter(s) to estimate, 
selection of estimation method, selection of sample size, etc. Such 
treatment of study design for sequential programs of inquiry has the 
potential to increase the rate of learning and should receive greater 
consideration, in our opinion.

The first ecological recommendations for use of the evolving 
information state approach to accumulating evidence came from 

Box 3 Shannon entropy as an optimization criterion 
for programs of inquiry

Test power, a common optimization criterion for the plan-
ning of hypothesis tests based on two hypotheses, is not so 
appropriate for designing studies with multiple (>2) hypoth-
eses. Instead, some criterion based on the model weights, 
πt (model i), would be preferable (see Box 1). One approach 
is to consider the diversity of the model weights, where 
high diversity indicates relatively even model weights and 
low diversity indicates greater confidence in one or more 
models and less confidence in the remainder.
A commonly used diversity index is Shannon entropy 
(Shannon, 1948) computed using natural logs (ln):

where Dt is Shannon diversity at time t, M denotes the num-
ber of models in the set, and πt (model i) is the weight for 
model i at time t. As noted, Dt would not necessarily be used 
for the case of only two models, but we plot Dt as a function 
of model weight for one of two models simply for ease of 
presentation and understanding (Figure 2). In the case of two 
models (Figure 2), Dt attains its highest value for πt (model 
1) = πt (model 2) = 0.5 and then approaches 0 for πt (model 
i) approaching 0 or 1. Thus, low diversity is indicative of se-
lection of an appropriate model, whereas high diversity is in-
dicative of substantial uncertainty, with little discrimination 
among models.

(3)Dt=−

M∑

i=1

�t (model i) ln
[
�t (model i)

]

F I G U R E  2   Shannon entropy (Equation 3) computed for varying 
model weights in the case of two models
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applied ecology in conjunction with the concept of adaptive manage-
ment (e.g., Hilborn & Walters, 1992; Johnson et al., 1993; Walters, 
1986; Walters & Hilborn, 1976, 1978; Williams, 1996; Williams et 
al., 2002; Williams et al., 2007). In addition to the management pro-
gram described in Box 2, this adaptive management approach with 
evolving information state is being used in a small number of other 
management programs (Martin et al., 2011; McGowan et al., 2015; 
U.S. Fish & Wildlife Service, 2018). Active adaptive management in-
corporates projected changes in the information state into periodic 
decision-making (Williams, 2011) and is thus closely related to the 
active study design approach to learning described above. Passive 
adaptive management includes changes to the information state 
as a by-product of management and thus still includes the updat-
ing of model weights and consequent learning, but not the design 
opportunities (Williams, 2011). Recently, Dietze et al. (2019) advo-
cated increased use of iterative near-term forecasting and adap-
tive management as means of developing predictive ability useful 
to decision-makers. When uncertainty about system responses to 
management actions leads to use of multiple models and ensemble 
predictions, the information state provides a natural way to weight 
models for such predictions.

For clarity, we distinguish between the described sequential ap-
proach using an evolving information state and the single-analysis 
approach of using AIC model selection for a single data set that in-
cludes the same multiple-period data. As emphasized in the above 
discussion of study design, one distinction is the ability to adapt 
design components (e.g., which system manipulations to impose or 
which data to collect and parameters to estimate) as appropriate 
when using the multiple assessments of the evolving information 
state. Beyond this, the usual model selection approach with a single 
data set is to fit models to the entire data set. The models contain 
general parameters for which maximum-likelihood estimates (MLEs) 
are obtained. Efforts to evaluate model fit are based on observed 
and expected values for selected statistics, where expected values 
are computed using the same data as used to compute MLEs. In the 
evolving information state approach, parameter values are specified 
initially, or at least before the new data are collected, based on ei-
ther theory or prior data. Utility of each model is judged by compar-
ing predictions against data and estimates from the next time step, 
which are independent of the specified parameter values of each 
model. This approach avoids potential circularity associated with use 
of the same data for both assessment and estimation of parameter 
values.

Although the evolving information state approach was not de-
veloped with system change in mind, a shift from one model best 
describing dynamics to another (as possible under some climate 
change scenarios) would likely be apparent in the trajectory of model 
weight evolution. In contrast, a single analysis of the entire data set 
is expected to produce MLEs and model weights that reflect aver-
age (over the entire data set) values. Finally, primary motivations 
for seeking a parsimonious model using approaches such as AIC are 
to obtain parameter estimates with smaller variances and to guard 
against “overfitting,” such that the focal data set is fit extremely 

Box 4 Example of optimal study treatment as a 
function of current information state

If accumulation of evidence via the evolution of model 
weights is pursued, and a series of studies is designed to 
maximize that rate of accumulation, then each study will 
be designed to maximize discrimination among models (see 
Boxes 1 and 3). We consider the design of an experiment to 
evaluate the distributional dynamics of a species, based on its 
local extinction and colonization processes. Competing hy-
potheses about the system dynamics are expressed through 
four models, with the following values for baseline extinction 
(e) and colonization (c) probabilities: Model 1: e = 0.3, c = 0.3; 
Model 2: e = 0.3, c = 0.4; Model 3: e = 0.1, c = 0.3; Model 
4: e = 0.1, c = 0.4. There are 50 sites for which presence of 
the species is possible. There are 40 sites currently occupied. 
Two treatments are considered: (a) do nothing or (b) eradi-
cate the species from 20 of the occupied sites.
For each candidate treatment, and conditional on the current 
state of the system (Ot occupied sites and Ut = 50 − Ot unoc-
cupied sites), the diversity index in Box 3 is computed using the 
expected post-treatment weight (E

(
�t+1 (model i)

)
) for each of 

the four models, summed over all possible resultant extinctions 
(Et+1) and colonizations (Ct+1). Given each possible resulting 
combination of Et+1 and Ct+1, a new predicted weight for each 
model j (i.e., new information state) can be computed, using 
Equation 2. In this case Pr (datat+1|model j) = Pr (Et+1, Ct+1|model 
j) = Pr (Et+1|model j) × Pr (Ct+1|model j), assuming the extinction 
and colonization processes are independent. The probabilities 
of the resulting Et+1 and Ct+1, respectively, for model j are based 
on independent binomial distributions with Ot and Ut trials, 
respectively, and success probabilities ej and cj, respectively. 
Each of these new system state-dependent information states 
is then weighted by the average probability of reaching that 
new state (

∑4

j=1
�t (model j)Pr

�
Et+1,Ct+1�model j

�
). The final 

expected posterior weight for model i is then derived by sum-
ming across all possible resulting extinctions and colonizations:

The results of this optimal design approach for one 
time step, with initial system state of 40 out of 50 sites oc-
cupied, are shown in Figure 3, for all possible initial weights 
for each model, in increments of 0.1. The optimal treatment 
depends on the current information state. Treatment 2, the 
eradication of 20 sites, tends to be selected in the upper 
right or lower left of each plot. These are scenarios where 
there is less uncertainty about the extinction process, and 
therefore, it is advantageous to create more unoccupied 
sites, in order to examine the colonization process.

E
(
�t+1 (model i)

)
=

occupied∑

E=0

unoccupied∑

C=0

[
4∑

j=1

�t (model j)Pr
(
Et+1,Ct+1|model j

)
]

�t+1

(
model i|

{
Et+1,Ct+1

})
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well, but the selected model is not useful for prediction (Burnham & 
Anderson, 2002). By focusing on predictive abilities, the evolving in-
formation state approach addresses this latter issue directly. In sum, 
we do not know how frequently these two approaches to model se-
lection would yield the same models, but these distinctions between 
the approaches provide the potential for different selections.

The described approach of an evolving information state is based 
on the classical framework of discrete models that provide different 

stories about how the world works. We note the existence of a 
closely related approach that focuses not on model weights for dis-
crete models, but on estimation of key parameters in a single general 
model. For example, in the mallard example of Box 2, reproductive 
rate was modeled as either strongly or weakly density-dependent. 
We could have developed a single model with one parameter describ-
ing the strength of density dependence and focused on its estima-
tion. Under this approach to modeling, the accumulation of evidence 

F I G U R E  3   The results of an optimal design approach to treatment selection for one time step of an experiment on distributional 
dynamics. Hypotheses about system dynamics are expressed using four models with differing values for extinction (e) and colonization (c) 
probabilities: Model 1: e = 0.3, c = 0.3; Model 2: e = 0.3, c = 0.4; Model 3: e = 0.1, c = 0.3; Model 4: e = 0.1, c = 0.4. There are 50 experimental 
sites, 40 of which are currently occupied. Two treatments are considered: (a) do nothing; or (b) eradicate the species from 20 of the occupied 
sites. Figure depicts optimal treatment for all possible initial weights for each model, in increments of 0.1
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becomes a problem of updating estimates of key parameters as new 
data become available. Methods referred to as Recursive Bayes pro-
vide a natural approach for this sort of updating (see Hooten et al., 
2019), although we still recommend the scientific step of comparing 
predictions with observations as a means of determining whether 
the general model itself is providing a reasonable approximation of 
underlying ecological processes (see Dietze et al., 2019). Thus, other 
approaches to accumulating evidence may be useful, in addition to 
the one that we propose.

In summary, we believe that the evolving information state is 
a good approach to accumulating evidence that deserves far more 
extensive use. It provides a scientific and systematic approach to 
accumulation of evidence. The model weights that form the infor-
mation state are objectively based on the ability of each model to 
repeatedly make predictions that are consistent with observations. 
Models that attain high weights evoke confidence, not because of 
loud or influential advocates, but simply because they predict well. 
We believe that more widespread use of this approach could lead 
to reductions in the sorts of posturing and arguing that sometimes 
characterize contentious debate. Finally, we believe that the abil-
ity to better design programs of inquiry has the potential to lead to 
more rapid learning.

5  | OPPORTUNITIES FOR ACCUMUL ATING 
E VIDENCE: WE C AN DO BET TER

We believe that the reasoning presented in the section on motiva-
tion argues strongly for greater efforts devoted to sequences of 
studies that allow us to accumulate evidence in ecology and conser-
vation. The reproducibility crisis alone provides strong motivation 
for promoting sequential studies designed to replicate results. Such 
sequences could include multiple studies implemented on the same 
system over time, as with our mallard example, or studies applied to 
different systems, allowing for a system effect. However, we recog-
nize that a variety of research constraints, ranging from funding to 
publishing to availability of research team colleagues, can make the 
transition away from one-and-done research difficult. Perhaps as a 
result, we are aware of no current program of nonapplied ecologi-
cal research that employs this approach of an evolving information 
state. Here, we suggest opportunities by focusing on research and 
other investigative activities that are preadapted to sequential stud-
ies and accumulation of evidence.

An increasingly common endeavor in current ecology and con-
servation is monitoring (Likens & Lindenmayer, 2018; Yoccoz et al., 
2001). Monitoring programs are preadapted to accumulation of 
evidence via an evolving information state. Unfortunately, many 
ecological monitoring programs are not guided by hypotheses and 
corresponding models (Ims & Yoccoz, 2018; Nichols & Williams, 
2006; Yoccoz et al., 2001). However, the substantial cost and effort 
associated with data collection are already present in monitoring 
programs, and only the intellectual tasks of hypothesis identifica-
tion and model development are lacking. We believe that monitoring 

programs can be readily adapted to accumulate evidence via an in-
formation state approach, and that the responsibility for such adap-
tation lies with program organizers and administrators. The nature 
of the identified hypotheses will of course vary with the scale of 
the monitoring and the interests of program organizers and science 
advisers. We believe that incorporation of a scientific program of 
learning will add substantial value to the usual monitoring products 
of trend detection and assessment of system status. Indeed, these 
latter products have been criticized as providing inadequate justifi-
cation for the substantial expenditures required by monitoring (Ims 
& Yoccoz, 2018; Nichols, 2000b; Nichols & Williams, 2006; Yoccoz 
et al., 2001). The addition of evidence accumulation for relevant 
hypotheses to ongoing and new monitoring programs will largely 
eliminate the criticism that these programs lack intellectual focus on 
specific questions of scientific or conservation interest. Monitoring 
of the new Climate-ecological Observatory for Arctic Tundra is being 
developed as a component of the scientific process (Ims & Yoccoz, 
2018) with Bayesian updating the planned approach to accumulating 
evidence. Unfortunately, such programs are still rare.

The kind of meta-analysis based on periodic modeling of long-
term data sets from multiple study locations, as practiced for spot-
ted owl species in the western United States (e.g., Anthony et al., 
2006; Blakesley et al., 2010; Dugger et al., 2016; Forsman et al., 
2011; Franklin et al., 2004), is also readily adaptable to an informa-
tion state approach to learning. Originally, the spotted owl stud-
ies at multiple sites were developed largely to estimate population 
trends. As a primary funder of this work, the U.S. Forest Service 
focused these geographically separated studies on estimation of a 
single parameter (finite rate of population increase), illustrating the 
potential power of a top-down approach to promote study integra-
tion. Analyses of recent years have extended beyond this mandate 
to also focus on hypotheses about drivers of spotted owl popula-
tion dynamics (e.g., Dugger et al., 2016). Scientists associated with 
these studies have already begun the intellectual development of 
selecting key hypotheses and constructing associated models, such 
that adoption of the evolving information state approach would be 
a natural next step.

Scientists and research teams carrying out long-term research 
programs on specific study systems (e.g., Cooke et al., 1995; Rotella 
et al., 2012; Spendelow et al., 2016) are similarly preadapted to ac-
cumulating evidence. In conjunction with carrying out sequential 
one-and-done studies of specific questions, researchers in such 
programs tend to maintain population-level monitoring as an ongo-
ing program component. Selection of focal hypotheses and devel-
opment of associated models are the primary costs associated with 
adding a component for accumulating evidence. As such programs 
are typically question-driven to begin with, we suspect this kind of 
shift should be readily endorsed and relatively easy.

The above recommendations build on existing monitoring pro-
grams, but what of the individual researcher who is not already as-
sociated with such a program? We see at least 2 possibilities here. 
The first is based on the idea that comparisons of model-based 
predictions with observations external to ongoing monitoring can 
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be useful in modifying model weights (Fackler & Pacifici, 2014; 
Williams, 2015). Thus, individual scientists interested in contributing 
to an existing program can do so with a simple investment in under-
standing the models of an ongoing program and identifying the kinds 
of observations that could contribute to model discrimination.

The second possibility is for a group of researchers focused on 
specific hypotheses to form a loose consortium around the idea of 
accumulating evidence. In cases where researchers investigate such 
hypotheses within different systems, variability could be dealt with 
via a system-level random effect. For example, in the 1960s and 
1970s multiple mammalogists were focusing their research on dif-
ferent hypotheses to explain microtine population cycles (reviewed 
by Krebs & Myers, 1974). Proposed mechanisms based on food qual-
ity, food quantity, behavior, genetics, and predation were among 
the leading hypotheses of the time, and each had its proponents. 
Researchers carried out their individual studies focused on their 
favorite hypotheses. We certainly learned from their results, but 
they were hardly definitive (Chitty, 1996), with questions surround-
ing even the better-supported hypotheses (e.g., Graham & Lambin, 
2002; Hanski, Hansson, & Henttonen, 1991; Hanski & Korpimaki, 
1995). But what if these researchers had gotten together and agreed 
on a set of models that corresponded to the various hypotheses, 
such that individuals' experimental and observational results con-
tributed not just to specific favorite hypotheses, but to the model 
weights of the entire set? Our belief is that contentiousness would 
have been reduced, key experiments and observations would have 
been more readily identified, and learning would have been more 
rapid.

Individual researchers can thus contribute to the evolving in-
formation state approach to accumulating evidence. However, 
there is currently little incentive to do so, beyond an individual's 
desire to make important contributions to evidence accumulation. 
For example, university department chairs and laboratory directors 
currently appear to value stand-alone investigations more than the 
degree to which a scientist has contributed to changes in model 
weights within an integrated program. Major funding agencies cur-
rently appear to make funding decisions largely based on potential 
for publishable results that are widely cited, with little emphasis on 
the integration of results and resultant accumulation of evidence 
and knowledge. If such institutions and agencies shifted focus to 
such accumulation, this would likely serve as an important induce-
ment for researchers to integrate their work into programs of in-
quiry guided by common models. We speculate that such top-down 
approaches could be very effective, but they would require more 
effort and greater responsibility at the funding agency level to 
identify focal questions and promote integrated research designed 
to address them.

The above discussion has focused mainly on nonapplied ecolog-
ical research, and we believe that many opportunities exist in ap-
plied programs as well. We noted that a few adaptive management 
programs currently utilize an evolving information state as a means 
of tracking accumulated evidence (Martin et al., 2011; McGowan 
et al., 2015; U.S. Fish & Wildlife Service, 2018), and we believe 

that this approach could be used for many more such programs. 
Many programs of management and conservation are even better 
adapted than typical monitoring programs to use of this approach 
because they already include both monitoring and underlying mod-
els. The need to develop model-based predictions at each time step 
in order to make a wise decision, and the existence of system mon-
itoring for making those decisions state-specific, provide the key 
ingredients for updating the information state and accumulating ev-
idence about system responses to management actions. We believe 
that adding key hypotheses and an associated information state can 
be accomplished without major alterations of existing management 
practice.

As is the case for nonapplied research, individual researchers 
can contribute to ongoing management programs, even with isolated 
studies. Research that is not part of a management program, but that 
is designed using two or more of the hypotheses of such a program, 
can lead to model updating that is separate from the systematic up-
dating internal to the program (Fackler & Pacifici, 2014; Williams, 
2015). Targeted research frequently leads to results that provide 
greater evidence for discrimination than more standard manage-
ment program monitoring, for example, by targeting relationships 
affecting vital rates, as opposed to system state variables. In order 
to be most effective, such research should be coordinated with man-
agers of the focal program early on.

6  | SUMMARY

We began this essay with the observation that many published stud-
ies in ecology represent stand-alone efforts in which study conclu-
sions are viewed as new knowledge. We then argued that single 
studies in ecology seldom yield definitive results and cited evidence 
that the majority of studies in at least some disciplines yield results 
that are not reproducible. These observations and arguments led 
to the conclusion that ecological science could benefit from more 
sequences of studies that repeatedly compare observations against 
model-based predictions as a way of accumulating evidence and 
learning. We have described an approach to accumulating evidence 
based on an evolving information state and have argued that this 
approach has many benefits and is well-suited for ecology and con-
servation. We have also outlined how designing a series of studies 
to maximize the discrimination among models could increase the 
rate of evidence accumulation in ecology. We see very limited use of 
this approach in wildlife management and conservation and believe 
that expanded use could benefit many more management programs. 
The approach is not used in ecological science to our knowledge. 
However, many current monitoring programs and long-term re-
search programs are preadapted to use of this approach and could 
adopt it with relatively little effort. We view the accumulation of 
evidence in ecology as a major issue worthy of serious consideration. 
In our opinion, it is time to follow Forscher's (1963) advice, to refocus 
our efforts on building, and thus to return efficiency and purpose to 
our chaotic brickyard.
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