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A B S T R A C T   

Background: Lung adenocarcinoma (LUAD) is the commonest subtype of primary lung cancer. A 
comprehensive analysis of the association of immunity with amino acid metabolism in LUAD is 
critical for understanding the disease. 
Methods: The present study examined LUAD and noncancerous cases from the TCGA database. 
Differentially expressed genes (DEGs) between LUAD and noncancerous tissues were detected by 
analyzing processed expression profiles. We cross-referenced the up-regulated DEGs with Immune 
and Amino Acid Metabolism-related genes (I&AAMGs), resulting in Immune and Amino Acid 
Metabolism related differentially expressed genes (IAAAMRDEGs). The STRING database was 
employed to analyze PPI on IAAAMRDEGs, obtaining excavated hub genes, whose biological 
processes, molecular functions and cellular components were examined with GO/KEGG. Potential 
mechanisms related to LUAD were investigated by GSEA and GSVA. A prognostic model was built 
by LASSO-COX analysis, taking into consideration risk scores and prognostic factors to determine 
biomarkers affecting LUAD occurrence and prognosis. 
Results: Totally 377 genes were detected at the intersection of upregulated DEGs and I&AAMGs. 
Analysis of PPI on these 377 IAAAMRDEGs yielded 17 hub genes. A LASSO regression analysis 
was utilized to assess the prognostic values of the 17 hub genes. Validation using the combined 
dataset confirmed 4 genes, e.g., polo-like kinase (PLK1), Ribonucleotide Reductase Subunit M2 
(RRM2), Thyroid Hormone Receptor Interactor 13 (TRIP13), and Hyaluronan-Mediated Motility 
Receptor (HHMR). The model’s accuracy was further assessed by ROC curve analysis and the COX 
model. In addition, immunohistochemical staining obtained from the HPA database, revealed 
enhanced PLK1 expression in LUAD samples. 
Conclusion: LUAD pathogenesis is highly associated with immunity and amino acid metabolism. 
The PLK1, RRM2, TRIP13, and HMMR genes have prognostic values for LUAD. PLK1 upregulation 
in LUAD might be involved in tumorigenesis by modulating the cell cycle and represents a po-
tential prognostic factor in clinic.   

1. Introduction 

Lung cancer, a prevalent malignant tumor, poses a significant threat to human health. The latest statistical report on the global 
cancer burden, released by the International Agency for Research on Cancer of the World Health Organization (WHO/IARC), reveals 
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that lung cancer ranks second in terms of incidence and first in mortality [1,2]. Among the different types of lung cancer, lung 
adenocarcinoma (LUAD), classified as non-small cell lung cancer (NSCLC), stands as the most common subtype of primary lung cancer, 
accounting for 40 % of all lung cancer cases and displaying an upward trend [3]. Consequently, the identification of stable and reliable 
tumor markers becomes crucial to screen patients for poor prognosis and to offer more aggressive treatment options. 

Amino acids play a vital role as essential nutrients for both tumor cells and immune cells. Both tumor cells and immune cells exhibit 
specific and distinctive amino acid requirements [4,5]. T cells, which are central to the immune system, play a pivotal role in inducing 
apoptosis of tumor cells and inhibiting tumor occurrence and development through various mechanisms [6,7]. The activation, dif-
ferentiation, and function of T cells heavily depend on amino acid transport and metabolism. Furthermore, modern studies have shown 
that malignant tumor cells undergo rapid growth, characterized by exuberant tissue metabolism, abnormal cell growth, and accel-
erated anabolism and catabolism. Many tumors overexpress enzymes that degrade amino acids, which provide energy and metabolites 
for anabolic processes and also act as a mechanism for immune evasion of cancer cells [8]. Studies have shown that 
alanine-serine-transporter 2 (ASCT2), an essential amino acid transporter for life, can regulate the differentiation of CD4+T cell 
clusters, thus promoting anti-tumor immune response and achieving the goal of inhibiting tumor growth [9]. Hence, a comprehensive 
exploration of the interplay between immunity, amino acid metabolism, and LUAD is necessary to decipher the conditions under which 
specific genes promote or inhibit tumor survival. 

In this paper, we analyze the expression changes of genes related to Immunity and Amino Acid Metabolism in LUAD by down-
loading and sorting the LUAD expression profile data and clinical information of patients from The Cancer Genome Atlas (TCGA) 
database. Our objective is to explore their correlation with diagnosis and prognosis and ultimately identify key genes such as PLK1, 
RRM2, TRIP13, and HHMR. Polo-like kinase (PLK) belongs to the serine/threonine protein kinase polo family and includes five 
subtypes, namely Polo-like kinase 1–5. PLK1, a known cell cycle regulator, governs cell mitosis, cytokinesis, DNA damage response, 
and development [10]. It is often associated with lower survival rates and frequently observed in various human cancers due to its 
overexpression. 

2. Materials and methods 

2.1. Data Acquisitions 

The expression matrix of the Lung adenocarcinoma (LUAD) dataset (TCGA-LUAD) (https://portal.gdc.cancer.gov/) was down-
loaded from The Cancer Genome Atlas (TCGA) through the R package TCGAbiolinks (version 2.30.0) [11]. This dataset comprised 539 
LUAD samples (cancer group, designated as LUAD) and 59 adjacent samples (normal group, designated as normal). All samples 
included in this study had matched clinical information and were standardized into Fragments Per Kilobase per Million (FPKM) data 
format. The corresponding clinical data were obtained from the UCSC Xena database [11](http://genome.ucsc.edu). The Tpm data 
and count sequencing data of the TCGA-LUAD dataset were standardized using the R-package limma (version 3.58.1) [12]. 

Additionally, we acquired LUAD-related datasets GSE118370 and GSE40275 from the Gene Expression Omnibus (GEO)(https:// 
www.ncbi.nlm.nih.gov/) [13] using the R-package GEOquery (version 2.70.0) [14]. The GSE118370 dataset consisted of micro-
array gene-expression profiles of 6 LUAD patients and 6 matched normal tissues adjacent to cancer, derived from Homo Sapiens and 
the data platform GPL570 [Hg–U133 _ Plus _ 2] Affymetrix Human Genome U133 Plus 2.0 Array. On the other hand, the GSE40275 
dataset comprised microarray gene expression profile data of 12 LUAD patients and 12 perfectly matched normal tissue samples 
adjacent to cancer, also from Homo Sapiens, with the data platform GPL15974 Human Exon 1.0 ST Array [CDF: Brain Array Version 
9.0.1, HsEx 10stv2 _ Hs _ REFSEQ]. 

GeneCards database [15] was utilized to gather Immune-related genes (IRGs) and Amino Acid Metabolism-related genes (AAMGs) 
using "immune" and "amino acid metabolism" as search keywords, respectively. Additionally, the MSigDB (Molecular Signatures 
Database) [16] database was employed to conduct searches with keywords "Immune" and "amino acid metabolisms," resulting in the 
download of all relevant genomes. These datasets were merged, ultimately providing 3531 genes related to both immune and amino 
acid metabolisms (I&AAMGS). 

2.2. Analysis of Differentially Expressed Genes(DEGs) related to immunity and acid metabolism between the normal and LUAD groups 

To explore the potential mechanisms, related biological characteristics, and pathways of differential genes in the cancer group and 
normal group of LUAD, we first standardized the TCGA-LUAD, GSE118370, and GSE40275 datasets using the R-package limma. 
Subsequently, the TCGA-LUAD dataset was divided into the cancer group and normal group to analyze the differences in the processed 
expression profile data. Differentially expressed genes (DEGs) between different groups of the TCGA-LUAD dataset were identified, and 
the results of the differential analysis were visually represented using a volcano plot created with the ggplot2 R package. We selected 
the differentially expressed genes with |logFC| > 2 and P.adj <0.05. The obtained differentially expressed genes were then merged 
with I&AAMGs and visualized using a Venn diagram to identify Immune and Amino Acid Metabolism related differentially expressed 
genes (IAAAMRDEGs) in LUAD. The expression levels of these genes in the TCGA-LUAD dataset were visualized using the R-package 
pheatmap (version 1.0.12). 

2.3. Protein-protein interaction (PPI) 

Protein-protein interaction (PPI) involves the association of individual proteins through their interactions. To explore PPI 
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networks, we utilized the STRING database [17], which enables the search for known protein interactions and the prediction of in-
teractions between proteins. In this study, we constructed a PPI network based on differentially expressed genes with a minimum 
required interaction score of 0.400. The closely related local regions within the PPI network may represent molecular complexes with 
specific biological functions. We employed the Markov Clustering (MCL) algorithm, a graph-based clustering method, to initially 
cluster the PPI network, setting the expansion parameter to 3. Subsequently, we used the Maximal Clique Centrality (MCC) algorithm 
to determine the importance of each node based on the maximum clique theory. Additionally, we calculated the importance of each 
node using the Degree algorithm, which is based on the number of nodes adjacent to each node. The Edge Percolated Component (EPC) 
algorithm identified the maximum connected subgraph in the network by removing edges, thereby determining the importance of each 
node. Moreover, the Maximum Neighborhood Component (MNC) algorithm measured the importance of each node based on the 
maximum number of neighborhoods to which each node belongs. Lastly, the density of maximum network neighborhood connectivity 
(DNNC) algorithm assessed the importance of each node by calculating the maximum neighborhood density to which each node 
belongs. Using these five algorithms, we assigned scores to IAAAMRDEGs related to other nodes in the PPI network. We ranked the 
IAAAMRDEGs based on these scores and selected the top 30 genes as hub genes (mRNAs) associated with LUAD disease. 

2.4. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis 

For large-scale function enrichment research, we conducted analysis using the Gene Ontology (GO) [18], which encompasses 
biological process (BP), molecular function (MF), and cellular component (CC). Additionally, we utilized the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [19], a comprehensive database containing information on genomes, biological pathways, diseases, and 
drugs. To perform GO annotation analysis on IAAAMRDEGs, we employed the R-package clusterProfiler (version 4.10.1) [20]. The 
selection criteria for entries were set at P < 0.05 and FDR value (q.value) < 0.2. We applied the Benjamini-Hochberg (BH) method to 
correct the P values. 

2.5. Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis (GSEA) [21] evaluates the distribution trend of genes in a predefined gene set within a gene list 
sorted by phenotypic correlation to determine its contribution to the phenotype. In our study, we utilized the R-package clusterProfiler 
to perform GSEA on all genes in the cancer group and normal group of the TCGA-LUAD dataset. The GSEA enrichment analysis pa-
rameters were set as follows: 123 seeds, 1000 permutations, a minimum of 10 genes per gene set, and a maximum of 500 genes. The 
Benjamini-Hochberg (BH) method was used to correct the P values. We utilized the "c2.cp.v7.2.symbols" gene set from the Molecular 
Signatures Database (MSigDB) and considered significant enrichment at a threshold of P < 0.05 and FDR value (q.value) < 0.25. 

2.6. Gene Set Variation Analysis (GSVA) 

Gene Set Variation Analysis (GSVA) [22] is a nonparametric unsupervised analysis method used to evaluate gene set enrichment 
results of microarray nuclear transcriptomes. It transforms the expression matrix of genes between different samples into the 
expression matrix of gene sets between samples, thus determining whether different pathways are enriched among different samples. 
For this analysis, we obtained the "h.all.v7.4.symbols.gmt" gene set from the MSigDB database. GSVA analysis was performed on the 
TCGA-LUAD dataset at the gene expression level, and the differences in functional enrichment between the two groups were calcu-
lated. Significant enrichment was determined at a threshold of P < 0.05. 

2.7. Least absolute shrinkage and selection operator (LASSO) 

To develop the prognosis model of hub genes for LUAD, we employed 10-fold cross-validation with 123 seeds for regression using 
the Least Absolute Shrinkage and Selection Operator (LASSO) method [23]. We ran 1000 cycles to prevent overfitting and improve the 
model’s generalization ability. LASSO regression is often used for constructing prognosis models. By increasing the penalty term (the 
absolute value of lambda × slope) on top of linear regression, the model’s overfitting is reduced and its generalization ability is 
enhanced. The risk score was determined through the LASSO regression prognosis model, and the grouping and survival outcomes of 
each cancer group sample were visualized on the risk factor map. 

2.8. Cox regression analysis 

To investigate the clinical prognostic value of the screened hub genes in LUAD, we included the expression of IAAAMRDEGs from 
the TCGA-LUAD dataset in a multivariate Cox regression analysis. The significance threshold for the P value was set at 0.1. Based on the 
results of the multivariate Cox regression analysis, we constructed a forest plot to visualize the outcomes. Furthermore, a nomogram 
was established to predict the 1-year, 3-year, and 5-year survival of LUAD patients. A nomogram is a graphical representation that 
depicts the functional relationship between multiple independent variables through intersecting line segments in a plane rectangular 
coordinate system. It scores and characterizes the variables in the multivariate regression model using a specific scale and calculates 
the total score to predict the probability of events. The accuracy and resolution of the nomogram were evaluated using calibration 
curves. Calibration curves evaluate the prediction performance of the model by plotting the fit of actual probabilities against the 
probabilities predicted by the model under different circumstances. The "rms" R package was employed to construct the nomograms 
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and calibration curves. Additionally, the decision curve analysis (DCA) was used to assess the prediction efficacy of 1-year, 3-year, and 
5-year survival outcomes in LUAD patients. DCA is a straightforward method for evaluating clinical prediction models, diagnostic tests, 
and molecular markers. The R-package ggDCA (version 1.1) [24] was utilized to draw the DCA curves. 

2.9. Statistical analyses 

The specific technical roadmap of our study was depicted in the figure (Fig. 1). All data processing and analyses were conducted 
using R software (Version 4.1.2). Continuous variables were presented as mean ± standard deviation. The Wilcoxon rank-sum test was 
used for comparing continuous variables between two groups, while the statistical significance of normally distributed variables was 
estimated using the independent Student t-test. The Kruskal-Wallis test was applied to compare three or more groups. For categorical 
variables, the Chi-square test or Fisher’s exact test was used to analyze the statistical significance between two groups. LASSO 
regression analysis was performed using the glmnet R-package [25], and receiver operating characteristic (ROC) curves were 
generated using the pROC R-package [26]. Unless otherwise specified, all results were calculated using Spearman correlation analysis, 
and P values were two-tailed, with statistical significance set at P < 0.05. 

3. Results 

3.1. Analysis of Differentially Expressed Genes(DEGs) related to Immunity and Amino Acid Metabolism between the normal and LUAD 
groups 

From the TCGA-LUAD dataset, a total of 18,436 genes were identified, with 1,666 genes highly expressed and 564 genes lowly 
expressed (Fig. 2A). We further cross-referenced the up-regulated DEGs with I&AAMGs, resulting in 377 genes that were related to 
both immune and amino acid metabolism (IAAAMRDEGs) (Table 1). The expression patterns of these 377 IAAAMRDEGs in the TCGA- 
LUAD dataset were depicted in a Venn diagram (Fig. 2B) and represented as a heat diagram (Fig. 2C). 

Fig. 1. Technical roadmap. TCGA, the cancer genome atlas. LUAD, Lung adenocarcinoma. AAMGs, Amino Acid Metabolism genes. IAAAMRDEGs, 
Immune and Amino Acid Metabolism related differentially expressed genes. GO, Gene Ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes. 
GSEA, Gene Set Enrichment Analysis. GSVA, Gene Set Variation Analysis. PPI, Protein-protein interaction. LASSO, least absolute shrinkage and 
selection operator. ROC curve, receiver operating characteristic curve. 
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3.2. PPI interaction network analysis of immune-amino acid metabolism related genes 

To analyze the interactions between proteins encoded by 337 IAAAMRDEGs and predict the PPI network, we constructed a network 
using the STRING database. Then we used MCL algorithm for clustering and identify 31 closely related IAAAMRDEGs in PPI network. 
We utilized five algorithms, namely MCC, DMNC, MNC, EPC, and Degree, to mine scores related to other PPI network nodes for the 
IAAAMRDEGs. The top 30 node genes scored by each algorithm were identified as hub genes associated with LUAD disease. Taking the 
scoring result of MCC as an example, we used the cytoscape software to visually display the interaction relationship (Fig. 3A). We can 
know that altogether 17 hub genes included in the top30 scored of the five algorithms (Fig. 3B–Table S1). These hub genes are RRM2, 
UBE2C, CDT1, PLK1, MAD21.1, KIF11, KIF23, TRIP13, CDK1, CDC20, BIRC5, CCNA2, CDC25C, CCNB2, AURKA, HMMR and CENPF. 
The visualization of the interaction relationship they saw is shown in the figure (Fig. 3C). The specific gene scoring levels are shown in 
Tables S2–S6. These hub genes have shown a high degree of correlation and importance in a variety of independent bioinformatics 
approaches, indicating that they may play a central role in LUAD disease. And we found that these 17 hub genes showed a strong 
interaction relationship. It helps us to identify potential therapeutic targets or the focus of disease mechanism research more easily. 

Fig. 2. Differentially expressed genes analysis. A: Volcano Plot for Differential Expression Analysis between the Cancer Group (Subgroup: Tumor) 
and Normal Group (Subgroup: Normal) of the TCGA-LUAD. The X-axis is log FC, and the larger the absolute value is, the larger the corrected P value 
is, indicating the larger the multiple of the difference is. The Y-axis is the corrected P value, and the larger the logarithm of log10 is, indicating the 
more significant the difference is. B: Venn Diagram Representation of the Intersection of Differentially Expressed Genes and IAAAAMRDEGs from 
the TCGA-LUAD Dataset. C: Heat Map Showing the Expression of IAAAMRDEGs on the TCGA-LUAD Dataset. Red represents high expression, blue 
represents low expression. LUAD, Lung Adenocarcinoma, a type of lung cancer. AAM, Amino Acid Metabolism. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 
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3.3. GO/KEGG enrichment analysis of genes related to immune-amino acid metabolism 

To analyze the biological functions and signaling pathways of the 17 hub genes associated with immune-amino acid metabolism in 
LUAD, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the 17 hub 
genes. After converting gene IDs, we analyzed the hub genes through GO and KEGG (Table 2). The GO annotations of the 17 hub genes 
included Cellular Component (CC), Biological Process (BP), and Molecular Function (MF), providing insights into the functional 
enrichment of DEGs. The GO analysis results showed that the 17 hub genes were primarily enriched in biological process (BP) such as 
nuclear division(GO:0000280), mitotic nuclear division (GO: 0140014) and mitotic cell cycle phase transition (GO: 0044772) in 
LUAD. Spindle (GO:0005819), spindle pole (GO:0000922), mitotic spindle (GO:0072686), and other cellular components (CC); 
microtubule binding (GO:0008017), tubulin binding(GO:0015631), histone kinase activity (GO: 0035173), and other molecular 
function (MF) (Fig. 4A and B). KEGG analysis revealed associations between the 17 hub genes and signaling pathways. Specifically, the 
17 hub genes were mainly linked to progesterone-mediated oocyte maturation (hsa04914), cell cycle (hsa04110), and oocyte meiosis 
(hsa04114) (Fig. 4A and B). The results of GOKEGG enrichment analysis were visualized using a chord diagram, combining logFC with 

Table 1 
List of gene symbol of IAAAMRDEGs.  

Gene Symbol 

ZIC2 CXCR1 KIF1A SIGLEC11 CHRNB4 HOXC11 PROM2 TAL1 
ABCA3 CYP27B1 KIF23 SIM2 CHRNG HOXC13 PSAT1 TESC 
ACADL CYP2F1 KIF5A SIX6 CILP HOXC9 PTGES TFAP2A 
ACVRL1 CYP4B1 KIRREL2 SLC13A5 CIT HOXD13 PTPRZ1 TFF1 
ADAM8 CYP4F3 KLF4 SLC1A1 CLEC14A HPDL PYCR1 TFF2 
ADAMTS8 DAO KLHDC8A SLC1A7 CLPS HRH3 RAB26 TH 
ADCYAP1R1 DCAF4L2 KLK12 SLC22A11 CMTM2 HTR3A RAMP2 THBD 
ADH1B DEFA4 KLK3 SLC25A10 COCH IGF2BP3 RAMP3 TLX1 
ADRB2 DKK4 KLK6 SLC28A1 COL10A1 IGFBP1 RECQL4 TLX2 
AFP DLC1 KLK8 SLC28A2 COL1A1 IGFBP3 REG4 TMEM171 
AGT DLX5 KRT14 SLC2A1 COL5A1 IGLON5 RETN TMEM179 
AHNAK2 DPEP1 KRT15 SLC2A2 COL5A2 IL1RL1 RNF186 TMEM59L 
AIM2 E2F2 KRT17 SLC2A5 COL9A1 IL31RA RRM2 TMEM63C 
AK4 E2F7 KRT3 SLC30A10 COX4I2 IL6 RUFY4 TMEM74 
AKR1C1 E2F8 KRT34 SLC30A2 CP ITPKA SCARA5 TMEM88 
AKR1C2 EDNRB KRT4 SLC39A5 CPS1 IVL SCN8A TNNC1 
AKR1C3 EEF1A2 KRT79 SLC4A1 CPT1B KCNA10 SCUBE1 TNNI3 
AKR1D1 EFNA2 KRT83 SLC6A15 CPXM1 KCNA5 SEMA5A TNNT1 
ALB EMX1 LAMP3 SLC6A17 CRABP1 KCNE4 SERPINA5 TPPP3 
ALDH3B2 EN2 LCN2 SLC6A18 CTAG2 KCNK9 SERPINA9 TRIM72 
ALOX15 EPHA8 LILRA5 SLC6A3 CXCL13 KCTD4 SFTPC TRIP13 
ANGPTL7 F2 LIPN SLC7A11 CXCL14 KIF11 SFTPD TROAP 
ANKRD22 F5 LPO SLC7A5 BIRC5 GAD1 MUC2 TSPAN8 
ANKRD33 F7 LRRC15 SLC7A9 BLM GALR3 MUC4 TTR 
ANKRD34B FABP4 LRRC2 SLC9A3 C11orf91 GAST MUC5AC TUBB1 
ANLN FABP7 MAD2L1 SNX22 C1QL1 GCG MUC5B ZBTB16 
AOC3 FAM180B MAG SOX21 CA10 GCGR MUC6 ZG16B 
APOBEC3B FBXO32 MAGEA6 SPN CA4 GCLC MYBPH  
ARHGEF15 FGFR4 MARCO SPRR1B CA9 GDF2 MYCN  
ARNTL2 FGR MB SST CACNA1I GFAP NDRG4  
ARTN FHL1 MC5R SSTR1 CACNA2D2 GH2 NGB  
ASPA FOSB MELTF STRA6 CALML3 GIMAP6 NKX2-2  
ATP4A FOXD1 MKRN3 STX11 CALML5 GJB4 NKX2-5  
AURKA FPR2 MMP1 STYK1 CALML6 GLDC NKX3-2  
B3GNT6 FRMD3 MMP11 SUSD2 CARD14 GNGT1 NKX6-1  
BARHL2 FTCD MMP13 SYNGR3 CAV1 GPA33 NLRC4  
BCL2L10 FUT6 MNX1 SYNGR4 CAV3 GPD1 NMUR1  
BDNF FXYD1 MSI1 SYT2 CBX2 GPR35 NPTX1  
BHMT FZD9 MSR1 SYT5 CCDC54 GPT OTC  
BHMT2 G6PC2 MUC16 SYT7 CCL24 GPT2 OVOL1  
CD93 HAL PDK4 TUBB3 CCNA2 GPX3 PADI4  
CDA HAO1 PEBP4 TUBB4A CCNB2 GREB1 PAH  
CDC20 HBB PGLYRP3 UBE2C CCNE1 GREM1 PANX2  
CDC25C HBEGF PHOX2A UNC93A CD300LG GRIN1 PAX7  
CDCA7 HECW1 PIP5K1B VGF CD36 GRK5 PCDH8  
CDH3 HGD PKHD1L1 VSIG4 CD52 GSTM5 PCK1  
CDK1 HGFAC PKMYT1 VWF CD79A H2AC18 PCSK1  
CDKN2A HMGA1 PLA2G4A WNK2 CDT1 HMMR PNMA5  
CDO1 HMGB3 PLK1 XDH CEACAM8 HNF1A PRAM1  
CGA HOXA11 PRKG2 ZIC4 CENPF HNF4A PRKCG  

IAAAMRDEGs - Immune and Amino Acid Metabolism related differentially expressed genes. 
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Fig. 3. PPI network. A. The IAAAMRDEGs were subjected to a Protein-Protein Interaction (PPI) network analysis using the MCL algorithm in the 
STRING database. The resulting PPI network was visualized using the MCC algorithm to display the node scores. The node colors ranged from yellow 
to red, indicating scores from low to high. B. The intersection of IAAAMRDEGs was analyzed using five scoring algorithms: MCC, EPC, MNC, DNNC, 
and Degree. The top 30 genes with the highest scores from each algorithm were identified as the hub genes. C. The PPI network for the hub genes 
was constructed. PPI: Protein-Protein Interaction. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 2 
GOKEGG enrichment analysis results of IAAAMRDEGs.  

Ontology ID Description GeneRatio BgRatio pvalue p.adjust 

BP GO:0044772 mitotic cell cycle phase transition 12/16 440/18800 3.89e-17 7.9e-15 
BP GO:0140014 mitotic nuclear division 11/16 293/18800 4.45e-17 7.9e-15 
BP GO:0000280 nuclear division 12/16 446/18800 4.59e-17 7.9e-15 
BP GO:0048285 organelle fission 12/16 493/18800 1.53e-16 1.98e-14 
BP GO:1901990 regulation of mitotic cell cycle phase transition 10/16 321/18800 1.34e-14 1.39e-12 
CC GO:0005819 spindle 10/17 402/19594 2.02e-13 1.11e-11 
CC GO:0072686 mitotic spindle 6/17 160/19594 3.1e-09 7.9e-08 
CC GO:0000922 spindle pole 6/17 169/19594 4.31e-09 7.9e-08 
CC GO:0005876 spindle microtubule 5/17 83/19594 7.18e-09 9.87e-08 
CC GO:0030496 midbody 6/17 203/19594 1.29e-08 1.42e-07 
MF GO:0008017 microtubule binding 5/17 272/18410 3.63e-06 0.0002 
MF GO:0015631 tubulin binding 5/17 376/18410 1.75e-05 0.0005 
MF GO:0035173 histone kinase activity 2/17 16/18410 9.56e-05 0.0019 
MF GO:0008022 protein C-terminus binding 3/17 179/18410 0.0006 0.0082 
MF GO:0016538 cyclin-dependent protein serine/threonine kinase regulator activity 2/17 50/18410 0.0010 0.0113 
KEGG hsa04914 Progesterone-mediated oocyte maturation 7/13 102/8164 6.23e-11 1.87e-09 
KEGG hsa04110 Cell cycle 7/13 126/8164 2.8e-10 3.69e-09 
KEGG hsa04114 Oocyte meiosis 7/13 131/8164 3.69e-10 3.69e-09 
KEGG hsa04115 p53 signaling pathway 3/13 73/8164 0.0002 0.0014 
KEGG hsa05166 Human T-cell leukemia virus 1 infection 4/13 222/8164 0.0003 0.0019 

GO - Gene Ontology; KEGG - Kyoto Encyclopedia of Genes and Genomes; IAAAMRDEGs - Immune and Amino Acid Metabolism related differentially 
expressed genes; BP - biological process; CC - cellular component; MF - molecular function. 
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circle diagrams (Fig. 4C and D). The circle diagram highlighted that the mitotic cell cycle phase transition (GO: 0044772) showed 
significantly up-regulated expression, and progesterone-mediated oocyte maturation (HSA04914) was the KEGG pathway with 
significantly up-regulated expression. 

3.4. GSEA of immune-amino acid metabolism related genes in high and low risk groups 

To assess the influence of gene expression levels on the disparity between the LUAD group and normal group, we performed GSEA 
on all genes expressed in the TCGA-LUAD dataset. The criteria for significant enrichment were set at P < 0.05 and FDR value (q.value) 

Fig. 4. Heat map of IAAAMRDEGS and GOKEGG enrichment analysis. A. Histogram presentation of results from the GO/KEGG enrichment analysis 
of HubGenes. B. Divergent network diagram presentation of results from the GO/KEGG enrichment analysis of hubgenes. In this diagram, red dots 
represent specific pathways, and blue circles represent specific genes. C. Chords from HubGenes combined with those from logFC’s GO/KEGG 
enrichment analysis. D. Results from the combined logFC GO/KEGG enrichment analysis of Hub genes are presented in circles. In the network 
diagram (B), the red dots represent up-regulated genes (logFC >0), and the hubgenes in the diagram are all up-regulated genes. The screening 
criteria for GO/KEGG enrichment items are P < 0.05 and FDR value (q.value) < 0.25.GO: Gene Ontology, BP: Biological Process, CC: Cellular 
Component, MF: Molecular Function, KEGG: Kyoto Encyclopedia of Genes and Genomes. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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Fig. 5. GSEA. A. The GSEA of dataset TCGA-LUAD revealed four main biological characteristics. These are as follows: B. Pre Notch Expression and Processing (Fig. 5B) C. Signaling by NOTCH (Fig. 5C) 
D. TCF Dependent Signaling in Response to Wnt (Fig. 5D) E. 4249 Hedgehog Signaling Pathway (Fig. 5E) The screening criteria for significant enrichment in GSEA analysis were set at P < 0.05 and a 
FDR value (q.value) < 0.25. GSEA: Gene Set Enrichment Analysis. 
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< 0.25. The results revealed significant enrichment in several biological processes, cell components, and molecular functions. Spe-
cifically, the genes in the TCGA-LUAD dataset exhibited significantly enriched in pre-notch expression and processing (Fig. 5B), 
signaling by NOTCH (Fig. 5C), TCF dependent signaling in response to Wnt (Fig. 5D), 4249 hedgehog signaling pathway (Fig. 5E), and 
other pathways (Table 3). Mountain and path maps were generated to visualize these enrichments in the TCGA-LUAD dataset (Fig. 5A 
and 5B–E). 

3.5. GSVA of immune-amino acid metabolism related genes in high and low risk groups 

To explore the discrepancies in hallmark gene sets between the LUAD group (group: Tumor) and the Normal group (group: normal), 
we analyzed the expression of all genes in the TCGA-LUAD dataset using GSVA. The GSVA analysis showed significant differences in 46 
hallmark gene sets between the LUAD group and the normal group (P < 0.05, Fig. 6A, Table 4). Among these, we selected 45 hallmark 
gene sets that demonstrated significant differences (P < 0.001) or played important roles in tumor occurrence and development. A 
group comparison chart was created (Fig. 6B) to visually display the results. The genes in the TCGA-LUAD dataset were notably 
enriched in hallmark pathways such as adipogenesis, allograft rejection, androgen response, angiogenesis, and apical junction, among 
others. 

3.6. Screening prognostic related genes by lasso regression analysis 

To assess the prognostic value of the 17 Hub genes in the TCGA-LUAD dataset, we performed LASSO regression analysis to construct 
a prognostic model (Fig. 7A and B), which included 4 Hub genes. Excluding normal samples, the cancer group was divided into a high- 
risk group (grouping: High Risk) and a low-risk group (grouping: Low Risk) based on the median of the Risk Score obtained from the 
LASSO model. The high-risk grouping results of the LASSO regression were visualized and presented in a risk factor map (Fig. 7C). To 
validate the prognosis model of LASSO, we conducted a statistical analysis of the clinical information of LUAD patients obtained from 
the TCGA-LUAD dataset (Table 5). We then merged the GSE118370 and GSE40275 datasets to create a Combined Dataset for veri-
fication. Using the variable coefficients from the LASSO model, we constructed a Risk Score for the cancer group samples in the 
combined dataset. Similar to the TCGA-LUAD dataset, the cancer group in the combined dataset was categorized into a high-risk group 
(grouping: High Risk) and a low-risk group (grouping: Low Risk). The expression levels of the four Hub genes in both datasets were 
grouped according to high and low risks, and a comparison chart was generated (Fig. 7D and E) to show the statistical significance of 
the expression level differences (P < 0.05 is considered statistically significant). From the chart, we can observe consistent results for 
four genes (PLK1, RRM2, TRIP13, and HHMR) in the merged dataset compared to the TCGA-LUAD dataset. 

3.7. Correlation between the expression of key genes and the occurrence of LUAD 

To investigate the correlation between the expression of the four key genes (PLK1, RRM2, TRIP13, and HHMR) and the occurrence 
of LUAD, we plotted ROC curves for these genes in the TCGA-LUAD dataset, using clinical status (Tumor vs Normal) as the outcome 
variable (Fig. 8A–D). The AUC values for PLK1, RRM2, TRIP13, and HHMR were obtained from the ROC curves. Additionally, we 
examined the clinical correlations of these four Hub genes in subgroups based on clinical T-stage, N-stage, M-stage, and overall survival 
(OS) (Fig. 8E-T). The results indicated that the expression of PLK1 was associated with the differences between T1 and T2 in clinical T- 
stage (P < 0.0001), N0 and N1 in N stage (P < 0.05), M0 and M1 in clinical M stage (P < 0.01), and the difference between survival and 
death in OS events (P < 0.001). The expression of RRM2 was associated with the differences between T1 and T2 in clinical T-stage (P <
0.001), N0 and N1 in N stage (P < 0.001), M0 and M1 in clinical M stage (P < 0.05), and the difference between survival and death in 
OS events (P < 0.001). The expression of TRIP13 was associated with the differences between T1 and T2 in clinical T-stage (P < 0.001), 
N0 and N1 in N stage (P < 0.001), and the difference between survival and death in OS events (P < 0.001). The expression of HHMR 

Table 3 
GSEA analysis of dataset TCGA-LUAD.  

ID setSize NES pvalue p.adjust qvalue 

REACTOME_CELL_CYCLE_CHECKPOINTS 237 3.043798 1.00E-10 7.58E-09 6.02E-09 
REACTOME_MITOTIC_G1_PHASE_AND_G1_S_TRANSITION 142 3.002095 1.00E-10 7.58E-09 6.02E-09 
REACTOME_DNA_REPLICATION 137 2.956086 1.00E-10 7.58E-09 6.02E-09 
REACTOME_CELL_CYCLE_MITOTIC 458 2.947152 1.00E-10 7.58E-09 6.02E-09 
REACTOME_G2_M_CHECKPOINTS 134 2.90127 1.00E-10 7.58E-09 6.02E-09 
REACTOME_SYNTHESIS_OF_DNA 110 2.900659 1.00E-10 7.58E-09 6.02E-09 
REACTOME_MITOTIC_METAPHASE_AND_ANAPHASE 201 2.887159 1.00E-10 7.58E-09 6.02E-09 
WP_RETINOBLASTOMA_GENE_IN_CANCER 84 2.814346 1.00E-10 7.58E-09 6.02E-09 
REACTOME_S_PHASE 145 2.798761 1.00E-10 7.58E-09 6.02E-09 
REACTOME_MITOTIC_SPINDLE_CHECKPOINT 92 2.77242 1.00E-10 7.58E-09 6.02E-09 
REACTOME_PRE_NOTCH_EXPRESSION_AND_PROCESSING 106 2.103701 0.000212 0.00666 0.005539 
REACTOME_SIGNALING_BY_NOTCH 233 1.625008 0.000202 0.00666 0.005539 
REACTOME_TCF_DEPENDENT_SIGNALING_IN_RESPONSE_TO_WNT 231 1.534075 0.000203 0.00666 0.005539 
WP_4249_HEDGEHOG_SIGNALING_PATHWAY 43 − 1.94397 0.001339 0.020584 0.017119 

GSEA - Gene Set Enrichment Analysis; TCGA - the cancer genome atlas; LUAD - Lung adenocarcinoma. 
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was associated with the differences between T1 and T2 in clinical T stage (P < 0.001), N0 and N1 in N stage (P < 0.001), M0 and M1 in 
clinical M stage (P < 0.05), and the difference between survival and death in OS events (P < 0.001). 

3.8. Multivariate Cox regression analysis of clinical correlation between expression of key genes and prognosis 

To further validate the prognostic model established by LASSO regression, we conducted multivariate Cox regression analysis to 
analyze the correlation between the expression of the four key genes (PLK1, RRM2, TRIP13, HHMR) and prognosis. The multivariate 
Cox regression model was constructed (Table 6), and a forest plot was generated to display the results (Fig. 9A). Then we performed 
nomogram analysis to assess the predictive power of the multivariate Cox regression model and created a nomogram (Fig. 9B). 
Additionally, we calibrated the nomogram for 1-year (Fig. 9C), 3-year (Fig. 9D), and 5-year (Fig. 9E) survival predictions and drew the 
calibration curves (Fig. 9C–E). From the calibration curves, it can be observed that the blue line representing three years is closest to 
the gray ideal line, indicating that the prediction effect of the model in the third year is superior to that in the first year and fifth year. 
Subsequently, we used decision curve analysis (DCA) to evaluate the clinical effectiveness of the constructed LASSO-Cox regression 
prognosis model for one year (Fig. 9F), three years (Fig. 9G), and five years (Fig. 9H). The results are shown in Fig. 9E–H, where the X- 
axis range of the blue line representing the model is higher than that of the all-positive red line and all-negative gray line, suggesting 
that the model performs better in five years but less so in one year and three years. 

3.9. PLK1 has a higher expression level in LUAD tumor tissues 

Using the key gene PLK1 from the multivariate Cox model for further analysis, we analyzed the expression of PLK1 in LUAD tumor 
tissue and normal lung tissue by immunohistochemistry in the HPA database, using the HPA053229 antibody. The results revealed that 
the expression level of PLK1 in LUAD tumor tissue (Fig. 10B) was higher compared to normal lung tissue (Fig. 10A). 

Fig. 6. GSVA. A. The heat map represents the functional scores obtained from the GSVA analysis of dataset TCGA-LUAD. B. The subgroup com-
parison diagram of lung adenocarcinoma carcinoma group and normal group shows the enrichment pathways with significant differences in GSVA 
analysis of dataset TCGA-LUAD. The symbol * represents P < 0.05, indicating statistical significance. The symbol ***** represents P < 0.001, 
indicating very high statistical significance. GSVA, Gene Set Variation Analysis. 

Table 4 
GSVA analysis of dataset TCGA-LUAD.  

ID logFC AveExpr t P.Value adj.P.Val B 

HALLMARK_E2F_TARGETS 0.64533307 0.00065017 5.65274133 5.72E-08 2.48E-06 7.89501104 
HALLMARK_G2M_CHECKPOINT 0.57097633 0.00140977 5.54154778 9.92E-08 2.48E-06 7.36695794 
HALLMARK_BILE_ACID_METABOLISM − 0.3840152 − 0.0001741 − 5.2577695 3.91E-07 6.51E-06 6.0538299 
HALLMARK_MYC_TARGETS_V1 0.5306426 0.00233643 4.80019694 3.20E-06 4.01E-05 4.04608105 
HALLMARK_DNA_REPAIR 0.37306835 − 0.0170058 4.6003791 7.70E-06 7.70E-05 3.21390964 
HALLMARK_MYC_TARGETS_V2 0.53444311 − 0.0029183 4.34714325 2.25E-05 0.00018724 2.20002089 
HALLMARK_KRAS_SIGNALING_DN − 0.3238048 − 0.0046782 − 4.21351 3.88E-05 0.00027745 1.68386536 
HALLMARK_MITOTIC_SPINDLE 0.30215716 − 0.0128773 3.90774626 0.00012953 0.00069603 0.55346012 
HALLMARK_MTORC1_SIGNALING 0.33671904 − 0.007894 3.89486062 0.00013607 0.00069603 0.50739877 
HALLMARK_UNFOLDED_PROTEIN_RESPONSE 0.3149531 0.00276347 3.88888542 0.00013921 0.00069603 0.48608353 
HALLMARK_INTERFERON_ALPHA_RESPONSE 0.39771069 0.00346612 3.40079985 0.00081919 0.0037236 − 1.1592777 
HALLMARK_FATTY_ACID_METABOLISM − 0.267686 0.00117008 − 3.3611827 0.00093845 0.00391021 − 1.284354 
HALLMARK_ESTROGEN_RESPONSE_EARLY − 0.2497546 − 0.0005093 − 3.3374465 0.00101747 0.00391336 − 1.3586703 
HALLMARK_UV_RESPONSE_UP 0.23054538 − 0.0038078 3.27899909 0.00123929 0.00442604 − 1.539669 
HALLMARK_XENOBIOTIC_METABOLISM − 0.2296009 0.01419187 − 3.2284017 0.00146686 0.00470819 − 1.6940551 
HALLMARK_UV_RESPONSE_DN − 0.2591284 0.00401489 − 3.2203194 0.00150662 0.00470819 − 1.7185177 
HALLMARK_SPERMATOGENESIS 0.23384455 0.00096414 3.13243602 0.00200847 0.00560016 − 1.9809602 
HALLMARK_ANDROGEN_RESPONSE − 0.2358593 0.00089583 − 3.1312714 0.00201606 0.00560016 − 1.9843942 
HALLMARK_PI3K_AKT_MTOR_SIGNALING 0.22336863 − 0.0058916 3.09357816 0.00227632 0.00576899 − 2.0949163 
HALLMARK_HEME_METABOLISM − 0.2063673 − 0.0026332 − 3.0893204 0.0023076 0.00576899 − 2.1073249 
HALLMARK_MYOGENESIS − 0.2614267 − 0.0021476 − 3.0611753 0.0025245 0.00601072 − 2.1889604 
HALLMARK_ADIPOGENESIS − 0.2281892 − 0.0074251 − 3.0378809 0.00271807 0.00617744 − 2.2560149 
HALLMARK_NOTCH_SIGNALING 0.24004192 − 0.0155674 2.95403874 0.00353347 0.00768145 − 2.4935117 
HALLMARK_APOPTOSIS 0.20767484 0.00230802 2.8108193 0.00546024 0.01137551 − 2.8851594 
HALLMARK_INTERFERON_GAMMA_RESPONSE 0.28771787 0.00750707 2.77041929 0.00615517 0.01231034 − 2.9924071 
HALLMARK_PEROXISOME − 0.1953483 − 0.0063351 − 2.6362898 0.00907583 0.01745352 − 3.3381835 
HALLMARK_TGF_BETA_SIGNALING 0.21603451 0.00212297 2.45542399 0.01497239 0.02680552 − 3.7791481 
HALLMARK_GLYCOLYSIS 0.18346378 − 0.003386 2.45446576 0.01501109 0.02680552 − 3.7814063 
HALLMARK_ESTROGEN_RESPONSE_LATE − 0.1744409 0.0007029 − 2.35924 0.01932872 0.03332538 − 4.0016882 
HALLMARK_WNT_BETA_CATENIN_SIGNALING 0.19436398 − 0.0015724 2.19545877 0.0293438 0.04890634 − 4.3612954 
HALLMARK_ALLOGRAFT_REJECTION 0.21471797 0.00492428 2.10027824 0.037026 0.05971935 − 4.5589911 

GSVA - Gene Set Variation Analysis; TCGA - the cancer genome atlas; LUAD - Lung adenocarcinoma. 
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4. Discussion 

LUAD represents a common form of lung cancer, accounting for approximately 40 % of all lung cancer cases [27]. Despite ad-
vancements in early detection and treatment options, the survival rate for LUAD remains low, underscoring the need for further 
research into the molecular mechanisms underpinning this disease. A key area of interest is the potential contribution of alterations in 
amino acid metabolism and immune signaling pathways, particularly involving the protein PLK1, to LUAD pathogenesis. Exploring 
differentially expressed genes associated with immune-amino acid metabolism in LUAD could enhance early-stage prediction, facil-
itate the evaluation of LUAD patient conditions, and aid in determining their prognosis, thus offering valuable insights for subsequent 
research and clinical practice. 

In this study, we initially identified up-regulated DEGs between LUAD samples and normal lung tissue, specifically screening for 
genes associated with immune-amino acid metabolism, and analyzed their biological processes, molecular functions and cellular 
components with GO/KEGG. Subsequently, we elucidated the potential mechanisms of action and relevant biological characteristics 
and pathways in both the LUAD and normal groups through the utilization of GSEA and GSVA analyses. Following this comprehensive 
exploration, we employed LASSO-COX analysis, risk scoring, and prognostic modeling to identify PLK1, RRM2, TRIP13, and HHMR as 
genes significantly associated with LUAD and immune-amino acid metabolism. Additionally, we performed immunohistochemical 
analysis of PLK1 expression in LUAD tumor tissue and normal lung tissue using the HPA database, revealing higher expression levels of 
PLK1 in LUAD compared to normal tissues. This finding aligns with previous studies that have also reported elevated PLK1 protein 
expression in various cancer types, such as osteosarcoma [28], colon cancer [29,30], and lung squamous cell carcinoma [31].Our study 
exhibits a certain level of innovation. Firstly, we not only investigated gene expression differences but also integrated immune 
response and amino acid metabolism. This comprehensive approach offers a deeper insight into the intricate biological features of 

Fig. 7. Construction of HubGenes prognostic model and differential gene analysis between high-risk and low-risk groups of LASSO. A. The diagram 
represents the LASSO regression prognostic model for HubGenes. B. The variable trace diagram (B) shows the likelihood deviation value of the 
LASSO regression on the vertical axis and the log(λ) value on the x-axis. The x-axis represents the situation after taking the lambda coefficient of the 
penalty term in the LASSO regression as log, and the numbers above the x-axis indicate the number of variables with non-zero coefficients for each 
lambda. C. The risk factor diagram (C) of the LASSO regression diagnosis model is presented as a scatter plot. The blue dots represent surviving 
patients, and the red dots represent deceased patients. D. Hub genes are presented as a group comparison for high and low risk groups in dataset 
TCGA-LUAD (D). E. Hub genes are presented as a group comparison for high and low risk groups in the Consolidated dataset (E). TCGA, the cancer 
genome atlas. LUAD, Lung adenocarcinoma. LASSO, least absolute shrinkage and selection operator. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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LUAD. Secondly, we constructed a predictive model through LASSO-COX analysis and obtained four hub genes (PLK1, RRM2, TRIP13, 
HHMR), that might significantly contribute to the immunophenotype of LUAD, our target disease. There are a limited number of 
studies that link these genes with the disease phenotype at present, and they have not been sufficiently investigated in previous 
research. Our study has filled this gap by providing new options for clinical prognostic biomarkers. 

Through five different algorithms, 17 hub genes were identified within PPI network as hub genes related to immunity and amino 
acid metabolism in LUAD. These algorithms measure the centrality of nodes from different angles, including interaction frequency, 
connectivity of neighbor nodes, etc. These genes are identified as hub genes due to their central position in the network and high 
degree of interaction. Their existence and interaction pattern may provide potential targets for the research and treatment of LUAD in 
the future. The functions and interaction of these protein and their specific mechanism of action in LUAD can be further verified by 
experiments in the future. 

The results of GO/KEGG analysis revealed that the mitotic cell cycle phase transition was a significantly up-regulated biological 
process in LUAD, which is consistent with previous studies. Cell division processes play a vital role in cancer development. Error-free 
chromosomal segregation and cell proliferation during mitosis are central events in the life cycle. Proto-onco genes and tumor sup-
pressor genes are directly or indirectly involved in the regulation of cell cycle, or it may be the result of genetic damage of genes 
encoding cyclins [32]. Additionally, the development of LUAD is also associated with the inactivation of tumor suppressor genes like 
p53 and Rb, as well as mutations in oncogenes such as EGFR and KRAS, all of which are closely related to cell cycle regulation [33,34]. 
Amino acid metabolism affects not only tumor cells but also the function of immune cells, and the normal regulation of cell cycle is of 
great significance to tumor cells and immune cells. Our research shows that some cell cycle regulatory genes represented by PLK1 also 
play a role in immune response and amino acid metabolism. Further understanding of these interactions is helpful to improve the 
existing chemotherapy and targeted drug therapy strategies and improve the therapeutic effect of LUAD. As we all know, steroid 
hormone receptors, including progesterone receptors, play an important role in the development of hormone-targeted tissue cancers, 
such as breast cancer and endometrial cancer [35]. While there is currently no direct evidence linking LUAD to progesterone-mediated 
oocyte maturation, some studies have suggested that progesterone might play a role in the occurrence and progression of LUAD. 
Researchers have found that the combination of estrogen and progesterone in NSCLC cells synergistically promotes the expression of 
vascular endothelial growth factor (VEGF) by increasing the proliferation of endothelial cells from adjacent vessels [36]. Moreover, 
other studies have shown that the high expression of the progesterone receptor in patients with LUAD is not related with malignancy 
and prognosis of LUAD [37]. Although there may be some connections between progesterone-mediated oocyte maturation and LUAD 

Table 5 
Patient Characteristics of LUAD patients in the TCGA 
datasets.  

Characteristics overall 

Pathologic T stage, n (%) 
T1 176 (32.8 %) 
T2 292 (54.5 %) 
T3 49 (9.1 %) 
T4 19 (3.5 %) 

Pathologic N stage, n (%) 
N0 350 (66.9 %) 
N1 97 (18.5 %) 
N2 74 (14.1 %) 
N3 2 (0.4 %) 

Pathologic M stage, n (%) 
M0 365 (93.6 %) 
M1 25 (6.4 %) 

Pathologic stage, n (%) 
Stage I 296 (55.7 %) 
Stage II 125 (23.5 %) 
Stage III 84 (15.8 %) 
Stage IV 26 (4.9 %) 

Gender, n (%) 
Female 289 (53.6 %) 
Male 250 (46.4 %) 

Age, n (%) 
≤ 65 257 (49.4 %) 
> 65 263 (50.6 %) 

OS event, n (%) 
Alive 347 (64.4 %) 
Dead 192 (35.6 %) 

OS event, n (%) 
Yes 226 (41.9 %) 
No 313 (58.1 %) 

LUAD - Lung adenocarcinoma; TCGA - the cancer 
genome atlas; OS - overall survival; IQR - interquartile 
range. 
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and the possibility of crossing signaling pathways for cell cycle regulation and tumor growth, these connections may be relatively 
indirect. 

In our study, GSEA analysis revealed significantly enriched pathways in LUAD, including pre-notch expression and processing, 
signaling by NOTCH, TCF dependent signaling in response to WNT, and 4249 hedgehog signaling pathway. Notch, Wnt, and Hedgehog 
are all developmental signaling pathways. Previous research has reported that developmental signaling pathways, including Notch, 
WNT, and Hedgehog, are frequently altered in cancer stem cells (CSCs) to sustain the survival of CSCs and interact with other 
oncogenic signaling pathways such as MAPK, NF-κB, PI3K, and EGFR [38]. Although CSCs constitute only a small subset, accounting 
for less than 1 % of the tumor microenvironment, they possess the characteristics of self-renewal and contribute to tumor initiation, 
metastasis, spread, and resistance. 

The GSVA enrichment analysis of the TCGA-LUAD dataset revealed significant enrichment in several hallmark pathways, including 
adipogenesis, allograft rejection, androgen response, angiogenesis, and apical junction pathways. As LUAD is a malignant tumor, its 
development is influenced by the tumor microenvironment, which includes factors such as fat cells, immune cells, and blood vessels. 
Adipogenesis, the process of fat formation in adipose tissue, has been shown to be related to the occurrence and progression of lung 
cancer [39]. Angiogenesis is the formation of new blood vessels. It plays a critical role in the growth and metastasis of lung cancer and 
other malignancies. The density of blood vessels in normal lung tissue is lower than that in LUAD, suggesting that angiogenesis may 
accelerate the growth and spread of LUAD. Factors such as VEGF, which promote angiogenesis, have been implicated in promoting the 
growth and spread of lung cancer [40]. As for androgen, modern research showed that androgen receptor exist in normal human lung, 
non-small cell, and small cell lung cancer tissue [41]. In both male and female patients with lung cancer, androgen levels and their 
response may influence tumor growth and progression [42]. Androgen response in hepatocarcinoma has attracted the attention of 
researchers, who have found that androgens can promote the growth and metastasis of hepatocellular carcinoma and are associated 
with the prognosis of the disease [43]. The apical junction is a crucial structure that interconnects cells and maintains the integrity and 
stability of tissues. Abnormal expression of proteins involved in cell junctions in LUAD may lead to structural damage and increased 
proliferation of tumor cells. Understanding the regulation of epithelial cell junctions may have implications for preventing the 
metastasis of LUAD and improving therapeutic strategies. 

Our analysis confirms the significant overexpression of PLK1 in LUAD in TCGA data, suggesting its potential as a diagnostic marker. 
Specifically, in LUAD, the expression of PLK1 serves as a promising diagnostic marker, with an impressive AUC exceeding 0.9. 
Moreover, our findings indicate a correlation between PLK1 and the clinical stage of LUAD, particularly the T stage, providing further 
support for the notion that PLK1 expression might be associated with the degree of malignancy in LUAD. PLK1, a serine/threonine 
kinase, plays a critical role in cell cycle progression and mitosis. Its frequent overexpression in cancer cells is associated with enhanced 
cell proliferation, cell cycle arrest, and resistance to apoptosis [44]. Consistent with previous research, our study aligns with the 
evidence linking high PLK1 expression to poor prognosis in LUAD [45,46]. Recent studies suggest that PLK1 may also play a role in 
immune signaling pathways in cancer cells. For instance, it has been shown that PLK1-mediated phosphorylation of vimentin ac-
celerates the transfer of cytotoxic T cells and immune escape in LUAD [47]. 

Moving on to ribonucleotide reductase subunit M2 (RRM2), this enzyme holds crucial importance in DNA synthesis and repair and 
has been associated with various cancers, including LUAD. In lung adenocarcinoma cells, RRM2 exhibits upregulation, and its 
expression levels have been linked to poor prognosis [48]. One potential mechanism through which RRM2 contributes to the 
development and progression of LUADa involves its impact on immune system function. Multiple studies suggest that RRM2 has been 

Fig. 8. ROC curve and clinical correlation analysis. A-D. The ROC curve results for genes PLK1(A), RRM2(B), TRIP13(C), and HMMR(D) are 
displayed with Tumor and Normal as outcome variables. E-T. Subgroup comparison was conducted to analyze the clinical relevance of genes PLK1, 
RRM2, TRIP13, and HHMR in clinical T-staging, N-staging, M-staging, and OS events, respectively. In the figures, the symbol * indicates statistical 
significance with P < 0.05, while the symbol * * * indicates high statistical significance with P < 0.001. TPR, true positive rate. FPR, false positive 
rate. ROC, receiver operating characteristic curve. OS, overall survival. 

Table 6 
Cox regression to identify hub genes and clinical features associated with OS.  

Characteristics Total(N) Univariate analysis Multivariate analysis 

HR(95 % CI) P value HR(95 % CI) P value 

PLK1 530  <0.001   
Low 267 Reference  Reference  
High 263 1.831 (1.366–2.454) <0.001 1.575 (1.019–2.436) 0.041 
RRM2 530  0.002   
Low 266 Reference  Reference  
High 264 1.587 (1.184–2.127) 0.002 0.965 (0.590–1.580) 0.888 
TRIP13 530  0.003   
Low 266 Reference  Reference  
High 264 1.546 (1.156–2.069) 0.003 1.054 (0.690–1.609) 0.807 
HMMR 530  <0.001   
Low 267 Reference  Reference  
High 263 1.678 (1.252–2.250) <0.001 1.243 (0.807–1.916) 0.323 

OS - overall survival. 
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found to affect lung cancer progression and tumor immune cell infiltration. For example, RRM2 inhibition has been found to be 
effective in promoting M1 macrophage polarization and inhibiting M2 macrophage polarization in vitro and in vivo [49]. Additionally, 
in bladder cancer, RRM2 is positively correlated with immune checkpoints and cytotoxic T lymphocytes [50]. 

Thyroid Hormone Receptor Interactor 13 (TRIP13) encodes an AAA + ATPase that plays crucial roles in various cellular processes, 

Fig. 9. Constructing Cox model. A-B. The forest plot (A) and nomogram (B) illustrate the results of multivariate Cox regression analysis for key 
genes (PLK1, RRM2, TRIP13, HHMR). C-E. The calibration curves are shown for 1-year (C), 3-year (D), and 5-year (E) nomogram analysis of the 
multivariate Cox regression model. F–H. The decision curve analysis (DCA) plots are presented for 1-year (F), 3-year (G), and 5-year (H) prognosis of 
the LASSO-Cox regression model. The X-axis in the DCA graph represents the probability threshold or Threshold Probability, and the Y-axis rep-
resents the net gain. DCA, decision curve analysis. LASSO, least absolute shrinkage and selection operator. 
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Fig. 10. Immunohistochemical analysis. A-B. Immunohistochemical analysis of the gene PLK1 in LUAD tissue (A) and normal tissue (B). The data were obtained from the HPA database. LUAD,Lung 
adenocarcinoma. HPA, human protein Atlas. 
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including meiotic spindle assembly and DNA repair. Recent investigations have revealed frequent amplification and overexpression of 
TRIP13 in diverse cancer types, including LUAD. Wei Li et al. (2016) [51] observed upregulation of TRIP13 in LUAD tissues compared 
to adjacent normal tissues, and its expression was correlated with poor prognosis in LUAD patients. Furthermore, Mechanistically, 
TRIP13 was shown to regulate the expression of multiple genes involved in cell cycle progression and apoptosis, the knockdown of 
TRIP13 can arrest lung cancer cells in G2/M phase and regulate the expression levels of genes related to cell cycle checkpoints [52]. 

Hyaluronan Mediated Motility Receptor (HMMR) is a gene encoding a protein that plays a pivotal role in tumor immune evasion 
and amino acid metabolism. The expression level of the HMMR gene in LUAD is closely associated with tumor occurrence and 
prognosis. Studies have found that high HMMR gene expression is linked to poor prognosis in LUAD patients and increased tumor 
recurrence [53]. Numerous studies have confirmed that HMMR is overexpressed in non-small cell lung cancer [54]. Abnormal tumor 
microenvironment is closely related to the tumors occurrence, and immune cells are a vital component of tumor microenvironment. 
Studies have identified a connection between high HMMR gene expression and tumor immune in liver cancer. Specifically, HMMR 
induces a macrophage-related immune response, likely by activating subgroup M2, and its high expression predicts increased infil-
tration levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells [55]. 

The findings of this study provide valuable insights and inspiration for the future clinical workflow and treatment of LUAD. By 
further studying the mechanism of the four key genes PLK1, RRM2, TRIP13 and HMMR in LUAD development, we can offer researchers 
more targeted treatment strategies and more choices for individualized treatment of patients with LUAD. These findings will enhance 
clinicians’ understanding of LUAD’s pathobiological characteristics enabling more accurate prognosis evaluation and treatment se-
lection for patients. Therefore, integrating these findings into clinical practice holds the potential to improve treatment outcomes and 
survival rates for LUAD patients, laying the groundwork for future advancements in clinical workflows and treatment modalities. 

While this study has advanced our understanding of the interplay between immunity, amino acid metabolism, and LUAD, it does 
have some limitations. One significant constraint is the absence of in vitro and in vivo validation for our findings. Additionally, due to 
the design constraints of this study, there might be other important signaling pathways related to LUAD that were not explored. Further 
investigation is necessary to uncover these potential pathways. 

5. Conclusion 

LUAD is a complex disease characterized by dysregulation in various biological processes, including amino acid metabolism and 
immune signaling pathways. The prognosis model was constructed by LASSO, and the dataset TCGA-LUAD was verified with the 
combined datasets (GSE118370, GSE40275). The results showed that there were four identical genes, namely, PLK1, RRM2, TRIP13 
and HHMR. We drew the ROC curves of four hub genes, and the AUCs of PLK1, RRM2, TRIP13 and HHMR were all greater than 0.9, 
indicating that the genes related to immunity and amino acid metabolism selected by us were accurate in predicting the presence of 
LUAD. In addition, multivariate Cox regression analysis revealed that the expression levels of four hub genes were correlated with the 
prognosis of LUAD. PLK1, RRM2, TRIP13 and HMMR as the pivotal protein, may serve as a crucial link between these different 
processes by regulating both amino acid metabolism and immune cell function. Further research is essential to comprehensively 
understand how PLK1 contributes to LUAD development, and to develop targeted therapies that can exploit these pathways for po-
tential therapeutic advantages. 
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