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Abstract

Background: Quantitative relations between weather variables and malaria vector can enable pro-active control through
meteorological monitoring. Such relations are also critical for reliable projections in a changing climate, especially since the
vector abundance depends on a combination of weather variables, each in a given range. Further, such models need to be
region-specific as vector population and exposure depend on regional characteristics.

Methods: We consider days of genesis based on daily temperature, rainfall and humidity in given ranges. We define a single
model parameter based on estimates of exposure and transmission to calibrate the model; the model is applied to 12
districts of Arunachal Pradesh, a region endemic to malaria. The epidemiological data is taken as blood samples that test
positive. The meteorological data is adopted from NCEP daily Reanalysis on a global grid; population data is used to
estimate exposure and transmission coefficients.

Results: The observed annual cycles (2006–2010) and the interannual variability (2002–2010) of epidemiology are well
simulated for each of the 12 districts by the model. While no single weather variable like temperature can reproduce the
observed epidemiology, a combination of temperature, rainfall and humidity provides an accurate description of the annual
cycle as well as the inter annual variability over all the 12 districts.

Conclusion: Inclusion of the three meteorological variables, along with the expressions for exposure and transmission, can
quite accurately represent observed epidemiology over multiple locations and different years. The model is potentially
useful for outbreak forecasts at short time scales through high resolution weather monitoring; however, validation with
longer and independent epidemiological data is required for more robust estimation of realizable skill. While the model has
been examined over a specific region, the basic algorithm is easily applicable to other regions; the model can account for
shifting vulnerability due to regional climate change.
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Background

Malaria continues to be a killer disease for many regions across

the world; people living in remote areas away from adequate

medical facilities are especially vulnerable. Outbreaks of malaria

depend on the abundance of mosquito density, exposure of the

human host to bites and the rate of transmission. However, for a

given geographical location and population (and socio-economic

practices) with certain immunological history, the abundance of

the vectors can be said to determine the dynamics of the epidemic

in terms of infection. It is worth emphasizing, however, that the

toll of the epidemic, in terms of deaths, will also depend critically

on several other factors like access to health care, especially in

remote areas; statistical analysis of community-based epidemio-

logical studies in remote and forested terrains in the north-east of

India shows accessibility to the nearest health center as the

primary risk factor [1–3]. However, pro-active vector sanitation

can significantly reduce the risk of infection. In particular,

identification of the peaks in vector population which would

precede the disease outbreak by a typical incubation time of the

parasite in the human host can enable pro-active control of

malaria [4]. Vector controls are effective for mitigation only if they

are carried out at the time of maximum exposure rather than at

the time of detection of infection. The primary challenge is to

develop quantitative relations between vector abundance and

other observables that can be used to identify such peaks in

advance with sufficient accuracy.

Since malaria, as a mosquito-borne disease is strongly modu-

lated by weather, quantitative relations between the vector

abundance and weather variables can enable identification of

peaks of vector population through meteorological monitoring and

forecast. The life cycle of the malaria vector is a complex function

of weather variables like temperature, rainfall and humidity.
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Temperature affects the developmental period related to different

stages of a mosquito’s lifecycle: blood feeding rate, gonotrophic

cycle [physiological process consisting of digestion of blood-meal

and development of ovaries], and longevity [5–8]. However, the

dependence of mosquito vector on meteorological variables can be

quite complex, and other environmental variables like land use

and land cover also affect vector dynamics [9–11]. In particular,

local environmental characteristics, such as altitude, climate and

land use, can significantly impact on phenology and population

dynamics of mosquito larvae. It has been shown that rainfall

significantly affects larval mosquitoes by flushing them out of their

aquatic habitat and thus killing them [7]. Experiments with

simulated dry conditions show rainfall and dryness to have

significant and complex effects on larval survival [8]. However,

these effects also depend on the species of the vector. Study

conducted at different altitudes in the Lake Victoria basin, showed

[12] significant differences in larval abundance depending on

weekly rainfall intensity. However, the genesis and the survival of

mosquitoes depend on a combination of meteorological variables

within specific ranges. Thus vulnerability to malaria due to climate

change cannot be assessed from the trend of a single meteorolog-

ical variable. Quantitative, validated models of malaria epidemi-

ology based on a combination of all the relevant weather variables

are therefore critical for such assessment.

The usefulness of mathematical (dynamical as well as static)

models to gain insight into the epidemiology of malaria has been

recognized early [13–16] as well as in recent times [17]. The static

models are basically those that rely on statistical relations based on

past observations or static relations between various variables

under given conditions. In the dynamic models, the system evolves

through time variations of the variables that govern the epidemic.

Mathematical models of mosquito-borne pathogen transmission

were developed quite early [13]. More complex deterministic

models, suitable for a large community and also stochastic model

relevant to small populations in which infections reach very low

finite numbers, were considered in the sixties with the advent of

computing facilities [14]. Since then several workers have

contributed to the development of the Ross- Macdonald model.

These Ross-Macdonald models are best defined by a consensus set

of assumptions. The Ross-Macdonald theory has since played a

central role in development of research on mosquito-borne

pathogen transmission and the development of strategies for

mosquito-borne disease prevention[15–17]. There have also been

several recent attempts to develop more comprehensive dynamical

malaria models [18–20]. The Liverpool Malaria Model (LMM), a

mathematical-biological model of malaria parasite dynamics uses

daily temperature and precipitation data; the mathematical

formulation considers key processes related to the growth and

size of the vector population [20]. However, the model as yet does

not consider humidity explicitly. Statistical methods, like Auto-

regressive Integrated Moving Average (ARIMA) analysis, have

been also applied to assess relationship between environmental

variables like land use and incidence of Plasmodium falciparum

infection [21].

Many of these models are quite comprehensive in relating

entomological parameters to malaria transmission and include

many parameters like age-at-infection, human blood index,

entomological inclusion rate, vectorial capacity etc [22–23] but

often do not involve all the weather variables explicitly. Quantities

like vectorial capacity, a measure of transmission risk [24], may

involve climate variables but only indirectly and are generally

limited to entomological parameters such as the duration of

extrinsic incubation [25–26]. In particular, rarely all the three

meteorological parameters have been included and related to

observed epidemiology.

There are models of population dynamics of vector that

consider effects of variables like temperature and rainfall [11],

but without validation against epidemiology. The incubation

period for malaria parasites within the mosquito is extremely

sensitive to temperature. However, many models are based on

mean monthly temperatures, and thus ignore significant variation

in temperatures at daily and diurnal scales [27–29]. Further, a

model of epidemiology needs validation against observations for a

given location [30]. The dependence of vector population on

environmental parameters can be highly location–specific. While

temperature, rainfall, humidity and other variables like wind and

duration of day light are all known to be important for mosquito

life cycle, the relative roles of these variables may depend on a

given location. For example, the periodicity and the amplitude of

mosquito population [abundance peaks] in northern Australia

were found to strongly depend on frequency and the amplitude of

tides [31]; a land-locked region, on the other hand, requires

different considerations [32].

Methods

Ethics Statement
We declare that the data on epidemiology in this study was

collected and compiled by the co-authors from CSIR-IICT based

on records at the Public Health centres in Arunachal Pradesh and

was analyzed anonymously; no particular patient by name was

involved.

Study Area
Situated between latitude 26 309 N and 29 309 N and longitude

91 309 E and 97 309 E, Arunachal Pradesh is dominated by the

Himalayan system and different attitudinal variations. It stretches

from snow-capped mountains in the north to the plains of the

Brahmaputra valley in the south. The climate is warm and humid

at the lower altitudes, with cold climate in the higher altitudes. The

valleys are covered by swampy dense forest; forested terrain and

perennial streams are congenial for rapid multiplication and

longevity of malaria vectors. Agriculture is the primary driver of

the economy; nearly 80% of the population is engaged in

agriculture. The 12 districts of our study area, Arunachal Pradesh,

are characterized by different elevations (Table 1) and are all

endemic to malaria. These districts also exhibit large variations in

annual mean values of meteorological variables (Table 2); the

mean annual maximum and minimum temperatures, as well as

daily humidity and rainfall show that the districts can easily move

in and out of genesis range due to fluctuations in these variables at

monthly and daily scales.

Epidemiological Data
The data was collected from the Directorate of Health, Govt. of

Arunachal Pradesh, which consists of epidemiological aspects of

Malaria cases from Primary Health Centres (PHCs) belonging to

12 districts of Arunachal Pradesh. The data comprised of number

of blood samples collected (NBSC), number of blood samples that

tested positive for either Plasmodium vivax (NPV) or Plasmodium

falciparum (NPF) infection, or mixed infection; thus blood sample

positive (NBSP) is the sum total of NPV, NPF and mixed type. The

data for 2006–2010 were collected at a monthly scale; this monthly

data was augmented by records of annual data for the period of

2002–2005.

The epidemiological data were collected by using both active

and passive surveillance methods. Samples with fever or with

A Model of Malaria Epidemiology
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history of fever over past few days (clinical cases)/without fever

were screened for malaria parasite by finger prick blood-smear

using standard microscopic technique. Both thick and thin blood-

smears stained with Jaswant Singh Bhattacharya stain were

examined by using microscope for malaria parasite and species

identification before declaring the slide negative/positive. The

positive cases were then treated with antimalarial drugs according

to the type of parasite species following the World Health

Organization (WHO) recommendations.

The blood smears were collected from all the inhabitants of the

area thus covering not only passive data but also active

surveillance data, and of real toll cases will not exist. As all the

people are covered in the selected area, asymptotic cases are

essentially ruled out and biases among people do not arise; even if

they cannot visit the health centers, the health volunteers reach the

respective individual and follow up the malaria treatment.

Thresholds for Vector Genesis
The aquatic stages of Anopheline mosquitoes in the Tropics do

not develop or breed below 16uC, and the minimum temperature

for Plasmodium falciparum (PF) malaria parasite development is

experimentally between 16uC and 19uC and varies among

mosquito species. The minimum temperature required for

development of Plasmodium vivax (PV) parasite in anopheline

mosquitoes ranges from 14.5–16.5uC. While temperature, rainfall,

and humidity play critical roles, other variables such as wind and

the duration of daylight are also important. These factors are also

important in the survival and transmission rate of mosquito borne

pathogens; in particular, temperature affects their rate of

multiplication in the insect [17]. On the other hand transmission

can not occur if the development time of the pathogen exceeds the

life span of the insect [31]. If water temperature rises, the larvae

take a shorter time to mature and consequently there is a greater

capacity to produce more offspring during the transmission period

[4].The threshold for vector genesis and survival were adopted

(Table 2) from the values available in the literature.

Meteorological Data
The daily values of near surface temperature and near surface

humidity were obtained from global NCEP (National Centre of

Environmental prediction) reanalysis data in a 2.5u*2.5u grid over

the respective district. The 24-hour accumulated rainfall was

obtained from global NCEP Reanalysis data in a 1.8u*1.8u grid

over the respective district. The daily data at district level was

created through interpolation; the interpolated NCEP Reanalysis

has been shown to have good correspondence with high resolution

data from other sources over the region [33]. The advantage of

Table 1. The twelve districts of Arunachal Pradesh with
elevation, average human population and number of public
health centers (PHCs).

Districs
Elevation
(Mts)

Population
(NH) PHCs

Tirap 1278 95262 6

Changlang 580 85146 11

Lohith 750 94711 10

Lower Dibang Valley 2655 53419 8

East Siang 455 77469 17

West Siang 750 101445 13

Upper Siang 1500 27735 6

Upper Subansiri 1500 39309 7

Papum Pare 355 133652 10

Kurung Kumey 2450 38697 8

East Kameng 780 22807 8

West Kameng 810 44329 7

The twelve districts of Arunachal Pradesh with elevation, average human
population and number of public health centers (PHCs).
doi:10.1371/journal.pone.0049713.t001

Table 2. Meteorological variables with observed minimum and maximum daily values.

Districts Temperature(6C) Humidity (%) Rainfall(mm)

Minimum Maximum Minimum Maximum Minimum Maximum

Genesis Threshold 18(Tmin) 32(Tmax) 20(Qmin) 90 (Qmax) 1(Rmin) 20(Rmax)

Tirap 8 27 25 85 2 20.5

Changlang 10 30 18 82 2.5 22.6

Lohit 11 32 16 75 1.3 30.4

L/D Valley 6 34 23 88 1.7 18.5

East Siang 13 28 21 86 2.4 40.4

West Siang 15 35 17 80 1 26

Upper Siang 6 26 30 91 1.1 22.5

U/Subansiri 8 29 26 89 1.4 19.3

Papum Pare 7 30 28 85 1.6 22.1

K/Kumey 10 29 19 81 1.9 27.8

E/Kameng 16 29 18 84 2.1 32.6

W/Kameng 14 32 25 87 1.4 19.3

Meteorological variables used in the model for genesis [24] and observed minimum and maximum daily values in a year during (2000–2010) in each of the twelve
districts. The basic meteorological data is from global NCEP Reanalysis data averaged for the respective district. The first row of values signifies thresholds adopted for
mosquito genesis and survival [24,29].

A Model of Malaria Epidemiology
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NCEP Reanalysis is that it provides a comprehensive and

consistent long-period data for all the three variables on a grid.

The Model

Genesis
Our model of malaria epidemiology is based on vector

population as a function of weather variables; exposure and

transmission leading to malaria infection are considered functions

of number of human hosts as well as vectors. The vector

population is assumed to be governed by three weather variables,

with the number of vectors determined by

Nvk nð Þ~Nvokyk(n) ð1Þ

Where Nvk(n) is the vector population on day n for the location

(district) k, and Nvok is a constant [Genesis Potential].The quantity

Yk [n] is 1 if the day n is a vector genesis day, and zero otherwise;

a day is counted as one for vector genesis if

Tminð Þ180CƒT nð Þƒ320C Tmaxð Þ
Qminð Þ20ƒQ nð Þƒ80 Qmaxð Þ
Rminð Þ1:5mmƒR nð Þƒ20mm Rmaxð Þ

ð2Þ

The variables Ximin and Ximax represent, respectively,

minimum and the maximum values of the variable Xi beyond

which mosquito genesis does not take place. The values of Tmin,

Tmax, Rmin, Rmax, Qmin and Qmax for temperature, humidity

and rainfall (Table 2) have been adopted from standard data set

[31,6,22,29]. The condition of genesis for each day and for each

meteorological variable is then evaluated over each district from

daily mean values using data from NCEP Reanalysis [32]. In our

scenario presented by equations (1) and (2), vector abundance is a

regenerative process based on daily meteorological conditions. In

principle, there will be also residual vectors from the previous days

(up to a lag of typical life span of a vector); for simplicity, we

absorb this factor in calibrating the scaling factor, as discussed

subsequently.

For the combined case, each of the three variables T(n), Q(n)

and R(n) must satisfy the genesis condition for Yk(n) to be equal to

1. Monthly values of vector population, NV(m), are then calculated

by summing over 30 days for each month:

NVK mð Þ~
Xi~30

i~1

Nvk ið Þ ð3Þ

Where NVK (m) is the vector population for month m and

district k.

Exposure and Transmission
We next relate the entomological scenario represented by

equations (1)–(3) to epidemiology by prescribing exposure and

transmission. Infection depends both on the number of bites

(exposure) and the transmission of the parasite. The exposure

depends on the encounters of mosquito and human, which is a

complex function of migration and movement of the human

population as well as the vector population. Only a fraction of the

total mosquito population will eventually bite the host (human);

however, it is reasonable to assume that a larger vector density

leads to enhanced exposure and thus more bites. The number of

exposures or bites (NE) thus depends on both the number of hosts

available and the size of the vector population, and is assumed to

be proportional to the total human population (NH) and the

number of vectors (NV); thus

Table 3. Coefficient of exposure for 12 months.

Month Districts in Arunachal Pradesh

Tirap Changl-ang Lohit

Lower
Dibang
Valley

East
Siang

West
Siang

Upper
Siang

Upper
Sub-
ansiri

Papum
Pare

Kurung
Kumey

East
Kameng

West
Kameng

Jan 1.0 1.4 0.9 1.7 3.6 1.0 1.4 1.0 2.5 0.9 1.9 1.4

Feb 1.0 1.0 1.1 1.8 4.0 1.2 1.3 2.5 1.8 0.7 1.5 1.4

Mar 1.1 1.5 1.5 2.2 4.7 1.9 1.2 1.4 2.9 0.8 2.2 1.4

Apr 1.0 1.4 1.9 2.1 5.9 1.9 1.0 1.2 5.1 1.3 4.6 1.1

May 1.7 2.4 4.2 4.6 9.3 3.8 1.2 1.3 6.1 1.3 8.5 1.2

Jun 4.0 6.1 9.0 15.5 9.7 6.0 1.6 2.6 7.3 1.4 8.9 1.3

Jul 3.3 6.8 13.1 14.9 23.4 7.4 2.2 4.8 9.3 1.5 9.7 1.3

Aug 3.0 5.0 8.0 5.9 19.5 5.5 2.1 2.6 5.9 1.5 21.0 1.5

Sep 2.5 5.8 7.0 6.9 11.6 4.6 2.0 3.4 4.8 1.7 19.4 1.0

Oct 1.9 7.2 5.7 6.3 10.1 2.3 1.3 2.8 6.3 2.0 6.6 1.4

Nov 1.7 8.8 5.0 4.3 7.8 1.6 1.0 1.7 3.9 1.3 13.9 1.0

Dec 1.0 4.5 2.1 3.4 3.9 1.3 0.9 1.1 1.6 0.9 2.6 1.4

Avg aE 1.9 4.3 5.0 5.8 9.5 3.2 1.4 2.2 4.8 1.3 8.4 1.3

Avg aT 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.3 0.1

The twelve districts of Arunachal Pradesh with the coefficient of exposure (aE *10–3) for each month. The last row represents the average transmission coefficient aT

(NBSP/NBSC).
doi:10.1371/journal.pone.0049713.t003
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NE~aE
:NH NV : ð4Þ

Where aE is a constant (coefficient of exposure) of proportion-

ality. Not all bites result in an infection. Only a fraction of the

mosquitoes will carry either of the parasites Plasmodium falciparum

(PF) or Plasmodium vivax (PV) to infect human host. The actual cases

of malaria thus depend on transmission, which may be considered

primarily a function of the fraction of mosquitoes that carry either

PV or PF, as well as the immunological history of the population.

We thus consider the actual number of malaria case (NM)

proportional to the number of exposures with a transmission

coefficient aT (,1):

NM~aT
:aE

:NH
:NV : ð5Þ

Equation (5) is then applied to each of the 12 districts, with aT,

aE, NH and NV characteristic of a given district (k). Equations (1)

to (5) are then fed into a computer program along with the daily

meteorological data to simulate genesis at daily scale for each

district.

To obtain estimates of aT and aE we first estimate the exposure

coefficient (aE) and the transmission coefficient (aT) in an objective

manner, based on the observed parameters as follows:

Figure 1. Inter-annual variability in epidemiology over Arunachal Pradesh. Inter-annual variability in epidemiology of Blood Sample
Positive (NBSP).For the years 2006 (thick line), 2007 (thin line with square point), 2008 (light line with circle point), 2009 (thin line) and 2010 (light line)
for the twelve districts in Arunachal Pradesh.
doi:10.1371/journal.pone.0049713.g001
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aE~
NBSC

NH

aT~
NBSP

NBSC

ð6Þ

These estimates are then used for calibration of the model.

While both aE and aT vary from district to district and from

month to month for a given district (Table S1 (a-l)) in a wide range,

the variation for aT with month is confined to a small range,

implying a nearly uniform coefficient of transmission for a given

district, as expected. As transmission is considered to depend only

on the immunological history, we assume a single value for it for a

district for the whole year. This value, computed based on average

of monthly data, is then kept constant for all the years for a given

district.

The extent and duration of outdoor human activities tend to

change with the season, leading to changes in the number of

potential encounters between mosquito and human; this results in

changes in the exposure coefficient, as expected. We have

therefore considered an exposure coefficient aE for each month

and for each district (Table 3). The values of aE adopted were

estimated first for each district for five years (2006–2010) based on

data on NH, NBSC and NBSP (Table S1 (a-l)); average values

(Table 3) were then adopted to simulate epidemiology (NM). It

may be seen that aE for each district shows a distinct annual cycle,

with low values in the winter and significantly larger values in the

summer (Table 3); this is consistent with more human outings for

foraging, agriculture etc in the summer months.

Calibration of the Model Parameters
It should be noted that it is not necessary to substitute the

parameters aT and aE in equation (4) separately. Because of the

multiplicative nature of the coefficients in equation (4) the

Figure 2. Monthly climatology of observed and simulated epidemiology for the twelve districts. Monthly climatology (2006–2010) of
observed (NBSP) and simulated (NM) epidemiology for the twelve districts calculated using daily temperature, surface humidity and 24 hour
accumulated rainfall. The meteorological parameters (temperature humidity and rainfall) for each district have been adopted for the corresponding
year from NCEP daily reanalysis data. The number in the bracket represents the correlation coefficient between observed and simulated
epidemiology for the respective district.
doi:10.1371/journal.pone.0049713.g002

A Model of Malaria Epidemiology
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computed value of NM depends on a single constant estimated by

using aT, aE and Nvok. In principle, the calibration of the single

parameter is independent of these estimates, and use of aT, aE and

Nvok in the process is essentially for our understanding and

interpretation. We therefore determine a single parameter, guided

by the estimates of aT and aE, that provides best fit (minimum

average absolute error) between observed and simulated epidemi-

ology. Here observed data refers to epidemiology in terms of blood

samples that tested positive (NBSP).

The final value of Nvok for a district is then calculated assuming

a constant genesis potential of Nvok = 100000, and multiplying it

by aT [with no year to year variability for a district] and aE

(month-dependent but no year to year variability).The value of

Nvok was kept identical for all the 12 districts and for all the years;

thus the variability in simulated epidemiology is a result of

variation in vector genesis days and exposure coefficient at

monthly scales; at interannual scale the variability in simulated

epidemiology is due to interannual variations in the vector genesis

days.

The calibration is then carried out as follows:

For each district (k), the error in simulated epidemiology is

calculated for each month(m)as:

e m, kð Þ~DNMS m, kð Þ{NBSP m, kð ÞD

Where NM is given by equation (5), and NMS refers to the

simulated value.

To avoid use of in-sample data, so that our model is close to a

forecast model, we have used aT as an average value; aE is

estimated from NBSC which is correlated to but separate from the

epidemiological data (NBSC).

Figure 3. Annual cycle of observed and simulated malaria epidemiology: 2006. Annual cycle of observed (NBSP) and simulated (NM) malaria
epidemiology based on calculation of NM using daily temperature, surface humidity and 24 hour accumulated rainfall for the twelve districts for the
year of 2006. The meteorological parameters (temperature, humidity and rainfall) for each district have been adopted for the corresponding year
form NCEP reanalysis data. The number in the bracket represents the correlation coefficient between observed and simulated epidemiology for the
respective district.
doi:10.1371/journal.pone.0049713.g003

A Model of Malaria Epidemiology
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Validation
Since the year to year variability in aE and aT have been

eliminated, the inter annual variability in the simulated epidemi-

ology results from the meteorological drivers. In general, it is

desirable to calibrate these parameters on an independent data set

to evaluate forecast skill. However, the size of the total sample (5

for a given month and district) makes such a partition impractical.

However, we have used additional years (2006–2010) to compute

annual epidemiological load using the(independently) calibrated

model. Still, the current model provides estimate of potential

forecast skill rather than that of actual forecast.

It is of course possible, and likely, that aE calculated in the

above manner is underestimated due to unreported asymptomatic

cases. However, such an underestimation in our case only changes

the scaling factor due to multiplicative nature of the formulation

(equation 5). For the same reason, underestimation of the number

of bites does not affect our formulation, although it affects our

scaling. The model is then applied to the study area, with NBSP

representing the number of epidemiological cases (NM).

Results

Spatio-temporal Variability of Malaria Over Arunachal
Pradesh

The twelve districts (Table 1) exhibit significant differences in

the amplitude as well as the structure of the annual cycle of

epidemiology (NBSP, Figure 1).Although the peak occurs generally

in the monsoon months (June-September) there are appreciable

year-to-year variability (Figure 1) for any given district. Further,

the 12 districts follow independent patterns of annual cycle and

inter annual variability of epidemiology; the results for one district

can not be used to infer epidemiology of another. These 12

districts represent a wide range in terms of annual mean values of

temperature, humidity and rainfall (Table 2). A major challenge

for a model of malaria over this region is thus to successfully

Figure 4. Annual cycle of observed and simulated malaria epidemiology: 2008. Annual cycle of observed (NBSP) and simulated (NM) malaria
epidemiology based on calculation of NM using daily temperature, surface humidity and 24 hour accumulated rainfall for the twelve districts for the
year of 2008. The meteorological parameters (temperature, humidity and rainfall) for each district have been adopted for the corresponding year
form NCEP reanalysis data. The number in the bracket represents the correlation coefficient between observed and simulated epidemiology for the
respective district.
doi:10.1371/journal.pone.0049713.g004
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capture the annual cycle and the inter annual variability of

epidemiology for each district.

Relative Roles of the Weather Variables in Malaria
All the three weather variables: temperature, rainfall and

humidity, are known to play important roles in vector genesis.

Nonetheless, simulation of epidemiology using equation (1)–(5) was

first carried out with each of the three meteorological variables

separately to examine and quantify their relative roles as well as to

understand the minimum complexity required in the model. An

analysis of simulations with only temperature (Figure S1), only

humidity (Figure S2) and only rainfall (Figure S3), however,

showed large errors. It was also found that the number of days that

allow vector genesis varied appreciably (was considerably reduced)

when all the three weather variables were considered as against a

single weather variable, as expected. The best results were

obtained with all the three weather variables (Figure 2).

Comparison of Observed and Simulated Monthly and
Annual Climatology of Malaria

A comparison of monthly climatology (over 2006–2010) of NBSP

from observation and NM from simulations, with vector abun-

dance derived from simulations with all the three weather

variables, shows excellent agreement (Figure 2) for most of the

twelve districts. The simulations match the observed (multiple)

peaks (Figure 2) in most districts. For example, while the model

shows a gradual decline of malaria cases beyond June for Tirap in

accordance with the observations [Figure 2, top panel], it shows a

sharp, isolated peak in August-September for East Kameng, and

the multiple peaks for districts like Upper Siang and Kurung

Kumey. In terms of individual year also the simulations match the

observations well. A comparison of simulated and observed

epidemiology for the 12 districts for 2006 (Figure 3) and 2008

(Figure 4) emphasizes the appreciable year to year variability in

essentially all the 12 districts. For each of these two years the

simulated epidemiology compares well with the corresponding

Figure 5. Inter annual variability in observed and simulated malaria epidemiology. Inter annual variability in observed (NBSP) and
simulated (NM) malaria epidemiology for the twelve districts calculated using daily temperature, surface humidity and 24 hour accumulated rainfall.
The meteorological parameters (temperature, humidity and rainfall) for each district have been adopted for the corresponding year from NCEP daily
reanalysis data. The number in the bracket represents the correlation coefficient between observed and simulated epidemiology for the respective
district.
doi:10.1371/journal.pone.0049713.g005
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observation, with significant (99%) correlation between the two; a

similar conclusion holds for the other years (Figure S4–S6). The

correlation coefficient between the monthly values of observed and

simulated epidemiology for each district, as given in the respective

figure, is significant above 99% confidence level for the degrees of

freedom involved.

Annual Epidemiology Load from Simulation and
Observation

While data for epidemiology at monthly scale were available for

2006–2010, annually averaged data was available for the period

(2002–2005). Together with the annually averaged data for 2006–

2010, we have examined the interannual variability in the

simulations using the same values of aT and aE that were used

for 2006–2010. The simulated interannual variability agrees well

with the observed variability for all the 12 districts (Figure 5).

While most of the districts do not show any noticeable trends, a

few do show increasing (like East Kameng and Upper Subansiri)

and decreasing (like Changlang) trends, which are well captured

by the simulations.

Discussion and Conclusions

While vulnerability to malaria in a changing climate is a

growing concern [34], reliable regional projections require

validated relationship between the weather variables and epide-

miology; our model provides such relations over a region highly

endemic but little explored. It is shown that the observed annual

cycles (2006–2010) and inter annual variability (2002–2010) of

epidemiology are well simulated for each of the 12 districts. While

no single weather variable like temperature can reproduce the

observed epidemiology, a combination of temperature, rainfall

and humidity in the model provides an accurate description of the

annual cycle as well as inter annual variability over all the 12

districts. The model can be used at short scales for outbreak

forecast through high resolution weather monitoring. While the

validation has been carried out over a specific region, the basic

algorithm is easily applicable to other regions. For a given region,

the parameters for exposure and transmission can be recalibrated

periodically, based on primary data on population. However,

validation with longer and independent epidemiological data is

required for more robust estimation of realizable skill.

Regionally, climate change can increase as well as reduce

vulnerability as the local climate shifts in or out of the genesis

regime; because of the use of genesis days based on three weather

variables, the model can be used to assess such shifting

vulnerability due to regional climate change in a comprehensive

manner. However, transmission also depends on the life cycle of

the malaria parasite inside the mosquito and the human host.

Reduction in the duration of gonotrophic cycle and in the extrinsic

incubation period of malaria parasite is related to increased rate of

transmission; these effects may become important in extreme cases

of climate change.

There exist several avenues for improvement. Evidence suggests

that certain malaria vectors can spend large parts of their adult life

resting indoors. Differences in indoor vs outdoor environments can

lead to large differences in the limits and the intensity of malaria

transmission. There is thus need to understand and model

relationship between mosquito resting behavior and the associated

micro climate, and to broaden assessments of transmission ecology

and risk to consider the potentially important role of endophily

[35].

The development rate of parasites and pathogens within vectors

typically increases with temperature. Many current disease models

ignore the interactive effects of environmental temperature on

multiple host-disease life-history traits; there is need to understand

this complexity and incorporate in the models [36]. In particular,

there is need for including variability of the meteorological

variables at shorter time scales [37].

It is clear that effective implementation of identification and

eradication of malaria risk requires fine scale stratification of the

epidemiological situation [38]. Analysis of risk heterogeneity at the

household scale by Geographical Information System (GIS)

methods can lead to target preventive actions more accurately

on the high-risk zones identified. However, this needs to be carried

out in a hierarchical multi-scale environment, starting from

identification of macro endemic zone for surveillance to final

implementation at house-hold scale. It is unlikely that meteoro-

logical monitoring at house hold level with sufficient geographical

coverage will be available in near future. Our model provides a

means for such surveillance at district level.

It is quite possible that some of the errors in the model

simulations originate from different relations between vector and

meteorological factors over locations. However, we would like to

treat this as a second order effect. In particular, a location (variety-

dependent) range of meteorological variables can be incorporated

once these are identified with sufficient precision.

Supporting Information

Figure S1 Monthly climatology of observed and simu-
lated epidemiology: Only temperature. Monthly climatol-

ogy (2006–2010) of observed (NBSP) and simulated (NM)

epidemiology for the twelve districts calculated using only daily

temperature. The meteorological parameter (temperature) for

each district has been adopted for the corresponding year from

NCEP daily reanalysis data. The number in the bracket represents

the correlation coefficient between observed and simulated

epidemiology for the respective district.

(DOC)

Figure S2 Monthly climatology of observed and simu-
lated epidemiology: Only humidity. Monthly climatology

(2006–2010) of observed (NBSP) and simulated (NM) epidemiology

for the twelve districts calculated using only surface humidity. The

meteorological parameter (humidity) for each district has been

adopted for the corresponding year from NCEP daily reanalysis

data. The number in the bracket represents the correlation

coefficient between observed and simulated epidemiology for the

respective district.

(DOC)

Figure S3 Monthly climatology of observed and simu-
lated epidemiology: Only rainfall. Monthly climatology

(2006–2010) of observed (NBSP) and simulated (NM) epidemiology

for the twelve districts calculated using only 24 hour accumulated

rainfall. The meteorological parameter (rainfall) for each district

has been adopted for the corresponding year from NCEP daily

reanalysis data. The number in the bracket represents the

correlation coefficient between observed and simulated epidemi-

ology for the respective district.

(DOC)

Figure S4 Annual cycle of observed and simulated
epidemiology for the year 2007. Annual cycle of observed

(NBSP) and simulated (NM) malaria epidemiology based on

calculation of NM using daily temperature, surface humidity and

24 hour accumulated rainfall for the twelve districts for the year of

2007. The meteorological parameters (temperature, humidity and

rainfall) for each district have been adopted for the corresponding
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year form NCEP reanalysis data. The number in the bracket

represents the correlation coefficient between observed and

simulated epidemiology for the respective district.

(DOC)

Figure S5 Annual cycle of observed and simulated
epidemiology for the year 2009. Annual cycle of observed

(NBSP) and simulated (NM) malaria epidemiology based on

calculation of NM using daily temperature, surface humidity and

24 hour accumulated rainfall for the twelve districts for the year of

2009. The meteorological parameters (temperature, humidity and

rainfall) for each district have been adopted for the corresponding

year form NCEP reanalysis data. The number in the bracket

represents the correlation coefficient between observed and

simulated epidemiology for the respective district.

(DOC)

Figure S6 Annual cycle of observed and simulated
epidemiology for the year 2010. Annual cycle of observed

(NBSP) and simulated (NM) malaria epidemiology based on

calculation of NM using daily temperature, surface humidity and

24 hour accumulated rainfall for the twelve districts for the year of

2010. The meteorological parameters (temperature, humidity and

rainfall) for each district have been adopted for the corresponding

year form NCEP reanalysis data. The number in the bracket

represents the correlation coefficient between observed and

simulated epidemiology for the respective district.

(DOC)

Table S1 Coefficients of transmission and exposure for the 12

months.

(DOC)
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