
[22:56 18/6/03 Bioinformatics-btn210.tex] Page: 1523 1523–1529

BIOINFORMATICS ORIGINAL PAPER Vol. 24 no. 13 2008, pages 1523–1529
doi:10.1093/bioinformatics/btn210

Data and text mining

Microbial genotype–phenotype mapping by class
association rule mining
Makio Tamura∗,† and Patrik D’haeseleer
Lawrence Livermore National Laboratory, Computing Applications and Research Department/Chemistry, Materials,
Earth and Life Sciences Department, Microbial Systems Biology Group, Livermore, CA 94550, USA

Received on October 8, 2007; revised on February 28, 2008; accepted on April 26, 2008

Advance Access publication May 8, 2008

Associate Editor: Jonathan Wren

ABSTRACT

Motivation: Microbial phenotypes are typically due to the concerted
action of multiple gene functions, yet the presence of each gene may
have only a weak correlation with the observed phenotype. Hence, it
may be more appropriate to examine co-occurrence between sets of
genes and a phenotype (multiple-to-one) instead of pairwise relations
between a single gene and the phenotype. Here, we propose an
efficient class association rule mining algorithm, NETCAR, in order to
extract sets of COGs (clusters of orthologous groups of proteins)
associated with a phenotype from COG phylogenetic profiles and
a phenotype profile. NETCAR takes into account the phylogenetic
co-occurrence graph between COGs to restrict hypothesis space,
and uses mutual information to evaluate the biconditional relation.
Results: We examined the mining capability of pairwise and
multiple-to-one association by using NETCAR to extract COGs
relevant to six microbial phenotypes (aerobic, anaerobic, facultative,
endospore, motility and Gram negative) from 11 969 unique COG
profiles across 155 prokaryotic organisms. With the same level
of false discovery rate, multiple-to-one association can extract
about 10 times more relevant COGs than one-to-one association.
We also reveal various topologies of association networks among
COGs (modules) from extracted multiple-to-one correlation rules
relevant with the six phenotypes; including a well-connected network
for motility, a star-shaped network for aerobic and intermediate
topologies for the other phenotypes. NETCAR outperforms a standard
CAR mining algorithm, CARAPRIORI, while requiring several orders of
magnitude less computational time for extracting 3-COG sets.
Availability: Source code of the Java implementation is available as
Supplementary Material at the Bioinformatics online website, or upon
request to the author.
Contact: makio323@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The causal relationship between microbial genotype and phenotype
can be extrapolated from co-occurrence of genes and phenotypes
across a wide range of genomes.Aphylogenetic profile (Eisen, 1998;
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Pellegrini et al., 1999) is a vector encoding the presence and absence
of a gene across sequenced genomes. We can likewise construct a
phenotype profile (Jim et al., 2004) (Table 1), indicating as to which
organisms exhibit the phenotypic trait. Systematic comparison (Goh
et al., 2006; Jim et al., 2004; Korbel et al., 2005) can provide us
with genotype–phenotype relationships and clues to understand the
underlying biological mechanisms. Slonim et al. (2006) proposed
a method to extract preferentially co-inherited generic modules,
clusters of genes that have significant pairwise association with the
phenotype observation.

Clusters of orthologous groups (COGs) of proteins (Tatusov et al.,
1997, 2003) provide a mapping between genes and their orthologs
across sequenced genomes, and are an informative abstraction
of genes for the construction of phylogenetic profiles. In this
research, we compile 11 969 unique phylogenetic profiles of COGs
for 155 prokaryotes from the STRING (Von Mering et al., 2007)
database. Individual COG phylogenetic profiles may only show a
relatively weak correlation with a phenotype profile, even when the
corresponding gene is essential for the phenotype. As an example,
in Table 1, the profiles of COGA COGB, and COGC have a weak
pairwise relationship with the phenotype profile. However, when all
of these COGs are present, the phenotype is always observed. Such
an association between a set of genes to a phenotype (multiple-to-
one) may suggest the importance of co-occurrence of these genes for
the phenotype, potentially indicating an epistatic genetic interaction
between them (Moore and Williams, 2005).

Class association rule (CAR) mining is a data mining technique
to extract sets of items relevant with a class of interest. A standard
CAR mining algorithm, CARapriori (Agrawal and Srikant, 1994;
Liu, 2006), finds if–then rules: Set of items⇒class; here, the rule
may represent a hypothesis relating co-occurrence of a set of COGs
and the presence of a phenotype. Bowers et al. (2004) suggested
a method to derive more general logical rules by exhaustive
enumeration, an approach that is computationally intractable for
combinations of more than two COGs. Rule induction algorithms
such as sequential covering by CN2 (Clark and Boswell, 1991)
or simultaneous covering by decision tree algorithms (Quinlan,
1986) can also mine if–then rules, but they only discover
small numbers of rules for efficient prediction or classification
purposes, while CAR mining comprehensively searches for all rules
satisfying some criterion. Here, we present a new CAR mining
algorithm netCAR to extract sets of COGs associated with a target
phenotype.
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Table 1. An example phenotype profile and phylogenetic profiles for three
COGs (COGA–COGC ) across six organisms (O1–O6)

Organism O1 O2 O3 O4 O5 O6

Phenotype 0 0 1 1 0 0

COGA 1 1 1 1 0 0
COGB 0 0 1 1 1 1
COGC 1 1 1 1 1 0

2 PROBLEM
Conventionally, a CAR mining algorithm uses Confidence and
Support where Confidence is the conditional probability of
observation of the class (phenotype) given the set of items
(COGs), and Support is the fraction of samples (genomes) in
which the rule is valid in the data. When we have a rule
such as COGA and COGB⇒phenotypeC with 100% Confidence,
phenotypeC is observed whenever COGA and COBB are present
in a genome. However, this rule may not have much biological
relevance unless the converse relation holds as well, i.e. whenever
phenotypeC is observed, COGA and COGB tend to be present.
In order to measure how well the set of COGs approximate a
necessary and sufficient condition for the presence of the phenotype:
Set of COGs⇔phenotype, we use mutual information (MI) (Cover
and Thomas, 1991) to evaluate the association between the COG
combination profile (see Section 4) and phenotype profile (Slonim
et al., 2006).

The main problem with CAR mining is how to narrow down
the hypothesis space. The space of all possible sets of s COGs is
O(ms) where m is the total number of COGs, hence brute-force
search becomes intractable for large m or s. In our case, there are
more than 285 billion possible 3-COG sets out of 11 969 unique
COG profiles, so we need to use heuristics to focus on a subset of
the most promising candidate sets. CARapriori uses the downward
closure property based on minimum Support (Agrawal and Srikant,
1994), and it guarantees to exhaust all candidate sets that satisfy the
minimum Support. However, when we use small minimum Support
to avoid missing interesting rules, the size of hypothesis space can
become exponential in the size of the set, making it very expensive
to extract sets of 3 or more COGs by CARapriori. What is worse,
our dataset has many more items (COGs) than samples (genomes),
contrary to the type of market basket data for which CARapiori was
originally developed, and CARapriori may tend to generate many
irrelevant rules (Liu et al., 2006).

Instead of the exhaustive selection, we propose a new algorithm
to narrow down hypothesis space restricted by a COG connectivity
graph (Butte and Kohane, 2000; Klus et al., 2001; Moriyama
et al., 2003) where each node is a COG and edges are assigned
between COGs for which the mutual information between their
phylogenetic profiles exceeds a certain threshold value. This has
a 2-fold benefit: to reduce computation time, and to generate rules
consisting of genes which are more likely to have some biologically
relevant functional association with each other. COGs which have
similar phylogenetic profile are likely to be functionally associated
(Overbeek et al., 1999; Pellegrini et al., 1999). Supplementary
Figure S1 in supporting information shows the distribution of

mutual information between pairs of phylogenetic profiles of COGs
corresponding to enzymes that are connected via a compound in
a KEGG pathway map (Kanehisa and Goto, 2000; Ogata et al.,
1999), compared to those of randomly selected COG pairs. The
figure illustrates that a pair of COGs with a high mutual information
is likely to have some functional connection (Von Mering et al.,
2003).

3 ALGORITHM
The basic algorithm is as follows: (1) select Parent COGs whose
profile shows strong pairwise association with a phenotype profile
of interest and Child COGs that are no more than s−1 steps away
from a Parent on the COG connectivity graph (where s is the size
of the rules we want to construct); (2) generate candidate COG sets
containing at least one Parent, which form a connected subgraph on
the COG connectivity graph; and (3) evaluate mutual information
between the combined phylogenetic profile of each set with the
phenotype profile.

Algorithm 1 shows pseudocode of an implementation of the
netCAR algorithm. It takes a profile matrix M, a phenotype profile
phe, the size of the set in a rule s and three mutual information
thresholds, mMIp, mMIc and mMIr. getConnectivityGraph at line
11 constructs a connectivity graph G of COGs, where an edge
is assigned if the mutual information between two COG profiles
exceeds the threshold value mMIc. selectParent at line 12 returns
a list of indexes of Parents, pa, whose mutual information with
the phenotype phe exceeds the user-defined threshold value mMIp.
selectChild at line 13 returns a list of Children, ch, which are
within s−1 steps from a Parent on the connectivity graph G.
pa and ch are combined into one target COG index array t:
p1,p2,...,psize(pa),c1,c2,...,csize(ch) (at line 14). For sets up to
size 4, we can check that the COG set forms a connected subgraph
by requiring that the sum of pairwise distances between COGs be
smaller than or equal to maxPL (line 15), the sum of distances
for a linear s-node path (for s≥5, this heuristic may yield some
unconnected subgraphs). The all-to-all shortest distance matrix D is
precomputed by the Floyd-Warshall algorithm at line 16. Starting
from a single Parent, successively larger sets up to size s are
generated by adding additional Parents or Children, inside the while
loop (line 23 onwards). Intermediate sets that would exceed a valid
sum of distances, maxPL, are pruned early (line 28); otherwise, they
are pushed back onto the stack for further expansion. When the size
of a set reaches s (at line 32), a combined vector v is constructed by
taking the intersection (AND rule) of the phylogenetic profiles of all
the COGs in the set (line 33), and the mutual information between
v and the phenotype profile phe is computed. If the value is larger
than the user-defined mMIr, then the set is added to the collection
of rules rules (lines 36–39).

4 MATERIALS AND METHODS

4.1 Data
We constructed the phylogenetic profile matrix M from the STRING
version 7.0 database (Von Mering et al., 2007), an extension of the
original COG database (Tatusov et al., 2003). The mapping table contains
presence/absence of 4873 COGs, plus an extended set of 33 858 non-
supervised orthologous groups (NOGs) to cover genes that are not included
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Algorithm 1 Pseudocode of a netCAR implementation

1: Input:
2: M ∈[0,1]m×n � Phylogenetic profile matrix
3: phe ∈[0,1]1×n � Phenotype profile
4: s � size of COG set in a rule
5: mMIr � minimum MI to select rules
6: mMIp � minimum MI to select parent COGs
7: mMIc � minimum MI to select child COGs
8: Output:
9: rules � array of association rules

10: procedure netCAR(M, phe, s, mMIr , mMIrp, mMIc)
11: G← getConnectivityGraph(M, mMIc)
12: pa← selectParent(M, phe, mMIp)
13: ch← selectChild(G, s, pa)
14: t← pa

⋃
ch

15: maxPL← getMaxSumAlltoAllPathLength(s)
16: D← shortestDistance(G, t)
17: S � Stack
18: for i←1, size(pa) do
19: c← pa[i] � item combination
20: S::push(c)
21: end for
22:
23: while S is not empty do
24: c← S::pop
25: if size(c) < s then
26: for j← i+1, size(t) do
27: cnext ← c

⋃
t[j]

28: if Check(cnext , D, maxPL) then
29: S::push(cnext)
30: end if
31: end for
32: else if size(c) equal s then
33: v← getJointArray(c)
34: if Check(c, D, maxPL) then
35: MI ← getMI(v, phe)
36: if MI ≥ mMIr then
37: r::comb← c � rule class instance
38: r::MI←MI
39: rules← r

⋃
rules

40: end if
41: end if
42: end if
43: end while
44: return rules
45: end procedure

in the original COG database. Here we use only the 155 representative
core prokaryotic organisms (out of 337 prokaryotes in STRING 7.0), in
order to mitigate the sequencing bias among lineages. There are only
11 969 unique phylogenetic profiles out of original 38 731 COG and NOG
profiles (for the remainder, we ignore the distinction between COG and
NOGs). We used the dataset generated by Slonim et al. (2006) for six
binary phenotype profiles, combined with additional data from NCBI’s
GenomeProject database, the Joint Genome Institute’s Integrated Microbial
Genomics (IMG) system (Markowitz et al., 2006), the Genomes Online

Database (Kyrpides, 1999) and literature. There are 62 aerobic, 31 anaerobic,
42 facultative, 11 endospore forming, 76 motile and 95 Gram-negative
organisms in our dataset. The enzyme connections used in the COG pair
analysis is extracted from the KEGG LIGAND database as of July 9,
2007.

4.2 Phylogenetic profile and phenotype profile
The phylogenetic profiles is represented by a binary matrix M ∈ [0,1] m×n,
and a phenotype profile is represented by a binary vector phe ∈ [0,1] 1×n
where m is the total number of COGs and n is the number of genomes. The
i-th row vector of M represents the phylogenetic profile of the i-th COG,
where the j-th element indicates presence or absence of this COG in the j-th
genome. Likewise, the j-th element of phe shows presence or absence of a
phenotype in the j-th organism.

Multiple phylogenetic profiles are combined into a single vector v ∈ [0,1]
1×n where the j-th element is equal to 1 only if the j-th elements of all the
COG profiles are equal to 1 (i.e. the combined profile vector is the AND
function of the individual COG phylogenetic profiles).

4.3 Mutual information
Mutual information MI(Cover and Thomas, 1991) between two
binary vectors u,v∈[0,1]1×n is calculated as follows; MI(u;v)=∑

y∈[0,1]
∑

x∈[0,1]P(x,y)logP(x,y)/P(x)P(y) where x and y are the values of
u and v, respectively, and P() is the probability function.

4.4 Connectivity graph for a phylogenetic profile
For the phylogenetic profiles M ∈ [0,1] m×n where m is the total number
of COGs and n is the number of genomes, the i-th row vector mi represents
the phylogenetic profile of the i-th COG. We can construct an adjacency
matrix of the connectivity graph G=(gi,j ∈[0,1])m,m

i,j as follows: gi,j=1 if
MIi,j≥mMIc or otherwise 0, where MIi,j is mutual information between mi

and mj , and mMIc is a threshold value.

4.5 FDR
We used a random permutation method proposed by Zhang and
Padmanabhan (2004) to measure an FDR. If No and Nr are the number of rules
that have a mutual information MI or higher with respect to the original and
randomly permutated phenotype profile, respectively, then No/Nr is a simple
estimated positive FDR (Storey and Tibshirani, 2003) for the given mutual
information MI . We calculated the median value of No/Nr from 200 random
permutation experiments. We can scan all pairwise associations, but it takes
too much time to scan all 2-COG and 3-COG associations. Therefore, we
randomly selected as many 2- and 3-COG sets from the COG phylogenetic
profile as possible within 15 min computational time; 3.6×105 (0.5% of
all possible 2-COG combinations) and 5.7×105 (0.0002% of all 3-COG
combinations), respectively. This process is repeated 500 times, and FDR for
the mutual information MI is calculated as an average of the median value.
Supplementary Figure S11 of supporting information shows the relationships
between mutual information and FDR for pairwise, 2-COG and 3-COG rules
for all six phenotypes.

4.6 Experimental parameters
Experiments were performed under version 1.6 Java runtime environment
on a 64 bit Linux machine with 7.0 Gb memory and 3.00 GHz CPU power.
For rule mining by netCAR, the mutual information to select Parent COGs,
mMIp, is adjusted to FDR level of 0.1% The threshold mutual information,
mMIc, is set to 1.1 × average mutual information among Parents for 2- and
3-COG rule mining.
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5 RESULTS AND DISCUSSION

5.1 Controlling for multiple hypothesis testing using
false discovery rate

Because of the large number of rules evaluated by CAR mining;
we controlled the statistical significance of the resulting rules
by false discovery rate (FDR) (Benjamini and Hochberg, 1995;
Storey and Tibshirani, 2003; Zhang and Padmanabhan, 2004).
FDR is the expected proportion of true null hypotheses among
all rejected hypotheses in a multiple hypotheses evaluation, i.e.
the expected proportion of false positives among our results, and
we can compare the efficiency of different approaches by the
number of relevant rules and COGs they are able to extract
at the same FDR level. Previous work on pairwise genotype–
phenotype associations (Goh et al., 2006; Jim et al., 2004) estimated
significance based on a conservative Bonferroni correction on
P-values derived from a hypergeometric distribution. A traditional
family-wise error rate (FWER) (Shaffer, 1995) approach such
as Bonferroni essentially calculates the probability of making
even a single error (or more) among all of the evaluated rules
under the null hypothesis. In cases where a very large number
of hypotheses are to be tested, and multiple positive results are
expected, FWER is far too conservative, and correcting for FDR
is more appropriate. For this same reason, FDR is also the method
of choice for extracting multiple significantly expressed genes out of
the thousands represented on a gene expression microarray (Pounds,
2006; Storey and Tibshirani, 2003). We adjusted threshold mutual
information by FDR level for each rule mining, and compare
the pairwise and multiple-to-one association rule mining by using
netCAR. The detailed experimental procedure to measure FDR is
given earlier in Section 4.

For 2- and 3-COG rule generation from our dataset, netCAR
starts with Parents of 0.1% FDR level. In the case of 3-COG
rule mining, the netCAR algorithm eventually evaluates about
105–109 candidate sets when we set the final rule threshold mutual
information (mMIr) of 0.1% FDR level. Overall, netCAR takes less
than 5 min to mine 3-COG rules for one phenotype, the majority of
which is taken up by precomputing the COG connectivity graph
and distance matrix. In comparison, it takes at least 10 h to explore
all 3-COG sets with 0.1% FDR level of Parents and the same size
of Children. Hence, the selection strategy using the connectivity
graph significantly reduces the amount of computational time.
We estimate that it would take more than 1 month to mine
3-COG rules by CARapriori to extract rules with the same level
of FDR.

5.2 Multiple-to-one association rules and genetic
module

Figure 1a shows the number of unique COGs found in pairwise,
2-COG and 3-COG association rules within various FDR levels
where broken line corresponds to the number of uncharacterized
COGs. The number of unique COGs is roughly linear to the number
of extracted rules (Supplementary Fig. S2) and up to around 15% are
uncharacterized COGs by any associations. With the same FDR, the
multiple-to-one association reveals substantially larger number of
relevant COGs than pairwise association does, except for motility.
Figure 1b shows the number of COGs that are extracted by multiple-
to-one association with FDR of 0.1% , but are not covered by
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Fig. 1. (a) Number of unique COGs in extracted rule within FDR levels.
Blue, orange and green lines are 1-COG, 2-COG and 3-COG rules,
respectively, and broken lines are number of uncharacterized COGs in the
same colored association rules. (b) Number of unique COGs that are in 2- and
3-COG association rules with FDR of 1.0×10−4 but are not in pairwise
association rules with much relaxed FDR level ranging between 1.0×10−3

and 1.0×10−1. (Values for motility are 0, hence the missing curves for that
phenotype.)

pairwise association with much relaxed FDR level. Except for
motility and endospore, the pairwise method fails to capture a large
number of COGs, including many uncharacterized ones, even when
the FDR level is relaxed up to 10%. We find 38 uncharacterized
COGs that are mined in 3-COG association rules for the aerobic
phenotype with a FDR level <0.1%, but are not covered by pairwise
association with very relaxed FDR level of 10%. With the same
condition, we also find 52, 55, 2, 52 uncharacterized COGs for
anaerobic, facultative, endospore and Gram-negativity phenotype.
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A list of these COGs in 3-COG association rules, but are not covered
by pairwise association with relaxed FDR level of 10%, are also
available in supporting information.

We compile association networks from 3-COG positively
associated rules with a stringent FDR level (Fig. 2), indicating
which COGs occur in the top rules, how frequently and in which
combination. The list of these COGs are available in supporting
information. We observed two distinctive types of association
network topology: (1) Clique type networks, such as the motility
module, where genes are well associated with each other and
(2) Star type networks, typified by the aerobic module, where a
few COGs have links to many other COGs in a star-like topology.
It is interesting to note that even with a relaxed FDR, there
are many green nodes that have a weak association with the
target phenotype, with the exception of the motility phenotype, for
which pairwise association may be appropriate to extract associated
COGs. What is more, pairs of COGs with similar profiles (darker
blue edge) do not always form the most frequently observed
COG combinations (wider edges) in these networks. This type
of COG association can be considered as a functional module,
even though the individual phylogenetic profiles may be quite
divergent. This concept is complementary to the concept of a
module used by Slonim et al. (2006), in which each COG profile
has a significant pairwise correlation to a phenotype profile, and
profiles in the same module are similar to each other. Indeed,
the well-connected components in the Clique-type networks are
similar to the modules defined by Slonim et al.; however, for
the other phenotypes, the relevant COGs do not always have a
strong pairwise association, but the module can be understood
by a Star or mixed-type network. Previous work (Ravasz et al.,
2002) suggests that the metabolic network is more consistent with
a fractal structure model, a mixture of a scale-free (Jeong et al.,
2000) and modular network. The pairwise method may have an
intrinsic problem discovering relevant genes in such a structure.
In contrast, the multiple-to-one method can explore the associated
genes with weak pairwise associations. The biological reason behind
the presence of individual COGs in the rule will require further
investigation, but a brief overview of the resulting networks is given
subsequently.

5.3 Genetic module and COG functions
5.3.1 Aerobic Both the aerobic and anaerobic networks contain
redox-active proteins. Mutual information captures both positive
and negative correlations. The aerobic phenotype is the only one
we tested for which the negatively correlated rules are dominant.
We found many oxygen-sensitive enzymes in these negatively
associated rules, while enzymes that detoxify active oxygen
derivatives occur in positively associated rules. The capability
to extract both positive and negative association is one of the
advantages of CARapriori, compared to the standard CAR mining
algorithm, CARapriori, which can only extract positively correlated
rules. Oxidase complex and dehydrogenase enzymes are frequent
strong pairwise association COGs (orange node) while Dinucleotide
(FAD)/ flavin mononucleotide (FMN)-containing dehydrogenase,
oxidoreductases, the pyruvate dehydrogenase complex, catalyzing
oxidative decarboxylation of pyruvate to form acetyl-CoA, and
peroxiredoxin, a family of multifunctional antioxidant enzymes,
are dominant COGs with a weak pairwise association (green node)

in the aerobic network. Citrate synthase, one of the major green
nodes, catalyzes the reaction to produce citrate from acetyl-CoA
and oxyalacetate at the first step of the citric acid cycle in aerobic
respiration.

5.3.2 Anaerobic Oxygen toxicity in anaerobes was thought to be
due to the absence of superoxide dismutase, although recent genomic
studies suggest that this may not be the discriminative factor, and
that the mechanisms behind microbial sensitivity to oxygen may
as yet be unknown (Madigan et al., 2000). Oxygen-sensitive and
redox-related proteins, such as 6Fe–6S cluster proteins, activator
of 2-hydroxyglutaryl-CoA dehydratase, cobalamin biosynthesis
protein CbiD or pyruvate-formate lyase-activating enzyme, etc.,
including many weak pairwise association proteins, appear in the
anaerobic network, but many of these proteins may be also found in
aerobes.

5.3.3 Facultative Enzymes in the fermentation pathway such
as the phosphotransferase system IIA, IIB and IIC components,
form a connected component in the facultative network, in
combination with COG3091, an uncharacterized protein conserved
primarily within the Bacilli. A second major uncharacterized protein,
COG3094, is conserved mainly within the betaproteobacteria,
and is associated with several other membrane-associated COGs.
Facultative microbes may contain both genes of aerobic respiration
and genes for fermentation or anaerobic respiration, as well as genes
for detoxifying active oxygen derivatives.

5.3.4 Endospore A regulator of polyketide synthase expression,
an AT-rich DNA-binding protein, cell division initiation protein,
transcription regulator and uncharacterized COG1799 and
COG1302 are the main COGs. It has been reported that more
than 200 genes may be involved in the endospore formation
process (Madigan et al., 2000), but the large population of weak
pairwise association COGs in the extracted rules suggest that many
of endospore-relevant proteins may be used in other biological
functions as well.

5.3.5 Motility Flagellar apparatus proteins form a well-connected
graph. This network forms a genetic module with a clear boundary,
in which each gene has a strong pairwise association with the
phenotype observation. Therefore, the number of extracted COGs
both in the pairwise and multiple-to-one association are the same,
and its upper bound is well limited within a certain number, about
20–30 COGs for the motility phenotype. However, only motility
phenotype has this shape in our six phenotypes. Figure 2 only
shows flagellar apparatus COGs. Another well-connected network
is formed by chemotaxis-related COGs.

5.3.6 Gram negative The biological relationship of Gram
negativity with cell wall structure is well understood; a membrane
with a thick peptidoglycan layer stains Gram positive while
organisms with a periplasm with thin peptidoglycan and outer
membrane stain Gram negative. Indeed, outer-membrane proteins
and various transport system proteins that may be used for the
membrane proteins (Jedrzejas and Huang, 2003) form a graph in
the Gram-negative network. However, both pairwise and multiple-
to-one association extracted relatively large number of COGs with
Gram-negative bacteria, but may not relevant with the Gram-stain
mechanism.
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(a) (b)

(c)

(d)
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Fig. 2. (a–f) COG association graphs for the six phenotypes. The nodes are COGs involved in the rules within FDR level of 1.5×10−5, 5.0×10−8, 1.5×10−5,
1.0×10−5, 5.0×10−5 and 5.0×10−14 for aerobic, anaerobic, facultative, endospore, motility and Gram negativity phenotypes, and edges show that the linked
COGs are used in the same rule. The orange nodes are COG covered by pairwise association with 100 times relaxed FDR except for anaerobic and Gram
negativity with FDR of 0.01, while the green nodes represent the other COGs with a weaker pairwise correlation. The size of each node and the width of
each edge are proportional to the frequencies of the corresponding COG and link in the extracted rules, respectively. Darker edges indicate a closer profile
similarity between the linked COGs.
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6 CONCLUSION
We developed a new class association rule mining algorithm,
netCAR that extracts multiple-to-one relationships between COGs
and a phenotype of interest, from a COG phylogenetic and
the phenotype profile. netCAR is much more efficient than a
standard CAR mining algorithm, CARapriori in computational
time. The multiple-to-one association rules with stringent FDR
level for aerobic, anaerobic, facultative, endospore and Gram-
negative phenotype contain significantly larger numbers of COGs
than those by pairwise methods. We compiled association network
from extracted 3-COG rules and revealed that the network cannot
only have a Clique structure, as implicitly assumed by previous
pairwise methods, but also a Star-type topology that contains large
number of COGs whose occurrence is only weakly correlated with
a phenotype observation. These results indicate that a gene module
can be a combination of genes that span some depth in a biological
network, from a layer where we can see strong pairwise association.
The netCAR algorithm is a powerful CAR mining algorithm that
can be used to extract relevant genes (COGs) associated with a
phenotype observation, that cannot be elucidated by simple pairwise
comparisons. We also discuss the phenotype prediction capability of
extracted rules in the supporting material. It is often the case that the
dimensionality of large-scale biological data (in our case, number of
COGs) is much larger than the number of samples (genomes), and
the netCAR algorithm may be appropriate to extract associations
from other such data types. For example, netCAR may be able to
mine co-regulatory gene network modules relevant with a target
physiological observation, from microarray data with many more
genes than expression arrays.
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