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Abstract: We herein report the design and synthesis of small-donor molecules, 2,1,3-benzothiadiazole
derivatives (2a—d), by Stille or Suzuki reaction. The synthesized compounds were characterized by
spectroscopic and electrochemical methods. The compounds 2a—-d absorb the light in a wide range
(the UV-green/yellow light (2c)) and emit from green to red/near IR light (2c). Furthermore, these
compounds show a narrow energy gap (1.75-2.38 eV), and high Ea values increasing for polymers,
which prove their electron-donating nature and semiconductor properties. The measurements were
enhanced by theoretical modeling.

Keywords: benzothiadiazole; small molecules; organic optoelectronic; Stille; Suzuki reaction; conju-
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1. Introduction

Organic semiconductors are currently used in many fields of science, e.g., organic
light-emitting diode (OLED), solar cells, transistors, molecular imaging, and sensors [1-7].
Due to their conductive and optical properties, the possibility of easy modification, flex-
ibility, and low production costs, they displace their inorganic counterparts. A recent
breakthrough in the performance of organic semiconductor devices has been achieved by
developing non-fullerene acceptors (NFAs) that can overcome the drawbacks of fullerenes
and have the advantages of high absorption rates, readily tunable optical and electronic
properties, and increased solubility [8,9]. Using several variants of the semiconductor
structural systems, the properties of the entire system are adjusted, e.g., donor-acceptor—
donor (D-A-D) molecules [10,11]. An example is the use of small molecules, which are
currently being intensively studied due to the shortage of n-type conjugated polymer
(n-CP) materials as an acceptor in the active layer and a p-type conjugated polymer (p-CP)
as a donor, especially in organic solar cells. Currently, n-CP focuses primarily on perylene
diimide, naphthalene diimide, pyridine derivatives, and p-CP containing thiophene and
dithienosilole [12-17]. However, many of them suffer from some significant weaknesses,
such as a poor absorption coefficient and excessively strong crystallinity and stacking,
which lead to a limited photocurrent and poor separation in the active layers [18-21]. To
overcome the unfavorable properties of some conjugated polymers (CPs), small molecules
are being researched, considering their advantages of easy purification, a narrow bandgap,
strong absorption, higher electron mobility, well-defined chemical structures, and good
photovoltaic performance reproducibility without batch-to-batch variation [22-29].

Herein, to further explore and adjust the properties of novel small molecular donors,
4,7-bis(5-(selenophen-2-yl)thiophen-2-yl)benzothiadiazole (2a) and 4,7-bis(5-(pyridin-2-
yl)thiophen-2-yl)benzothiadiazole (2b) were designed and synthesized according to our pre-
viously reported synthesis of 4,7-bis(5-(3,4-ethylenedioxythiophene)thiophen-2-yl)benzo-
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thiadiazole (2c), as depicted in Scheme 1 [30]. The benzothiadiazole derivatives contained
the D-A-D structural motif, based on selenophene, pyridine or 3,4-ethylenedioxythiophene
(donor), thiophene (bridge), and benzothiadiazole (BTD, acceptor) from commercially avail-
able precursors via only one step. To better understand the dependence of optoelectronic
properties on the structure, 4,7-di([2,2"-bithiophen]-5-yl)benzothiadiazole (2d) was also
synthesized to compare the effect of thiophene as a substituent in comparison to other
groups [31].
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Scheme 1. Synthesis routes of the benzothiadiazole derivatives (2a—d).

2. Results
2.1. Synthesis

The synthetic routes and chemical structures of the 2a—d molecules are depicted in
Scheme 1. The target small molecules 2a—c were obtained through a Stille coupling reaction,
and compound 2d was obtained through a Suzuki coupling reaction. Selenophene and
3,4-ethylenedioxythiophene were monostannylated to 2-(tributylstannyl)selenophene or 2-
(tributylstannyl)-3,4-ethylenedioxythiophene in 99% yield with SnMe3Cl in THF at —80 °C.
All the synthesized compounds were further purified by using a column chromatography
technique. The molecular structures of these target compounds and their intermediates
were established by using different spectroscopic tools.

2.2. Theoretical Studies

Figure 1 shows the optimized structures and frontier molecular orbitals of 2a—d. The
HOMO energy level was found to spread throughout the molecules, whereas LUMO
was localized on the benzothiadiazole moiety. The HOMO and LUMO energy levels of
2a—d are stated in Table 1. The observation, however, should be treated with caution,
since the orbital energies are basis set dependent. However, these values are reasonably
close to both calculated and experimental ionization energies (Table 1). The efficient
small molecule donors should have the HOMO energy levels around —5.2 eV to ensure
acceptable device open circuit voltages [32]. All compounds, except 2¢, fulfill this condition.
The lowest HOMO orbital has 2b (—5.24 eV), then 2d (—5.12 eV), 2a (—5.12 V), and 2¢
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(—4.78 eV). Moreover, the value of the ionization potential suggests the donor properties
of the compounds (ionization potential (IP) < 5.7 eV) (Table 1) [33]. Compound 2c has the
lowest IP, 4! (5.7 eV) compared to compounds 2a (6.07 eV), 2d (6.08 eV), and 2b (6.25 eV),
and therefore has the strongest donor properties. These results differ by approximately
0.5 eV (2d by 0.2 eV) from the experimental results, respectively: 5.24 eV (2c), 5.60 eV
(2a), 5.86 eV (2d), and 5.76 eV (2b). Furthermore, the structure of compounds 2a-d is
planar, which ensures close intermolecular contacts and high charge carrier mobilities [32].
Figure 2 shows the experimental and calculated UV-vis absorption and photoluminescence
spectra of 2a—d. The corresponding data are summarized in Table 2. It is observed that the
Amax<! of all the structures corresponds to HOMO — LUMO transitions (range in yellow
and red light) and to HOMO—LUMO + 1 transitions (in the violet range). The calculated
Amax Value of molecule 2a shows the broadest wavelength with maximum absorption at
413 and 623 nm, which is red-shifted by 58 and 140 nm when compared with experimental
results. The theoretical UV-vis spectra of 2b, ¢, and d are also red-shifted (110-170 nm)
in comparison with experimental results. Moreover, 2c and 2d show similar absorption
behavior, but 2c¢ shows broader and red-shifted spectra with the maximum of absorbance at
418 and 652 nm. The compounds 2a—d have high oscillator strength (f), which corresponds
to the appearance of a high experimental absorption coefficient (Table 2).
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Figure 1. Cont.
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Figure 1. Optimized structures and Frontier molecular orbitals of 2a—d.

Table 1. Redox properties of monomers. E®*nset—o0xidation peak onset; Ered | —reduction peak onset; IP—ionization
potential, estimated from the equation IP[eV] = le|5.1 + E® ypset[V]; EA—electron affinity, estimated from the equation
EA[eV] = lel5.1 + Ered o [V]; AEgel—electrochemical bandgap from the equation AEge1 =1IP — EA; [Py l—calculated
vertical ionization potential; IP,4“?—calculated adiabatic ionization potential; Egcal—calculated bandgap; cal—calculated.

Compound E g nset Eredonset P IPvercal IPadcal EA HOMocal LUMocal Egcal AEgel
V) (\%] (eV) (eV) (eV) eV) (eV) (eV) (eV) (eV)

2a 0.50 —1.51 5.60 6.21 6.07 3.59 —5.12 —2.84 2.27 2.01

2b 0.66 —1.62 5.76 6.37 6.25 3.48 —5.24 —2.78 2.46 2.28

2¢ 0.14 —1.61 5.24 5.84 5.69 3.49 —4.78 —2.59 2.19 1.75

2d 0.76 —1.62 5.86 6.22 6.08 3.48 —5.12 —2.83 2.29 2.38
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Molecules 2021, 26, 1216

6 of 14

Normalized absorbance (a.u.)
Luminescence
—— Theoretical absorbance (a.u.)

1.0 7

2d - 3000
S 084
8 08 - 2500
8
& 2000 &
8061 S
3 ?
3 4]
8 - 1500 C
B 0.4 IS
g 3
= - 1000
£ 0.2
o V.21
z - 500

00 T T T T T O
200 300 400 500 600 700

Wavelenght (nm)

Figure 2. UV-vis experimental absorption (black), theoretical absorption (blue, in vacuum), and
emission (red) spectra of compounds 2a-d in dichloromethane (DCM).

Table 2. Theoretical properties and maximum of experimental absorption and emission of investi-
gated compounds: Apax—maximum wavelength of absorption; A™ y,x —maximum wavelength of
emission; ex—experimental; cal—calculated; f—oscillator strength.

Compound Amax & (nm) Amax ! (nm) A gy (nm) f
D om o wm w
S
o wmy e o
A

2.3. Photophysical Studies

The optical properties of synthesized compounds 2a—d were studied by UV-vis and
fluorescence spectroscopy. The UV-vis absorption and emission spectra of compounds
2a—d in dichloromethane (DCM) are shown in Figure 2, and the corresponding data are
summarized in Table 2. Compounds 2a-d show two absorption peaks at 311-370 nm due to
the overlap of the n-7* and 7t-7r* transition, whereas absorption maxima at 452-526 nm are
due to a push—pull system, which allows for intramolecular electron density transfer from
donor unit to acceptor. Compounds 2a, b, and d show luminescence in the range of light
from green to red light, with the maximum of emission at 609, 592, and 563 nm, respectively,
while compound 2c is batochromically shifted to near IR, with the maximum of emission
at 667 nm. This red shift in the emission spectrum of 2¢, as compared to 2a, b, and d, can
be explained in terms of the stronger donor character of ethylenedioxythiophene.

2.4. Electrochemical Properties

During the electrochemical oxidation, an irreversible process of polymerization occurs
for all monomers. First, Cyclic Voltammetry (CV) scans in the anodic range are presented
in Figure 3b. The oxidation potential of 2c was much lower than that of compounds 2a,
2b, and 2d, which subsequently oxidized within a narrow range. This trend for changing
substituents is consistent with the literature [34,35] and with calculated values of HOMO.
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During reverse polarization, reduction of oligomers occurs. For 2d, the first oxidation
scan’s sharp reduction peak suggests dimer formation.

DGk
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Figure 3. (a) The Cyclic Voltammetry (CV) of reduction of monomers versus ferrocene redox couple, concentration 1

mmol/dm? in DCM, 100 mV/s and background (gray line); (b) the CV of oxidation of monomers versus ferrocene redox

couple, concentration 1 mmol/dm? in DCM, 100 mV /s and background (gray line).

CV of three reduction scans is presented in Figure 3a. The similar reduction potential
of all compounds is caused by the connection of the changing donor unit by the thiophene 3
position and its long distance from the benzothiadiazole unit, where the LUMO is localized.
Differently calculated values of LUMO vary between compounds. That indicates that the
communication between the D-A parts is slightly overestimated by the density functional
theory (DFT), probably by the ideal planarity of the optimized structure. Additionally,
the absolute values of LUMO are significantly lower than Electron Affinities, which is
usual for the LUMO calculated by the DFT method [36]. Reduction potentials of first
quasi-reversible peaks are slightly less electronegative than pure dithienylbenzothiadiazole
(—1.74 V at onset) [34]. Monomer electrochemical results are summarized in Table 1. All
compounds show a narrow band gap (1.75-2.38 eV). The narrowest band gap (AEgel) has
2¢ (—1.75 eV), then 2a (2.01 eV), 2b (2.28 eV), and 2d (2.38 eV). These results correlate well
with the theoretical values (Egcal). The largest difference between the experimental and
theoretical results was observed for compound 2¢ (0.44 eV), and the smallest for compound
2d (0.09 eV).

Electropolymerization of investigated compounds (Figure 4) forms insoluble films on
platinum wire. Polymer CV was conducted under the same conditions as monomers. Three
scans of separately registered oxidation and reduction are presented in Figure 5. Polymers
p2b, p2¢, and p2d undergo rapid degradation while reducing 2a also degrades, but slower.
During oxidation, p2b and p2c remain stable, and p2a is stable after the first scan. Only p2d
clearly degraded under oxidation. A high drop in p2c oxidation onset in comparison with
2¢ (0.83 V) is characteristic for 3,4-ethylenedioxythiophene (EDOT)-ended monomers and
results in a very low bandgap (0.72 V) [37]. The oxidation potential of polymers p2d and
p2b is similar, but the potential of the latter is lower, like for the corresponding monomers.
However, p2a’s oxidation potential decreased after polymerization by only approximately
0.33 V. All results for polymers are shown in Table 3.
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Figure 4. Cyclic polymerization versus ferrocene redox couple, concentration 1 mmol/dm? in DCM,
100 mV/s.
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Figure 5. The CV of polymer films p2a—d on Pt wire versus ferrocene redox couple in DCM, 100 mV /s and background
(gray line).
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Table 3. Redox properties of polymers. E%;,se;—o0xidation peak onset; Ered | .i—reduction
peak onset; IP—ionization potential, estimated from the equation IP [eV] = lel5.1 + E®™nset
[V]; EA—electron affinity, estimated from the equation EA [eV] = lel5.1 + Ered oot [V
AEg'el —electrochemical bandgap, from the equation AEgel =IP-EA.

Compound  E®gpset (V) E™dgqee¢ (V) IP (eV) EA (eV) AEg®! (eV)
p2a 0.17 —147 527 3.63 1.64
p2b 0.01 -1.63 5.11 3.47 1.64
p2c —0.69 —-1.41 441 3.69 0.72
p2d 0.09 —1.28 5.19 3.82 1.37

Moreover, compound 2c was electropolymerized, and the obtained film, poly(4,7-
bis(5-(3,4-ethylenedioxythiophene)thiophen-2-yl)benzothiadiazole), served as a matrix for
an enzyme, horseradish peroxidase (HRP), for 173-estradiol detection in an electrochemical
biosensor [30]. The detection limit for 17(3-estradiol was set to 105 nM, the sensitivity of
the proposed biosensor was found to be 1.16 x 10~* A-uM~!.cm~2, and the lifetime of the
system can be determined for 5 weeks. Compound 2b also was used in an amperometric,
tyrosinase-based biosensor for epinephrine detection [38]. The sensitivity of the proposed
biosensor was found to be 3.08 x 1077 A-uM~!.cm 2. Poly(2c) and poly(2b) serve as elec-
tron mediators to improve the flow of electrons between the enzyme’s active center and the
electrode surface, and they act as a transducer during the transfer of electric charge [30,38].
Both of these sensors show a good sensitivity, which confirms the semiconductor nature of
the obtained compounds.

3. Materials and Methods
3.1. Computational Details

The theoretical studies were performed by applying the density functional theory
(DFT) method [39]. The calculations were performed utilizing the B3LYP functional [40—42]
and the standard cc-pVDZ atomic basis set [43]. The basis set was adopted based on
the former experience [44-46]. This basis provides orbital HOMO energies reasonably
reproducing directly calculated ionization energies (Table 1). Optical transition of all
compounds was studied by conducting Time-dependent density-functional theory (TD-
DFT) computations [47]. To simulate the UV-vis absorption, spectra and oscillator strength
were estimated at their ground-state optimized geometries for a maximum of 200 excited
states. All the calculations were carried out using the Gaussianl6 suite of codes [48].
The computational resources were provided by the Wroclaw Centre for Networking and
Supercomputing (http://wcss.pl). The molecular graphics were produced by applying the
GausView program (Gaussian, Inc. Wallingford, Connecticut, USA) [49].

3.2. Chemistry

n-Butyllithium (2.5 M in hexane), trimethyltin chloride (1.0 M in THF), 2-(tributylstan-
nyl)pyridine (85%), 3,4-ethylenedioxytiophene (97%), selenophene (97%), 2-thienylboronic
acid (95%), bis(triphenylphosphine)palladium (II) dichloride (98%), tetrakis(triphenylphos-
phine)palladium (0) (99%), and 4,7-bis(5-bromothiophen-2-yl)benzothiadiazole (99%) were
purchased from Sigma Aldrich. Anhydrous potassium carbonate (99%) was received from
Chempur. Anhydrous tetrahydrofuran, toluene, and methanol were purchased from POCH.
Tetrahydrofuran was dried over Na/benzophenone ketal before use. Other commercially
available substances and reagents were used without any prior purification. Preparative
column chromatography was performed on the glass column with Acros Organics silica gel
for chromatography, 0.035-0.075 mm, 60 A. "H-NMR and '3C-NMR spectra were recorded
in deuterated chloroform (CDClj3) on Briiker Avance III 400 MHz Instruments or on Bruker
Avance II 600 Instruments, respectively. Chemical shifts were locked to chloroform 6H
7.26 (s) and 5C 77.16 (t) signals. The molecular weights of the products were determined
using a Briiker micrOTOF-Q spectrometer, FWHM-17500, 20 Hz (Billerica, MA, USA). The
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percentage composition of the elements was measured on a vario EL cube Analyzer from
Elementar Americas (Ronkonkoma, New York, NY, USA).

3.2.1. Preparation of 4,7-bis(5-(selenophen-2-yl)thiophen-2-yl)benzothiadiazole (2a)

To a mixture of 4,7-bis(5-bromothiophen-2-yl)benzothiadiazole (1) (1.00 g, 2.18 mmol)
and 2-(tributylstannyl)selenophene (2.02 g, 4.80 mmol) in anhydrous THF (80 mL), bis(tri-
phenylphosphine)palladium(II) dichloride (Pd(PPh3),Cl,) (0.31 g, 0.436 mmol) was added
at room temperature under nitrogen atmosphere. The resulting mixture was refluxed with
stirring for 70 h. Then, the reaction mixture was concentrated under reduced pressure, di-
luted with water, and extracted with EtOAc. The extract was washed with brine, dried over
MgSOy, and concentrated. The residue was purified by silica gel column chromatography
(hexane-EtOAc) to give 2a (0.430 g, 35%) as a brown solid.

Mp: 114 °C

'H-NMR (400 MHz, CDCl3), 8 (ppm): & 8.11 (dd, J; = 4.0 Hz, ], = 5.2 Hz, 1H), 8.02 (d,
J=4.0Hz,1H),7.92 (dd, J; =5.2 Hz, |, = 5.6 Hz, 1H), 7.87-7.83 (m, 3H), 7.46-7.44 (m, 3H),
7.29-7.27 (m, 1H), 7.21-7.19 (m, 2H).

13C-NMR (151 MHz, CDCl3), § (ppm): § 152.22, 140.54, 139.21, 138.34, 132.37, 130.83,
128.92,128.09, 127.72, 127.35.

MS (m/z): [M]* 559.1972

Elemental analysis: calc. (%) C:47.32; H:2.17; N:5.02; 5:17.23; found: C:47.27; H:2.22;
N:5.00; S:17.18.

3.2.2. Preparation of 4,7-bis(5-(pyridin-2-yl)thiophen-2-yl)benzothiadiazole (2b)

To a mixture of 4,7-bis(5-bromothiophen-2-yl)benzothiadiazole (1) (1.00 g, 2.18 mmol)
and 2-(tributylstannyl)pyridine (1.77 g, 4.80 mmol) in anhydrous THF (80 mL), bis(tripheny-
Iphosphine)palladium(II) dichloride (Pd(PPh3),Cl,) (0.31 g, 0.436 mmol) was added at
room temperature under nitrogen atmosphere. The resulting mixture was refluxed with
stirring for 70 h. Then, the reaction mixture was concentrated under reduced pressure, di-
luted with water, and extracted with EtOAc. The extract was washed with brine, dried over
MgSOy, and concentrated. The residue was purified by silica gel column chromatography
(hexane-EtOAc) to give 2b (0.417 g, 42%) as a red solid.

Mp: 151-152 °C

'H-NMR (400 MHz, CDCl3), § (ppm): & 8.64 (d, ] = 4.8 Hz, 2H), 8.18 (t, ] = 3.4 Hz, 2H),
7.95 (t, ] =9.4 Hz, 2H), 7.82-7.78 (m, 6H), 7.15 (t, ] = 3.4 Hz, 2H).

13C-NMR (151 MHz, CDCl3), § (ppm): & 152.57, 152.32, 152.18, 152.04, 149.32, 141.36,
140.53, 137.05, 132.45, 130.89, 130.72, 128.91, 128.80, 127.33, 126.04, 125.78, 125.68, 125.34,
125.19, 125.08.

MS (m/z): [M]* 455.0434

Elemental analysis: calc. (%) C:63.41; H:3.10; N:12.32; 5:21.16; found: C:63.36; H:3.03;
N:12.26; S:21.11.

3.2.3. Preparation of 4,7-bis(5-(3,4-ethylenedioxythiophene)thiophen-2-yl)benzothiadiazole (2c)

To a mixture of 4,7-bis(5-bromothiophen-2-yl)benzothiadiazole (1) (1.00 g, 2.18 mmol)
and 2-(tributylstannyl)-3,4-ethylenedioxythiophene (2.07 g, 4.80 mmol) in anhydrous THF
(80 mL), bis(triphenylphosphine)palladium(Il) dichloride (Pd(PPhs),Cl,) (0.306 g, 0.436
mmol) was added at room temperature under nitrogen atmosphere. The resulting mixture
was refluxed with stirring for 48 h. Then, the reaction mixture was concentrated under
reduced pressure, diluted with water, and extracted with EtOAc. The extract was washed
with brine, dried over MgSOy, and concentrated. The residue was purified by silica gel
column chromatography (hexane-EtOAc) to give 2¢ (1.075 g, 85%) as a purple solid.

According to our previous work [30].

Mp: 143-145 °C

'H-NMR (400 MHz, CDClz), § (ppm): & 8.07 (d, ] = 4.0 Hz, 2H), 7.83 (s, 2H), 7.30
(d, ] = 4.0 Hz, 2H), 6.27 (s, 2H), 4.41-4.39 (m, 4H), 4.28-4.26 (m, 4H).
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I3C.NMR (151 MHz, CDCl3), & (ppm): 6 150.15, 146.93, 132.46, 132.24, 130.89, 130.52,
128.80, 128.48, 123.76, 114.70, 101.66, 90.06, 68.72.

MS (m/z): [M]* 580.9799

Elemental analysis: calc. (%) C:53.77; H:2.78; N:4.82; 5:27.61; found: C:53.75; H:2.75;
N:4.79; S5:27.58.

3.2.4. Preparation of 4,7-di([2,2"-bithiophen]-5-yl)benzothiadiazole (2d)

To a mixture of 4,7-bis(5-bromothiophen-2-yl)benzothiadiazole (1) (1.00 g, 2.18 mmol),
2-thienylboronic acid (0.64 g, 5.02 mmol) and potassium carbonate (0.90 g, 6.54 mmol) in
toluene (30 mL), MeOH (6 mL), and water (6 mL), tetrakis(triphenylphosphine)palladium(0)
(Pd(PPhs)4) (0.126 g, 0.109 mmol) was added at room temperature under nitrogen atmo-
sphere. The resulting mixture was refluxed with stirring for 72 h. Then, the reaction mixture
was concentrated under reduced pressure, diluted with water, and extracted with EtOAc.
The extract was washed with brine, dried over MgSOy, and concentrated. The residue was
purified by silica gel column chromatography (hexane-EtOAc) to give 2d (0.54 g, 53%) as a
red solid. According to [31].

Mp: 189-191 °C

'H-NMR (400 MHz, CDCl3), § (ppm): & 8.12 (dd, J; = 0.8 Hz, ], = 3.6 Hz 2H), 7.80
(t, ] =4.0 Hz, 4H), 7.70-7.68 (m, 2H), 7.53-7.51 (m, 2H), 7.15 (d, ] = 4.0 Hz, 2H).

I3C-NMR (151 MHz, CDCl), § (ppm): 5 152.12, 140.54, 132.46, 130.90, 130.76, 128.85,
128.14,127.72,127.35, 125.69, 125.17.

MS (m/z): [M]* 463.9600

Elemental analysis: calc. (%) C: 56.87; H: 2.60; N: 6.03; S: 34.50; found: C:56.82; H:2.56;
N:5.95; S:34.46.

3.3. Optical Measurements

UV-vis spectra were recorded on the Spectroquant Pharo 300 spectrophotometer
(Merck, Darmstadt, Germany). The luminescence spectra were recorded on the Hitachi F-
2500 fluorescence spectrophotometer (Hitachi High Technologies America, Inc., Pleasanton,
CA, USA).

3.4. Cyclic Voltammetry

For the cyclic voltammetry (CV) experiments, a three-electrode glass cell was used
with a platinum wire as a working electrode, a platinum wire spiral as a counter elec-
trode, and a silver wire reference using 0.1 M NBuyPF4 (TCI Europe) electrolyte solution
in dichloromethane (DCM) (Sigma-Aldrich (Poznan, Poland), Chromasolv, HPLC). The
potential sweeps were controlled by a MetrohmAutolab PGSTAT 100 N potentiostat. The
potential of the silver electrode was determined using a ferrocene redox couple (Fc/Fc*) for
each measurement set, under the same conditions as the measured samples. The solutions
were de-aerated with argon before, and argon kept flowing into the cell, above the solution
surface, during measurements. A concentration of 1 mmol/dm? of the monomers was
used for both the measurements and polymerization.

4. Conclusions

In summary, we have designed and synthesized a series of benzothiadiazole deriva-
tives as donor small molecules with good yield. In the case of the 2¢ derivative, we
obtained up to 85% yield, which gives an excellent result in the Stille reaction. The 2a and
2c compounds absorb the light in the UV-yellow range, and the 2b and 2d compounds in
the UV-green range. Moreover, these compounds emit in a very wide range (2a, b, and
d from green to red and 2c from green to near IR); therefore, these compounds are very
promising optoelectronics materials, e.g., in White OLED (WOLED). In addition, they show
a narrow energy gap (1.75-2.38 eV), especially as polymer films (0.72-1.64 eV), and low IP
values decreasing for polymers (5.24-5.86 eV for monomers and 4.41-5.27 eV for polymers),
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which proves their electron-donating nature and semiconductor properties. Furthermore,
compound 2c and 2b served as a conductive matrix for an enzyme in biosensors.
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