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Inflammation is associated with the release of soluble mediators that drive cellular

activation and migration of inflammatory leukocytes to the site of injury, together with

endothelial expression of adhesion molecules, and increased vascular permeability. It is

a stepwise tightly regulated process that has been evolved to cope with a wide range of

different inflammatory stimuli. However, under certain physiopathological conditions, the

inflammatory response overwhelms local regulatory mechanisms and leads to systemic

inflammation that, in turn, might affect metabolism in distant tissues and organs. In this

sense, as mitochondria are able to perceive signals of inflammation is one of the first

organelles to be affected by a dysregulation in the systemic inflammatory response,

it has been associated with the progression of the physiopathological mechanisms.

Mitochondria are also an important source of ROS (reactive oxygen species) within

most mammalian cells and are therefore highly involved in oxidative stress. ROS

production might contribute to mitochondrial damage in a range of pathologies and is

also important in a complex redox signaling network from the organelle to the rest of

the cell. Therefore, a role for ROS generated by mitochondria in regulating inflammatory

signaling was postulated and mitochondria have been implicated in multiple aspects

of the inflammatory response. An inflammatory condition that affects mitochondrial

function in different organs is the exposure to air particulate matter (PM). Both after

acute and chronic pollutants exposure, PM uptake by alveolar macrophages have

been described to induce local cell activation and recruitment, cytokine release, and

pulmonary inflammation. Afterwards, inflammatory mediators have been shown to be

able to reach the bloodstream and induce a systemic response that affects metabolism

in distant organs different from the lung. In this proinflammatory environment, impaired

mitochondrial function that leads to bioenergetic dysfunction and enhanced production

of oxidants have been shown to affect tissue homeostasis and organ function. In the

present review, we aim to discuss the latest insights into the cellular and molecular

mechanisms that link systemic inflammation and mitochondrial dysfunction in different

organs, taking the exposure to air pollutants as a case model.
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INTRODUCTION

Mitochondria have been historically identified as the main source
of cellular energy, by coupling the oxidation of fatty acids and
pyruvate with the production of adenosine triphosphate (ATP) by
the electron transport chain (1, 2). They are complex organelles
that play a wide range of functions, including regulation of Ca2+

homeostasis, apoptosis, and differentiation (3, 4). Mitochondria
are also an important source of ROS (reactive oxygen species)
within most mammalian cells and are therefore highly involved
in oxidative stress, where increased ROS production might
contribute to mitochondrial damage in a range of pathologies
(5, 6). They also play a significant role in a redox signaling system
where an interplay is displayed from the organelle to the rest
of the cell. Recently, new functions for the mitochondria were
proposed, particularly linking the alterations in the mechanisms
linked to ROS generation with the inflammatory responses
involved in different pathological conditions (7–9). In this
review, we will discuss the role of the mitochondria in the cellular
and molecular mechanisms that link systemic inflammation
and mitochondrial dysfunction in different organs, taking the
exposure to air pollutants as a case model.

Reactive Oxygen Species and Oxidative
Stress
The concept of ROS was originally presented to describe the
luminol chemiluminescence of activated human monocytes in
1982 (10). The concept was rapidly adopted by the scientific
community, despite the fact that the cited work did not include
the definition of the involved chemical species. Originally, ROS
comprised superoxide anion (O•−

2 ), hydrogen peroxide (H2O2)
and hydroxyl radical (HO•), which derive from the partial
reduction of molecular O2 (11, 12). When molecular O2 in its
basal state accepts an electron, O•−

2 will be the product obtained,
a reactive chemical species with only one unpaired electron.
Adding a second electron will lead to the formation of the
peroxide ion (O2−

2 ), from which H2O2 is its common form at
physiological pH (13, 14). Since H2O2 does not have unpaired
electrons is less reactive. However, this molecule is considered
a reactive O2 species because the O-O bond is relatively weak
(bond energy: 138 kJ/mol). Therefore, it can decompose leading
to HO• formation, whose reactivity is so high that it reacts very
close to its site of formation (14, 15).

In biological systems, the reaction O•−

2 with H2O2 in the
presence of transition metals such as Fe or Cu leads to the
formation of HO• in a reaction postulated by F. Haber and J.
Weiss and known as the Haber-Weiss reaction (16):

O•−

2 +H2O2
Fe2+
−→O2 +OH−

+ HO• (1)

This reaction proceeds in two consecutive steps: first, Fe3+ is
reduced by the action of O2,

Fe3+ +O•−

2 −→ Fe2+ + O2 (2)

while in the second step H2O2 reacts with Fe2+ to produce
hydroxyl radical, also known as the Fenton reaction.

Fe2+ +H2O2 −→ Fe3+ +OH−
+ HO• (3)

The Fenton and Haber-Weiss reactions are responsible for the
generation of HO• in biological systems and therefore are
involved in the pathophysiological mechanisms of diseases where
oxidative stress plays a significant role (17).

The concept of ROS was later extended and today it is
accepted that these chemical species comprises O•−

2 , H2O2,
and HO•, some intermediates of the free radical-mediated lipid
peroxidation, such as peroxyl radical(ROO•) and singlet oxygen
(1O2) and also organic peroxides (ROOH) and peroxynitrite
(ONOO−), the latter product of the reaction between and O•−

2
and nitric oxide (NO) (18, 19).

ROS are generated during normal intracellular metabolism
in mitochondria and peroxisomes, as well as from a variety of
cytosolic enzyme systems.

A complex antioxidant defense system comprising
antioxidant enzymes and low molecular mass reductants
counteracts and regulates overall ROS at physiological levels
(20). The antioxidant enzymes act as a coordinated system
and includes superoxide dismutase, catalase, glutathione
peroxidase and peroxiredoxins; each one of them comprised by
several isoforms with specific substrates and cellular locations
(21, 22). Low molecular weight antioxidants are represented by
glutathione, tocopherols, ascorbic acid, and carotenoids (23).

When an increased rate of ROS production occurs and the
antioxidant system is overwhelmed, a disruption in the redox
balance is observed and an oxidative stress situation can be
characterized. At first, the adverse effects produced by increased
ROS levels were believed to result in oxidative damage to
proteins, lipids, and DNA. However, in addition to these effects,
the increase over physiological ROS levels may also trigger
diverse stress signals that can activate specific redox-sensitive
signaling pathways. Once activated, the signaling pathways may
have either deleterious effects or potentially adaptive functions
(24, 25).

The definition of oxidative stress was first introduced by Sies
(26) and recently updated to include the role of redox signaling. It
is defined as an imbalance between oxidants and antioxidants in
favor of the oxidants, leading to a disruption of redox signaling
and control and/or molecular damage (27, 28). Based in this
new description and given the enormous variety and range of
ROS and related oxidant and antioxidant compounds, efforts
were made to introduce a different scale that distinguishes basal
(physiological) oxidative stress from a situation where cytotoxic
responses are observed (29).

Figure 1 shows how intensity of oxidative stress can be
classified into different grades that are related to specific
responses and cellular outcomes. The different intensity response
to oxidative stress allows biological systems to adequately react to
these challenges in a dose-dependent manner (28).
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FIGURE 1 | Different types of oxidative stress. Oxidative stress can be

classified into different grades that are related to specific responses and

cellular outcomes.

Mitochondria and NADPH Oxidases as
Relevant Sources of ROS
In every eukaryotic cell ROS are generated under normal
physiological conditions through enzymatic auto-oxidation
reactions, which can involve both endogenous and xenobiotic
compounds. The production sources can be localized at various
specific subcellular systems such as plasma membrane, cytosol,
peroxisomes, or organelle’s membranes. Here we will be focused
on NADPH oxidases (NOX) (30) and the mitochondrial electron
transport chain (31) as they can be considered the predominant
production sources in several pathophysiological situations.

Mitochondria are the main responsible for the cellular ATP
synthesis by oxidative phosphorylation, as 36 ATP molecules
are generated for each glucose molecule that is oxidized, as
opposed to the two ATP molecules generated by glycolysis in
the cytoplasm. It is based on transfer of electrons through
the mitochondrial respiratory chain comprised of a series of
integral proteins located on the inner membrane physically
and functionally grouped into complexes (complex I, NADH
dehydrogenase; complex II, succinate dehydrogenase; ubiquinol-
cytochrome c oxidoreductase complex III; and complex IV,
cytochrome oxidase), allowing a sequential arrangement that
facilitates the transfer of electrons between them, determining a
high speed and efficiency of the system. The driving force that
governs the electron transfer along the complexes is the standard
reduction potential of each complex, which depends on the
concentrations of the oxidized and reduced forms of each one at a
certain pH and ends at the O2 as the last electron acceptor, which
is reduced to H2O. This process leads to protons (H+) pump
from the matrix to the intermembrane space generating the
proton motive force across the inner membrane. It is now known
that not only ATP synthesis, but ROS production as well is a
biological mitochondrial function, due to their potential key role
in cell signaling to support mitochondrial integrity and adaptive
responses that control homeostasis and promote health span (32–
35). Electrons can leak to O2 creating O

•−

2 in different respiratory
chain sites as complex I and III, the major site of cellular O2

consumption (36–38). In complex I, O•−

2 is produced through
the electron transfer to O2 during the NADH-dehydrogenase
flavin mononucleotide semiquinone autoxidation, while in
complex III the electron is transferred by the ubiquinone. Under
normal conditions complex I contributes to one third and
complex III to two thirds of mitochondrial O•−

2 production.
Complex II has also been suggested as a mitochondrial
O•−

2 production source through the reverse electron transfer,
that can be regulated by ATP-sensitive potassium channels
and mitochondrial ATP level (38, 39). Mitochondrial O•−

2
may also be produced by α-ketoglutarate dehydrogenase,
pyruvate dehydrogenase, glycerol-3-phosphate dehydrogenase,
fatty acid β-oxidation. Under pathophysiological conditions,
changes in bioenergetic states may result in mitochondrial
substrate availability alterations, affecting the mitochondrial
ROS production source (38, 40). The highly reactive O•−

2 is
considered as the stoichiometric precursor of mitochondrial
H2O2 production as O•−

2 produce mainly on the matrix side is
rapidly dismutated to H2O2 by mitochondrial manganese SOD
(MnSOD). H2O2 is a neutral molecule that can easily diffuse
through mitochondrial membranes regardless of the organelle
energization. Given the variety of mitochondrial ROS and the
bioenergetic conditions requirements, mitochondria are part of
a dynamic networks within the cell that involves mitochondrial
fission and fusion processes and subcellular trafficking in order
to control subcellular location of ATP or ROS release to support
specific cell functions (12, 41–43).

The NOX represent a family of enzymes whose function is
to mediate regulated cellular production of ROS by transferring
electrons from NADPH, to reduce O2 to O•−

2 . NOX enzymes
participate in important biological and pathophysiological
processes. Although it is considered the defense against
pathogens as the major NOX function, they also participate
in inflammation response, cell signaling and regulation of cell
growth, differentiation, and death (43). During inflammation
NOX complex gets assembled and activated within the
phagosomes to generate intraphagosomal ROS in order to kill
ingested microorganismos by oxidative mechanisms (43–46).
Up to now, seven NOX isoforms have been described: NOX1,
NOX2, NOX3, NOX4, NOX5, and two higher molecular weight
counterparts called dual oxidases, DUOX 1 and DUOX 2 (47,
48). Despite the fact that all isoforms structure shares the
main functional domains, each NOX presents a difference in
its regulation, activation and subcellular location. Regarding
subcellular localization, different NOX catalytic and regulatory
subunits have been detected in diverse cellular membranes
and intracellular structures. Isoform NOX1, NOX2, NOX4, and
NOX5 have been frequently informed to be found at the plasma
membrane (45, 49–51). According to the reports, for NOX4,
a constitutively active isoform enzyme, has been detected in
the endoplasmic reticulum (52) as well as uniquely localizes to
the mitochondria in various endothelial cell types (49, 53–55).
Moreover, NOX isoforms also release different oxidant species.
For example, NOX1 and NOX2 generate O•−

2 (43, 56), while
NOX4 is responsible for the basal production of H2O2 (57), and
NOX5 produces H2O2 as well but in a Ca2+-dependent fashion
(58). The increased NOX activity that leads to an augmented
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production of oxidizing species such as O•−

2 and consequently
H2O2, has been largely associated with various pathological
situations (59).

Regarding signaling functions, when ROS are released from
NOX, in a regulated and deliberate fashion, they are able
to activate tyrosine phosphatase. This enzyme is involved in
numerous transcription factors phosphorylation required to
modulate different cell proliferation, differentiation, or death
pathways (39). All members of the NOX family are multi-
transmembrane proteins containing a flavocytochrome b558
(gp91 phox) that is associated with another transmembrane
protein, p22phox. The gp91phox subunit contains the binding
sites for NADPH and FAD and 2 heme groups necessary
for transmembrane electrons transport from NADPH to O2,
generating O•−

2 . Activation of the enzyme depends on the
phosphorylation of 3 cytosolic regulatory proteins (p47phox,
p67phox, p40phox) and together with GTPase and Rac1 they
assemble to the transmembrane domains forming the functional
NOX. In this sense, the enzyme goes from being at rest to being
quickly activated against different cellular stimuli (47).

Redox Signaling and Crosstalk Between
ROS Sources
Under normal physiological conditions, production of ROS
is not only down-regulated by several mechanisms, but also
highly restricted to specific subcellular sites (12, 39, 60).
Compartmentalization of ROS production within cells is
important not only in terms of target specificity and selectivity
but also in elicit redox signaling or oxidative damage. However,
when cells experience pathophysiological situations, an excessive
ROS production that overwhelms the antioxidant defense
systems, results in cellular dysfunction due to oxidative stress.
The cellular redox status has been assessed through different
approaches like measurements of GSH status, lipid, proteins and
DNA oxidation showing these outcomes association with the
development of several diseases such as atherosclerosis, heart
failure, hypertension, ischemia/reperfusion injury, cancer, aging,
and neurodegeneration (39, 43, 61).

An interplay between specific ROS sources has been
recognized, where the consequences of the redox crosstalk,
mainly between mitochondria and NOX, is of increased interest
in the last years. In this scenario, various ROS sources
interaction stimulates each other in a positive feedback fashion,
resulting in a complex oxidative stress and redox signaling
network (39, 62, 63). It is well-documented that all main
ROS sources are, at the same time, regulated by oxidation.
ROS production sources enhancement was first described
for mitochondria-to-mitochondria communication, where ROS
released from one organelle triggers ROS production by another
organelle. Oxidative damage of the mitochondrial respiratory
chain constituents leads to mild uncoupling resulting in an
augmented ROS production (62). Also, inactivation of MnSOD
due to oxidation or nitration, increase cytosolic O•−

2 levels (64).
Therefore, mitochondria are efficient ROS amplifiers that may
further feed this vicious cycle. Once ROS within mitochondria
reach certain stationary state levels, the organelle is able to display

specific mechanisms in order to interact with other mitochondria
or ROS sources. Two different mechanisms were proposed to
mediate the mitochondrial ROS production enhancement (40).
In the first one, an increase of the mitochondrial respiratory
chain- ROS release activates the mitochondrial permeability
transition pore (mPTP) causing depolarization of the inner and
outer membranes, which in turn yields a burst of ROS released to
the cytosol (31). A secondmechanism involves the direct opening
of an inner mitochondrial membrane anion channel allowing
ROS to enter the intermembrane space and then released into the
cytosol via the voltage-dependent anion channel (40).

The mitochondrial ROS-induced ROS release concept was
then widened to communication between different ROS sources
like the described mitochondria to NOX crosstalk (63). In
recent years, those mechanisms have been observed in different
experimental models, namely aging, in response to nitroglycerin
therapy, MnSOD deficiency, by angiotensin II, hypoxia or
sepsis among others (30, 63, 65, 66). The link can either
be triggered by NOX-released ROS to mitochondria or vice
versa from mitochondrial site to NOX level, depending on the
pathogenesis of the above-mentioned diseases. In both pathways,
the opening of the mitochondrial ATP-sensitive potassium
channels (mitoKATP) seems to play an important role and has
been tested through the use of inhibitors or channel openers (63).
It has been shownmitoKATP becomes activated by NOX-released
ROS (67). Opening of the mitoKATP stimulates the potassium
influx that shifts the mitochondrial matrix to an alkalization,
initiating swelling, mild mitochondrial uncoupling, and ROS
production. The opening of mitoKATP, triggers changes in the
mitochondrial membrane potential, opening the mitochondrial
permeability transition pore (mPTP) which leads to a subsequent
mitochondrial ROS release to the cytosol resulting in additional
NOX activation in a vicious circle (68). In a mechanism similar
to the mitochondria to mitochondria interplay, once mPTP
and mitoKATP channels are opened, mitochondrial ROS release
into the cytoplasm activates protein kinase C (PKC) leading to
NOX ensemble. This interaction was confirmed by inhibition of
NOX enzymes, which prevented, for example, the mitochondrial
dysfunction induced by angiotensin II (39, 63).

Given the complex cellular redox network depicted in
Figure 2, better knowledge about the main ROS sources crosstalk
potential mechanisms, along with understanding of the switch
from redox signaling to oxidative damage will help in the
searching for new therapeutic approaches and the development
of more target specific antioxidants.

Inflammation and the Role of Mitochondria
Inflammation is a physiological response of the host against
infection or tissue injury that occurs in order to eliminate
the threat and restore tissue homeostasis, thus resolving the
injury/infection and preventing damage progression (69–71).
When the innate immune system detects tissue damage or senses
a “danger” signal, activates the first line of defense and repair
programs which initiate the inflammatory response triggering
various mechanisms (72). The inflammation process is induced
by a wide range of inflammatory stimuli, such usinfection,
trauma, autoimmune disorders, ischemia, chemical, toxin
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FIGURE 2 | Redox signaling could be enhanced by the interplay between ROS production main sources. Increased production of NADPH oxidase (NOX)-derived

ROS activate the ATP-sensitive potassium channel (mitoKATP channel), causing a matrix alkalinization through a K+ influx, leading to mild uncoupling and an increase

mitochondrial respiratory chain- ROS production that activates the mitochondrial permeability transition pore (mPTP). The escape of mitochondrial ROS into the

cytosol due to the mPTP opening activates protein kinase C (PKC), which phosphorylates the NOX cytosolic unit triggering NOX ensemble and activation.

exposure, among others, and is recognized by a combination
of three classical clinical signs: hyperthermia, vasodilation and
edema. Despite the cause of damage, harmful stimuli initially
activate an acute inflammatory response where tissue-resident
macrophages play a key role, not only detecting the infection
or injury but also influencing normal tissue homeostasis. This
inflammatory response is initially localized at the site of
injury and includes distinct cell types, such as neutrophils and
macrophages, and leads to the production and release of a variety
of soluble inflammatory mediators that will act on tissues and
organs affecting their functionality and metabolic state (69, 72–
74). These mediators include cytokines and chemokines, that
serve to amplify the local response, driving cellular activation
and migration of additional inflammatory cells to the damage
site. Cytokines can also modulate the function of proximate cells,
including secretion of more pro-inflammatory cytokines with
synergistic effects (75, 76).

Also, these mediators change vascular permeability and
endothelial function, increasing endothelial expression of
members of the selectin family of adhesion molecules (L-selectin,
E-selectin), that allow the rolling along the vascular endothelium,
and the activation of integrins that bind to endothelial vascular
adhesion molecules (ICAM-1 and VCAM-1) facilitating the
immobilization and transmigration of leukocytes through the
activated endothelium at the site of injury (69, 72, 73).

Taking into account the onset and progression of
inflammation, it might be considered as either an acute or
a chronic process. Physiological inflammation is frequently self-
limited, showing a transient abnormal condition characterized
by the production of pro-inflammatory cytokines that is followed
closely and in a specific temporal manner by the production of
anti-inflammatory cytokines with counter-regulating effects that
attenuates or resolve the inflammatory process, thus contributing
to the restoration of the homeostasis to the tissue and the

eradication of the source of damage (75, 76). This counter-part
inflammatory response is mediated mainly by tissue-resident
and recruited macrophages (activated monocytes). However,
when the local inflammatory stimuli persists or the mechanisms
of repair fails, chronic inflammation ensues due to sustained
pro-inflammatory mechanisms that may lead to a pathological
state, usually seen in chronic infections and autoimmune diseases
(69, 74).

Moreover, it can also be the case that the inflammatory
response overwhelms local regulatory mechanisms and leads to
systemic inflammation that, in turn, might affect metabolism
in distant tissues and organs and eventually leads to the
pathogenesis of inflammatory syndromes.

Chronic systemic inflammation occurs in a variety of severe
diseases including cancer, diabetes, cardiovascular diseases and
aging-related neurological diseases, and are associated with
an imbalance of tissue homeostasis instead of the typical
initiators of inflammation (infection, injury) (77, 78). When the
inflammatory response is dysregulated and cannot be attenuated
organ dysfunction could occur (70, 74).

The inflammatory response is typically initiated by pattern
recognition receptors, as Toll-like receptors (TLRs) and NOD-
like receptors (NLRs), that are expressed on the surface
of immune cells like neutrophils and macrophages. Upon
recognition of pathogen-associated molecular pattern molecules
(PAMPs) and damage-associated molecular pattern molecules
(DAMPs) (such as lipopolysaccharide (LPS) of Gram-negative
bacteria and nucleic acids from viruses, among others), these
receptors activate inflammatory signaling pathways (45). The
intracellular cascades triggered by TLRs activate downstream
kinases like IkB and MAP kinases that regulate different
transcription factors such as NF-kB and AP-1, that ultimately
induce the expression of pro-inflammatory genes, such as
cytokines (IL-1b, IL-6, TNF-a) and chemokines, that serve to
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recruit additional immune cells, and proteins like iNOS that
generate nitric oxide (NO). There are also other types of receptors
specialized in detecting intracellular PAMPs and DAMPs, as
mentioned above, the NLRs. These receptors are involved
in the formation of the multi-protein signaling complexes
known as inflammasomes (79). Activation of NLRP3, the most
fully characterized inflammasome due to its association with
many inflammatory diseases, drives caspase-1 activation and
maturation of pro-IL-1b, thus acting as sensors initiating innate
inflammatory responses that are triggered by a variety of danger
signals including metabolic stress (80–82). High levels of reactive
oxygen species (ROS) showed to activate NLRP3 (71).

When the inflammatory response overwhelms local regulatory
mechanisms leading to systemic inflammation, metabolism in
distant tissues and organs may be affected. Interestingly, these
structures might also show different degrees of sensitivity. In this
sense, as mitochondria can perceive signals of inflammation is
one of the first organelles to be affected by a dysregulation in
the systemic inflammatory response and has been associated with
the progression of physiopathological mechanisms. Therefore,
there is a growing attention in the biology and medical
research field related to mitochondrial modulation during
inflammatory syndromes.

Besides the mitochondria major functions of synthesized
ATP through the process of oxidative phosphorylation, and
the other key cellular events through the generation of
ROS, as was described above, the organelle also execute
other important roles in regulating cellular apoptosis and
modulation of calciummetabolism (83) that in turn regulates the
metabolic state of the cell through different signaling pathways.
Appropriate mitochondrial function is essential to supply energy
requirements of immune cells showing an important role in
the immunity regulation (84). In this sense, mitochondria
bioenergetics is differentially regulated in activated macrophages
(M1) and alternatively (M2) macrophages. M1 macrophages are
important for clearance of pathogen infections, while M2 are
involved in the termination inflammatory phase showing an
anti-inflammatory phenotype (82).

There are several mechanisms by which mitochondria may
lead to tissue dysfunction: (a) reduction in cellular high energy
[understood as adenosine triphosphate (ATP)] levels due to
impairment of mitochondrial metabolic pathways, (b) generation
of active species, that can damage cell organelles directly
(through the reaction with cellular components) or indirectly
(by the activation of signaling pathways), (c) involvement in
the intrinsic pathway of cellular apoptosis, and (d) impaired
Ca2+ metabolism, that subsequently triggers an overproduction
of reactive oxygen and nitrogen species (85).

The first sign of mitochondrial function lost upon
inflammation is an altered oxygen consumption by the
electron transport chain, which directly affects the oxidative
phosphorylation leading to a decreased capacity to synthesize
ATP. Moreover, increased production of ROS by damaged
mitochondria could directly activate NLPR3 inflammasome
(86) that may work together with NFkB signaling, perpetuating
the inflammatory response and consequently conducting to an
overstimulation of the inflammatory response (82). Therefore,

inflammation induced by oxidative stress acts as a feedback
system sustaining a harmful condition that could result in tissue
damage and trigger chronic inflammation.

Mitochondria has been also linked to inflammation through
another mechanism where mitochondrial DNA (mtDNA)
may trigger innate immunity. Various mitochondrial stressors
can lead to mtDNA leakage through the mitochondrial
outer membrane permeabilization (MOMP) (87). Stressed
mitochondria could become a relevant oxidized mtDNA
release source (88). Moreover, incomplete degradation of
damage mitochondria also causes subsequent cytoplasm
accumulation (89). Once mtDNA reach the cytosol is a suitable
ligand for the DNA sensing protein cGAS that catalyzes the
production of the secondary messenger cGAMP (90–93).
Afterwards, cGAMP binds the adaptor molecule STING an
endoplasmic reticulum (ER)-resident protein that triggers innate
immunity via activation of TBK1 kinase, responsible of IRF3
phosphorylation, the transcription factor initiates type I IFN
response (89, 90, 94). The intrinsic function of the cGAS-STING
pathway elicits inflammatory diseases regulation. Therefore, is
a relevant pathway from the clinical point of view for future
translational approach.

Finally, dysregulation of the systemic inflammatory response
is associated with the induction of organ dysfunction and
multiple organ failure (86, 95). The mechanisms underlying
this deleterious effect could be a consequence of mitochondrial
impaired bioenergetic processes impacting complex cellular
and physiological functions. Unraveling the mechanisms that
interconnect mitochondrial dysfunction, metabolism and
systemic inflammation would significantly contribute to the
better understanding of many chronic inflammatory diseases.

MITOCHONDRIAL FUNCTION IN
INFLAMMATORY AND METABOLIC
DISEASES ASSOCIATED WITH AIR
POLLUTION EXPOSURE

Airborne PM Exposure Health Outcomes
According to the World Health Organization (WHO), 9 out of
10 people worldwide breathe low-quality air (96). Consequently,
more than 9 million premature deaths occur every year due to
the joint effects of household and ambient air pollution exposure
(97). Recently, it has been estimated that breathing polluted
air in urban environments reduces life expectancy by almost
3 years globally (98). In addition, model projections based on
business-as-usual emission scenarios suggest that outdoor air
pollution contribution to premature mortality could be doubled
by 2050 (99). Human can be involuntary exposed to pollutants
mainly through tissue or organs that directly interact with PM
present in air pollution, as for example the respiratory tract by
inhalation, penetration through the skin or eyes and ingestion via
the gastrointestinal tract (100). Due to the adverse health effects
associated with air pollution, increased incidence of respiratory
diseases, such as pneumonia, chronic obstructive pulmonary
disease (COPD), and lung cancer, has been observed (101).
However, PM exposure on primary organs produce inflammation

Frontiers in Endocrinology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 568305

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Magnani et al. Mitochondria and Inflammatory Sindromes

leading to systemic complications resulting in distant organs
defects, such as heart (102, 103). Cardiovascular diseases largely
account for the majority of the increase in morbidity and
mortality rates (104). In fact, according to the Global Burden of
Disease study, air pollution is responsible for one-fourth of the
total death count from ischemic heart disease and stroke (105).

Air Pollution Composition and
Classification
Air pollution is comprised of a mixture of gases (such as carbon
monoxide, sulfur dioxide, nitrogen oxides, and ozone) and
airborne PM (106). Besides the complex nature of air pollution
and the coexistence of many compounds that may together
contribute to the reported negative health impact, numerous
epidemiological studies indicate that PM is the main responsible
for the health outcomes (107). PM is a heterogeneous mixture
of solid and liquid particles suspended in air that are broadly
categorized by their size: PM with an aerodynamic diameter
<10µm (PM10) can lodge in the upper respiratory airways and
exert a local toxic effect. However, the most harmful particles are
those with a diameter <2.5µm (PM2.5), as they can enter deeper
into the lung and reach the alveoli (108) or penetrate the skin as
hair follicles extend provide a route of penetration for particles
from the dermis to the open surface of the skin (109, 110).
While coarse particles (PM10) usually arise from natural sources,
fossil fuel combustion from transport, industry, and power
generation mostly account for air pollution fine particles (PM2.5)
burden in urban environments (106). In addition, it has been
suggested that nano-scale particles are even able to break through
different epithelia and translocate into the bloodstream (111),
being potentially able to induce direct damage to peripheral cells
and tissues.

Smaller particles present a higher surface to volume ratio
providing a larger area were different compounds could be
adsorbed (112). Associations have been stablished between air
pollution specific components and the toxic mechanisms elicited.
Transition metals within the fine PM fraction which typically
include iron (Fe), vanadium (V), nickel (Ni), chromium (Cr),
copper (Cu),cadmium (Cd) and zinc (Zn), on the basis of their
ability to generate ROS in biological tissues and produce an
oxidative stress condition (113). Most of these metals have the
ability of participate in Fenton-like reactions and contribute to
an increase ROS release, initiating oxidative damage mechanisms
(113, 114). Regarding organic compounds, polycyclic aromatic
hydrocarbons (PAHs) can also be found coating particles. The
cytotoxic mechanisms associated to PAHs involve also involve
O2-derived free radicals mainly from mitochondria (115).

PM Detrimental Effects on the Ocular
Surface
In those organs constantly exposed to the environment, the
epithelia act as the first physical barrier against pollutants
becoming more vulnerable (100). For example, it has been
shown that PM exacerbates irritation, burning, foreign body
sensation, redness, itching in the eyes of people living in urban
areas (116–121). Detrimental PM effects on ocular surface are

associated with oxidative stress and proinflammatory pathways
(122–126). In this sense, both corneal and conjunctival epithelial
cells exposed to different PM surrogates in vitro increase the
inflammatory mediators’ production (127–130). In turn, the
cytokines release, such as IL-6, IL-8, TNF-α, IL-1β, and MCP-
1, lead to morphological changes due to cellular hyperplasia
affecting the refractive power of the cornea and the vision
process (131, 132). Moreover, the eyes are highly vascularized,
accordingly an important PM-induced mediators’ source. It has
been shown that conjunctival epithelial cells are able to uptake
diesel exhaust particles (DEPs) where the polycyclic aromatic
hydrocarbons (PAHs) compounds present in the particles, trigger
the increased ROS released from mitochondria in early stages,
and from NOX, in particular NOX4 later. In agreement with
studies presenting a link between IL-6 and NOX expression
and vice versa (133–136), DEP-induce NOX4 activation along
with a proinflammatory response mediated by IL-6. In addition,
ROS production induce a redox imbalance sufficient to initiate
nuclear factor erythroid 2-related factor 2 (Nrf2) signaling that
translocates to the nucleus to enhance the cellular antioxidant
capacity (123). Interestingly, whole-body exposure to urban air
models in mice showed similar results with macromolecular
oxidative damage due to redox imbalance along with an
inflammatory response modulated by the increase in IL-10 levels
after 1 week of exposure, which early regulates the release of
TNF-α and IL-6 (124).

Toxic Mechanisms of PM Exposure on the
Skin
Skin is one of the main organs exposed to outdoor pollutants
because it provides a major interface between the body and the
environment. Similar to the ocular surface offers a biological
barrier against air PM where the stratum corneum as is the
upper layer represent the main PM-target (137). Inflammation
in the skin and an altered redox homeostasis has been
mentioned as relevant PM-induced mechanisms (110, 138–140)
associated with the aggravation of skin diseases, including atopic
dermatitis, acne, and psoriasis (141–143). It was reported that in
keratinocytes altered ROS release may trigger mitogen-activated
protein kinase (MAPK) signaling pathways resulting in the
activation of redox-sensitive transcription factors NF-κB and
AP-1. Once in the nucleus, those transcription factor promote
the transcription of a variety of proinflammatory cytokines,
including TNF-α, IL-1a, IL-6, and IL-8. IL-1α and IL-1β in
keratinocytes (144). In addition, PM-induce ROS production
through the NOX4 activation stimulates NF-κB translocation
and increased transcript levels of cytokines (145). Assessment
of a 3D skin model exposed to PM showed increased levels
of oxidative damage markers resulting in activation of NF-κB,
increased levels of proinflammatory marker COX-2, release of
IL-1α, and DNA damage (146). Comparable to the mechanisms
observed in eye and lung tissue exposed to airborne pollutants,
skin can absorb particles induced tissue damage, suggesting a
cascade of effects that are driven by inflammatory processes
and oxidative damage, leading to systemic inflammation as a
consequence (147) and also endothelial dysfunction (148, 149).
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The Gastrointestinal Tract as a PM Target
The oral tracts along as well as the respiratory system and the skin
are the common direct routes of exposure to outdoor pollutants.
Particles can access the gut as a result of contaminated food
ingestion or indirectly by inhalation (150, 151). Therefore, in
recent years research aiming to evaluate the gastrointestinal (GI)
tract toxic mechanisms after pollutants exposure have increased.
Those studies are based on the premise that GI epithelium
behave similar than other organs epithelial cells, like skin or
lung tissue, in response to PM exposure (100). Thus, PM also
triggers increased ROS generation, which initiate the activation
of redox sensitive transcription factor NF-κB (152). In the GI
cells NF-κB regulates transcription of myosin light chain kinase
(MLCK) (153), affecting perijunctional actin, occludin, and ZO1
at tight junctions, resulting in alteration of gut permeability
(152, 154). It has also been observed increased plasma levels of
proinflammatory TNF-a and MCP-1 due to PM exposure (153).
Take all those results into consideration presence of PM in the
GI tract increased oxidative stress and inflammation, leading to
structural tissue damage which results in mediators leaking. PM-
initiated systemic inflammation may worsen several GI tracts
issues, including Crohn’s disease (155–157), inflammatory bowel
disease (IBD) (158), appendicitis (159), and colorectal cancer
(160, 161).

PM Toxicity Within the Brain
Epidemiological studies in humans have shown that high
levels of PM are associated with cognitive function changes
in children, adults, and the elderly (162). Alterations at the
olfactory level, hearing deficits, symptoms of depression and
other neuropsychological effects have also been reported (163).
The main mechanisms of neurotoxicity produced by PM seem to
be related to oxidative stress and neuroinflammation, which are
also related to the pathophysiology of various neurodegenerative
diseases (164). The way in which the PM reaches the brain and
how the particles cause the damage has not been clarified yet.
PM that circulates through the nasal compartment can cross
the epithelial barrier into the bloodstream or translocate along
the axon of the olfactory nerve and reach the central nervous
system. Therefore, the adverse effects produced by the inhalation
of particles could be the result of a direct effect of the particles
via a route from the nasal mucosa to the axon of the olfactory
nerve and from there to the olfactory bulb, or by an indirect
route through of the systemic inflammatory reaction initiated by
increased levels of proinflammatory mediators released into the
bloodstream, and oxidative stress (165). Hence, alike GI tract,
brain toxicity might begin through direct as well as indirect
PM-initiated mechanism.

Cardiorespiratory Diseases Associated to
PM Exposure
Following PM inhalation, the activation of oxidative stress and
inflammatory pathways largely account for PM biological effects,
both locally as well as systemically and in secondary organs, such
as the heart (103, 166). In the lung, increased levels of pro-
inflammatory cytokines, including Interleukin (IL)−1β, Tumor
Necrosis Factor (TNF) -α, IL-6, and Monocyte Chemoattractant

Protein (MCP) −1, are a frequent finding after PM exposure
(167). Therefore, lung inflammatory cell recruitment is usually
observed following PM exposure, both in humans (168) and in
different animal models (169, 170). Increased plasma levels of
these inflammatory mediators have been also associated with
episodic elevations in PM in large-scale cohort studies (171),
indicating that PM exposure triggers an inflammatory response
that is not only confined to the lung, but is also systemic. As a
result, metabolism is impaired in distant organs, such as in the
heart (172).

Alveolar macrophages play a central role in maintaining lung
homeostasis through the removal of exogenous materials and
microorganisms from the respiratory surface by phagocytosis,
including PM (173, 174). Evolution has refined alveolar
macrophages ability for the recognition and clearance of
pathogens. However, non-biological anthropogenic PM escapes
from this machinery and overwhelms cell capacity for foreign
material removal, leading to uncontrolled cell activation and
ROS production, as well as an exaggerated inflammatory
response and pro-inflammatory cytokine release (175, 176).
Activation of the NLRP3 inflammasome following PM uptake
seems to represent a central step in the cellular inflammatory
response to PM in alveolar macrophages (177). Interestingly,
PM has been also shown to accumulate inside mitochondria
(174), suggesting a specific direct effect of PM over this organelle.
Accordingly, PM exposure induces altered mitochondrial
ultrastructure in alveolar macrophages, including swelling,
cristae disorder, and organelle fragmentation at high doses,
as well as modulation of mitochondrial fission/fusion gene
expression (178). Moreover, quinones and polycyclic aromatic
hydrocarbons (PAHs) in PM seem to drive mitochondrial
depolarization and ROS production in vitro (179). We and
others have recently showed that macrophage depletion
by intranasal or intratracheal administration of clodronate
liposomes reduce pulmonary pro-inflammatory cytokine release
following PM exposure, this preventing enhanced thrombosis
(180) as well as aggravated myocardial remodeling following
experimental myocardial infarction in PM-exposed mice (181).
These findings highlight the role of alveolar macrophages in the
oxidative and inflammatory response following PM exposure,
which negatively impact cardiorespiratory disease onset and
progression. Moreover, the role of PM-induced mitochondrial
ROS in the release of IL-6 and other pro-inflammatory cytokines
in alveolar macrophages was confirmed by treatment with
Metformin a complex I inhibitor which reduce mitochondrial
complex III ROS production (182). Therefore, diminished
mitochondrial ROS release might reduce the risk of PM-induced
thrombosis (183).

We and others have also studied the role of the exposure
to air pollution PM over lung and heart redox metabolism
(184, 185), in which altered mitochondrial respiration together
with enhanced NOX2 activity plays a central role as shown in
Figure 3 (186, 187). Interestingly, NOX2 seems to account for
increased ROS production in the lung following PM exposure,
while mitochondrial mild uncoupling, characterized as increased
oxygen consumption rate and decreased inner membrane
potential, together with decreased ATP production rate and lower
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FIGURE 3 | Following PM inhalation, direct and indirect mechanisms induce alveolar macrophage activation and pro-inflammatory cytokine release. In parallel, lung

NOX2 activation leads to increased ROS production, while mitochondrial mild uncoupling might ameliorate excessive ROS release. Together with local and systemic

inflammation, and potential direct effects of PM/PM components, this scenario has a negative impact over distant organs, such as the heart. As a consequence,

cardiomyocyte mitochondrial function, energy metabolism, and calcium handling are impaired, leading to deficient contractile function after PM exposure.

efficiency of the oxidative phosphorylation process (lower P/O
ratio), may prevent further ROS release from this organelle
(186). When increasing electron transport rate at the respiratory
chain complexes, mitochondrial ROS production is attenuated
by different mechanisms: First, mitochondria can significantly
reduce O.−

2 production by decreasing oxygen tension in the
mitochondrial microenvironment; Second, by favoring more
oxidized levels of respiratory chain intermediates; Third, by
lowering NADH levels that could be used by mitochondrial
matrix flavoenzymes; Forth, by preventing reverse electron
transfer due to lower membrane potential (188).

Impaired cardiac mitochondrial function also arises as a
central feature of air pollution PM toxicology.Mechanistically, an
acute exposure to PM induces a decrease in active, but not rest,
state oxygen consumption rate, together with inner membrane
depolarization and reduced mitochondrial ATP production (96).
Consequently, deficient contractile and lusitropic reserve is
observed in PM-exposed mice, as the heart fails to properly
increase cardiac contractility after a β-adrenergic stimulus with
isoproterenol (187). Blunted mitochondrial ATP supply in mice
breathing PMmay account for this effect, as decreased ATP levels
are a frequent finding in the failing heart (189, 190). Interestingly,
this cardiac mitochondrial bioenergetic dysfunction seems to be

partially mediated by an inflammatory response triggered by PM
exposure, since impaired mitochondrial respiration and cardiac
contractility is attenuated by pretreatment with a chimeric anti-
TNF-α antibody (Infliximab) in PM-exposed mice (172).

Given that heart perfusion with a low-calcium Krebs
buffer also prevents impaired contractility in PM-exposed
mice (172), calcium overload may also contribute with this
scenario. In fact, altered calcium homeostasis has been
recently reported in cardiomyocytes incubated with PM
(191), which might be explained by hampered mitochondrial
calcium uptake by aromatic chemicals in PM (179) and
decreased activity of sarco/endoplasmic reticulum calcium-
ATPase 2a (SERCA2a), a major regulator of cytosolic calcium
concentration that couples ATP hydrolysis with calcium
transport into the sarcoplasmic reticulum during relaxation
(192). Moreover, as PM exposure impairs cardiac mitochondrial
respiration, deficient mitochondrial ATP supply in PM-
exposed mice heart represent a plausible link between ROS
production, altered calcium handling, and impaired myocardial
contractile function and relaxation. In support of this concept,
sarcomere shortening in cardiomyocytes incubated with PM was
prevented by the mitochondrial targeted antioxidants Tiron and
MitoTEMPOL (191).
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Recently, updated epidemiological studies found a positive
correlation between air pollution exposure and type 2 diabetes
mellitus incidence (193) and mortality (194). Therefore, the
role of air pollution PM exposure over metabolism, adipose
tissue inflammation, and obesity gained crescent attention.
Mechanistically, the exposure to PM in a mice model of
diet induced obesity has been shown to aggravate insulin
resistance and inflammation in white adipose tissue (195).
Moreover, PM exposure induced increased ROS production and
downregulation of uncoupling protein (UCP) −1 in brown
adipose tissue (196). UCP-1 is a mitochondrial inner membrane
protein that dissipates membrane potential to produce heat,
and therefore modulates thermogenesis and protects against
excessive ROS production (197). It remains unclear whether
adipose tissue inflammation and altered mitochondrial function
represent a cause or consequence of alteredmetabolism following
PM exposure. In this context, the precise role of mitochondrial
respiration, ROS release, and heat production needs to be further
addressed in future studies.

Taken together, impairedmitochondrial respiration, enhanced
ROS release, and deficient ATP supply (and maybe also
uncoupling), play a central role in the adverse health effects
reported after air pollution PM exposure. In this context, the
modulation of mitochondrial function (e.g. by mitochondrial
targeted antioxidants) arises as a potential therapeutic target
to prevent excessive lung inflammatory response, as well as
impaired cardiac contractility and metabolism in PM-exposed
individuals at particular high risk.

CONCLUSIONS

The mitochondria-dependent mechanisms associated with
inflammation are still poorly understood. A better understanding
of the cellular pathways underlying this phenomenon would
allow a more targeted approach to face the adverse effects
linked to inflammatory syndromes. An interplay between
mitochondria and NOX as specific ROS sources in inflammation
has been recognized, where the redox crosstalk stimulates each
other in a positive feedback fashion, resulting in a complex
oxidative stress and redox signaling network. As a case study,
inflammation and altered mitochondrial function represent
a relevant mechanism of altered cell metabolism following
PM exposure may contribute to the increased morbidity and
mortality associated with polluted areas. The modulation of
mitochondrial function by mitochondrial targeted antioxidants
arises as a potential therapeutic target to prevent an excessive
inflammatory response.
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