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Microvascular thrombosis is associated with multiorgan failure and mortality in coronavirus
disease 2019 (COVID-19). Although thrombotic complications may be ascribed to the
ability of SARS-CoV-2 to infect and replicate in endothelial cells, it has been poorly
investigated whether, in the complexity of viral infection in the human host, specific viral
elements alone can induce endothelial damage. Detection of circulating spike protein in
the sera of severe COVID-19 patients was evaluated by ELISA. In vitro experiments were
performed on human microvascular endothelial cells from the derma and lung exposed to
SARS-CoV-2-derived spike protein 1 (S1). The expression of adhesive molecules was
studied by immunofluorescence and leukocyte adhesion and platelet aggregation were
assessed under flow conditions. Angiotensin converting enzyme 2 (ACE2) and AMPK
expression were investigated by Western Blot analysis. In addition, S1-treated endothelial
cells were incubated with anti-ACE2 blocking antibody, AMPK agonist, or complement
inhibitors. Our results show that significant levels of spike protein were found in the 30.4%
of severe COVID-19 patients. In vitro, the activation of endothelial cells with S1 protein, via
ACE2, impaired AMPK signalling, leading to robust leukocyte recruitment due to
increased adhesive molecule expression and thrombomodulin loss. This S1-induced
pro-inflammatory phenotype led to exuberant C3 and C5b-9 deposition on endothelial
cells, along with C3a and C5a generation that further amplified S1-induced complement
activation. Functional blockade of ACE2 or complement inhibition halted S1-induced
platelet aggregates by limiting von Willebrand factor and P-selectin exocytosis and
expression on endothelial cells. Overall, we demonstrate that SARS-CoV-2-derived S1
is sufficient in itself to propagate inflammatory and thrombogenic processes in the
microvasculature, amplified by the complement system, recapitulating the
thromboembolic complications of COVID-19.
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INTRODUCTION

In December 2019, a novel coronavirus was isolated from the
respiratory epithelium of patients with unexplained pneumonia
in Wuhan, China. This pathogen, named Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was
identified as the causative agent of Coronavirus Disease 2019
(COVID-19). As of January 2022, over 375 million confirmed
SARS-CoV-2 cases had been reported, claiming almost 5.7
million lives worldwide (1).

SARS-CoV-2 is a highly cytopathic virus that, like the other
members of the coronaviridae family, induces epithelial cells to
undergo apoptotic cell death as part of its replication cycle (2).
Following SARS-CoV-2 infection in target cells (3, 4), the disease
can manifest as a series of different clinical conditions, ranging
from asymptomatic to life-threatening cases (5). For about 80% of
patients, the infection is restricted to the proximal airways of the
lungs, causing mild disease with modest symptoms (5). In about
20% of patients, SARS-CoV-2 infection can expand to the distal
lung and rapidly deteriorate to a severe illness, characterised by
bilateral interstitial pneumonia, acute respiratory distress
syndrome (ARDS), and multi-organ damage with a high fatality
rate (5).

Among the distinctive features of severe COVID-19, vascular
abnormalities have been among the most frequently reported
complications (6–8). There is growing evidence that SARS-CoV-
2 induces endotheliitis and inflammatory cell infiltration in the
lungs (7, 9). Following endothelial infection, loss of vessel barrier
integrity and the development of a pro-coagulative endothelium
have been identified as pivotal contributors to the initiation and
propagation of ARDS (7, 9). Evidence of altered coagulation
parameters during COVID-19 appeared in early reports from
China, as revealed by elevated levels of partial thromboplastin
time, prothrombin, D-dimer, and C-reactive protein in
hospitalized patients (10). Similarly, autoptic studies in lung
tissues found the presence of platelet-fibrin thrombi in small
vessels associated with foci of alveolar hemorrhage (11, 12),
suggesting that coagulopathy is critical for the outcome of
COVID-19 (13–15). In this context, microvascular injury and
thrombosis have also been shown to be associated with the
activation of the complement system, as revealed by the
presence of C3, C3a, C5a, and C5b-9 in the lungs and in
the circulation of patients who succumbed to SARS-CoV-2
infection (16–19). In line with these findings, overt disseminated
intravascular coagulation of small and large vessels (20),
complement activation, and venous thromboembolic
complications, in particular acute pulmonary embolisms (21–
24), were identified as the pathogenic features of non-survivor
COVID-19 patients.

Mechanistically, several data pointed to an immune system over-
reaction as the main driver of the disruption of the thromboresistant
phenotype of the microvascular endothelium during SARS-CoV-2
infection (25). Additional findings also revealed that SARS-CoV-2
can induce vascular damage in the lungs by directly infecting
endothelial cells. This hypothesis has been corroborated by
electron microscopy and immunofluorescence analyses of post-
mortem tissue that showed that SARS-CoV-2 and viral particles can
Frontiers in Immunology | www.frontiersin.org 2
be detected in endothelial cells within the lungs (7, 9), although the
clinical (26–28) and experimental data (29, 30) here are
controversial. Spatially resolved SARS-CoV-2 RNA was detected
in the pulmonary endothelium through in situ hybridization (31),
further suggesting potential viral replication in lung microvascular
endothelial cells. Although with mixed results (32, 33), a recent
study suggested that SARS-CoV-2 can be found in the circulation
more abundantly than previously thought and that plasmatic
viremia correlates with disease severity and mortality (34). Based
on this finding, it is conceivable that endothelial cells are exposed to
SARS-CoV-2 in severe COVID-19 patients.

Of all the SARS-CoV-2 components, the subunit 1 of the spike
protein (S1) – which is generated following proteolysis by host
proteases such as TMPRSS2 (35, 36) – has the ability to interact with
different receptors on the human target cells, including angiotensin
converting enzyme 2 (ACE2), via the receptor-binding domain
(RBD) and can induce specific cellular responses (35, 36).
Numerous studies have demonstrated that endothelial cells
express both ACE2 and TMPRSS2 (37–39), suggesting that the S1
protein potentially has an effect on endothelial cell activation and
dysfunction, possibly leading to the engagement of pro-apoptotic
pathways (40). In relation to this, the deposition of S1 protein has
been documented in the cutaneous microvascular endothelium
(41). In line with the above findings, it has also been shown that
SARS-CoV-2-derived S1 protein, but not other structural proteins
of the virus, can bind endothelial cells, inducing alterations in
endothelial cell phenotype by enhancing the expression of
cytokines, adhesive molecules and reactive oxygen species, as well
as impairing cell permeability and metabolic functions (42–46). In
addition, it has been shown that S1 can directly activate the
alternative pathway of complement on the cell surface by
interfering with Factor H function (47). Lastly, our group recently
documented that exposing sera from severe COVID-19 patients to
endothelial cells induced platelet aggregation via the engagement of
C5a/C5aR1 axis (48).

The aim of this study is to investigate whether SARS-CoV-2-
derived S1 is in itself sufficient to alter the endothelial phenotype,
leading to microvascular inflammatory response and thrombosis
via activation of the complement system.
RESULTS

SARS-CoV-2-Derived Spike Protein
Is Detectable in the Circulation of
Patients With Severe COVID-19
We explored the presence of the spike protein in sera from
uninfected subjects (n=9), mildly ill convalescent COVID-19
patients (n=9) and severely ill COVID-19 patients (n=23) with
an enzyme-linked immunosorbent assay (ELISA). Patients’
characteristics are summarized in Table 1.

None of the selected sera from uninfected subjects or mildly
ill COVID-19 patients (0 out of 18; 0%) exhibited detectable
levels of circulating spike protein. Conversely, we found that
30.4% (7 out of 23) of hospitalized COVID-19 patients with
active disease had detectable levels of spike protein above the
March 2022 | Volume 13 | Article 827146
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detection range of the assay. Individual levels of the spike protein
in hospitalized patients’ sera are reported in Table 2.

When hospitalized COVID-19 patients were divided
according to positivity for spike protein in the serum, we
found that the mean age of spike protein-positive patients was
similar to that of spike-negative patients (Table 3). There were
no differences between the sexes regarding the rate of spike
protein positivity (Table 3). In contrast, there was a borderline
significant difference (p-value=0.057) in the rate of SARS-CoV-2
RNA positivity when we used RT-real-time PCR on
nasopharyngeal samples at the time of blood withdrawal
(Table 3), suggesting that spike protein-positive patients still
had detectable viral load at the time of hospitalization. This was
further supported by the finding – though it was not statistically
significant – that spike-positive patients tended to be admitted
early after symptom onset compared to spike-negative subjects
(Table 3). Our data are in line with previous findings showing
that viral peak occurs early, 2-4 days after infection, while viral
shedding is almost absent after 10 days (32, 49–51).
Frontiers in Immunology | www.frontiersin.org 3
No comorbidities were found to be associated with a positive
result in the detection of the spike protein (Table 3). While we
found no differences in most of the clinical and biochemical
parameters analysed, we observed a borderline difference
(p-value=0.054) in the levels of lactate dehydrogenase (LDH)
found in spike-positive and -negative patients (Table 3), possibly
reflecting increased, widespread tissue damage in spike-positive
patients. When wemeasured circulating levels of C5a and sC5b-9,
we found that COVID-19 patients had significantly increased
levels of C5a and sC5b-9 compared to healthy subjects (C5a: 41.4
± 20.6 vs 7.6 ± 2.2 ng/ml, p-value<0.0001; sC5b9: 1137 ± 432 vs
205 ± 59 ng/ml, p-value<0.0001). In spike-positive patients, we
found significantly higher levels of circulating C5a compared to
spike-negative patients (C5a: 60.4 ± 11.8 vs 27.9 ± 13.0 ng/ml; p-
value=0.0013, Table 3).

We were not able to observe a statistical difference in the % of
subjects experiencing thrombotic events between spike-positive
and -negative patients when we analysed their medical records,
although all thrombotic complications occurred in spike-
negative subjects (Table 3). The explanation for this
unexpected finding is that most spike-positive COVID-19
patients, unlike those who were spike-negative, were receiving
anticoagulant treatments before hospital admission (Table 3),
possibly counteracting the thrombogenic effect of SARS-CoV-2.

In line with a previous finding in a similar geographical area
during the same time period (52), here we also found that
thromboembolic complications, which occurred in 26.1% of
severe COVID-19 cases, manifested at hospital admission,
possibly suggesting that thrombosis is a hallmark feature of
advanced disease. As for the outcome, we found no differences
between the two groups regarding hospitalization length and
death (Table 3).
SARS-CoV-2-Derived S1 Protein Binds
Endothelial Cells and Alters Their
Phenotype in a Dose-Dependent Manner
Having identified detectable levels of SARS-CoV-2 spike protein
in the circulation of severe COVID-19 patients, we evaluated
whether spike protein-derived S1 was in itself sufficient to alter
endothelial cell phenotype.

First, we evaluated the effects of different S1 concentrations
(53, 54) on human microvascular endothelial cell (HMEC-1)
viability, which went from a concentration similar to that found
in the sera of severe COVID-19 patients to higher concentrations
used in previous studies (42, 47, 53, 54). As shown in Figure 1A,
TABLE 1 | Baseline characteristics of patients included in the study.

Overall (n=41) Negative control (n=9) Mild COVID-19 (n=9) Severe COVID-19 (n=23) p-value

Age (years)* 62.6 ± 14.5 58.9 ± 12.1a,b 59.0 ± 19.0c 65.5 ± 13.4 a0.210 vs Severe COVID-19
b0.284 vs Mild COVID-19

c0.988 vs Severe COVID-19
Male sex (%) 26 (63.4) 6 (66.7)d,e 5 (55.6)f 15 (65.2) d0.938 vs Severe COVID-19

e0.629 vs Mild COVID-19
f0.612 vs Severe COVID-19
March 2022 |
*mean ± S.D.
The superscript refers to individual p-value of each parameter.
TABLE 2 | Levels of the spike protein in the sera of hospitalized COVID-19 patients.

Patient Age(years) Gender Spike protein levels*(ng/ml)

1 79 Female 45.51
2 60 Male 16.72
3 77 Male 9.43
4 78 Male 3.07
5 61 Female 2.94
6 49 Male 2.76
7 27 Male 2.73
8 76 Male Negative
9 55 Male Negative
10 63 Male Negative
11 71 Male Negative
12 66 Male Negative
13 44 Female Negative
14 69 Female Negative
14 76 Male Negative
16 67 Female Negative
17 78 Male Negative
18 77 Male Negative
19 80 Female Negative
20 76 Male Negative
21 71 Male Negative
22 56 Female Negative
23 60 Female Negative
*Assay sensitivity: > 2.7 ng/ml.
Volume 13 | Article 827146
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at the concentrations of 0.5 and 10 nM, S1 did not affect
endothelial cell count after 24 h exposure, unlike when a
concentration of 50 nM S1 was used, which markedly reduced
cell vitality at 24 h. These findings were corroborated by data
obtained with a crystal violet viability assay, showing a significant
decrease in endothelial cell viability only after exposure to 50 nM
S1 (Supplementary Figure 1A).

Having established the sub-toxic concentrations of S1, we
elected to use 0.5 and 10 nM S1 in the subsequent experiments.
First, we evaluated whether S1 can bind and activate endothelial
cells. Through immunofluorescence analysis, we found a
significant dose-dependent binding of the S1 protein on the
apical surface of HMEC-1 treated with 0.5 and 10 nM S1
(Figure 1B). Then, we evaluated whether the binding of S1
could alter the phenotype of endothelial cells by analysing the
expression of the pro-inflammatory adhesive molecule for
leukocyte, intercellular adhesion molecule 1 (ICAM-1) (55), and
the pro-thrombogenic protein von Willebrand factor (vWF) (56).
We found that both S1 concentrations were able to significantly
upregulate ICAM-1 protein expression (Figure 1C) in a dose-
dependent manner and enhance vWF deposition (Figure 1D).
Given the critical thrombogenic role of vWF when shuttled from
Weibel-Palade to the endothelial luminal surface (56), we elected
to analyse its localization through a 3D reconstruction of z-stack
slices acquired with confocal microscopy. In resting HMEC-1 co-
stained with green cell tracker, we found that vWF was detectable
in the cell cytoplasm, in contrast with 10 nM S1-activated
endothelial cells, which exhibited remarkable vWF staining on
the luminal surface (Supplementary Figure 1B), reflecting the
ability of S1 to promote the release of vWF a key player in the
formation of platelet adhesion and aggregation.
Frontiers in Immunology | www.frontiersin.org 4
Collectively, these findings highlight a novel mechanism
triggered by SARS-CoV-2-derived S1 alone that can propagate
the pro-inflammatory and pro-thrombotic effects on
the endothelium.

Given that we found detectable levels of the spike protein in
the sera of hospitalized patients, it is conceivable that the total
burden of circulating S1 on endothelial cells could be
significantly higher in the early course of the disease. SARS-
CoV-2 viral load peacks early after symptom onset, while it
decreases at 10 days, when patients are usually hospitalized (32,
49–51). For this reason, we used the sub-toxic concentration of
10 nM S1 in subsequent experiments to mimic the prolonged
exposure of endothelial cells to S1 that occurs during the early
phase of COVID-19.

SARS-CoV-2-Derived S1 Protein Induces
Pro-Inflammatory and Pro-Thrombotic
Responses in Endothelial Cells Through
the Engagement of ACE2
Several reports have suggested that, among the different host cell
receptors, ACE2 could be the key surface protein for SARS-CoV-
2 binding and entry into endothelial cells (57). Thus, we first
investigated whether HMEC-1 express ACE2 and whether S1
could affect its expression. As shown in Figure 2A, HMEC-1
constitutively express ACE2 protein which, however, was not
modulated by exposure to 10 nM S1. This finding was also
confirmed in Vero cells exposed to 10 nM S1, used here as a
positive control (Supplementary Figures 2A, B).

Then, we explored whether S1 engagement with ACE2 was
instrumental to the observed changes in endothelial cell
phenotype. To this end, we studied whether the upregulation
TABLE 3 | Baseline characteristics of severe COVID-19 patients divided according to serum positivity to spike protein.

Overall (n=23) Spike-negative (n=16) Spike-positive (n=7) p-value

Age (years)* 65.5 ± 13.4 67.2 ± 10.5 61.6 ± 19.0 0.368
Male sex (%) 15 (65.2) 10 (62.5) 5 (71.4) 0.146
Patients with positive RT-PCR at hospital admission (%) 16 (69.6) 9 (56.2) 7 (100) 0.057
Length from symptom onset to hospital admission (days)* 8.1 ± 4.1 9.1 ± 4.3 5.9 ± 2.6 0.084
Comorbidities
Hypertension (%) 8 (47.8) 3 (50) 3 (42.9) 0.752
Cardiovascular (%) 6 (26.1) 4 (25) 2 (28.6) 0.857
Diabetes (%) 7 (30.4) 5 (31.3) 2 (28.6) 0.898
Obesity (%) 4 (17.4) 2 (12.5) 2 (28.5) 0.349

Clinical and biochemical parameters
BMI (Kg/m2)* 26.5 ± 4.0 26.2 ± 4.3 27.1 ± 4.1 0.747
WBC (cells/mL)* 9315 ± 3264 9106 ± 3494 9870 ± 2756 0.637
PLTs (cells/mL)* 255826 ± 140194 264938 ± 130483 235000 ± 670248 0.575
CRP (mg/dL)* 12.2 ± 8.6 11.3 ± 8.0 14.6 ± 10.4 0.426
LDH (U/L)* 451 ± 308 348 ± 120 627 ± 449 0.054
D-dimer (ng/mL)* 3065 ± 8089 4013 ± 9442 600 ± 345 0.439
PF (mmHg)* 148 ± 47 147 ± 53 151 ± 26 0.271

Complement components
C5a (ng/ml)* 41.4 ± 20.6 27.9 ± 13.0 60.4 ± 11.8 0.001
sC5b-9 (ng/ml)* 1137 ± 432 987 ± 292 1347 ± 539 0.164

Patients receiving antithrombotic treatments before admission (%) 7 (30.4) 3 (18.7) 4 (57.1) 0.066
Hospitalization length (days)* 41.8 ± 33.7 46.8 ± 32.4 30.4 ± 36.3 0.293
Deaths (%) 7 (30.4) 5 (31.3) 2 (28.6) 0.898
Marc
h 2022 | Volume 13 | Article
*mean ± S.D.
BMI, body mass index; CRP, c-reactive protein; LDH, lactate dehydrogenases; PF, PaO2/FiO2 ratio; PLTs, platelets; WBC, white blood cell.
827146
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of adhesive and pro-thrombotic molecules induced by S1 was
prevented by the inhibition of ACE2. In our setting, we observed
that the upregulation of ICAM-1 induced by S1 was reduced
significantly by the functional blocking antibody anti-ACE2
(ACE2) but not by an irrelevant (Irr) antibody (Figure 2B).
Then, we studied P-selectin, an adhesive molecule that
participates with ICAM-1 in endothelial cell/leukocyte
interaction and in promoting pro-thrombotic processes (58,
59). We observed increased expression of P-selectin on the
surface of S1-treated endothelial cells, which was inhibited
significantly by ACE2 antibody (Figure 2C). Similarly,
Frontiers in Immunology | www.frontiersin.org 5
functional blockade of ACE2, but not an Irr Ab, significantly
reduced vWF staining on the endothelial surface (Figure 2D).
When we studied the expression of the endothelial adhesive
molecule vitronectin receptor (aVb3), we found that S1 failed to
modulate its expression on endothelial cells (Supplementary
Figure 3A). Lastly, we investigated the expression of
thrombomodulin, a glycoprotein that confers cytoprotective,
anti-inflammatory and thromboresistant properties to
endothelial cells (60, 61). We observed that S1 challenge
significantly reduced thrombomodulin (CTR: 703 ± 35 vs 10
nM S1: 258 ± 22, pixel2/cell; Supplementary Figure 3B), which
A

B

C

D

FIGURE 1 | SARS-CoV-2-derived Spike 1 (S1) protein affects microvascular endothelial viability and phenotype in vitro. (A) Quantification of cell viability in HMEC-1
exposed for 24 h to medium alone (CTR) or S1 at the concentration of 0.5 nM, 10 nM, or 50 nM. (B) Quantification and representative images of the binding of the
S1 protein (red) to HMEC-1 treated with medium alone (CTR) or S1 at the concentration of 0.5 nM and 10 nM for 24 h. (C, D) Quantification and representative
images of ICAM-1 expression [(C), red] and vWF deposition [(D), red] on HMEC-1 treated with medium alone (CTR) or S1 at the concentration of 0.5 nM and 10 nM
for 24 h. All experiments were repeated 3 times. Data represent mean ± SEM and were analysed with Tukey’s multiple comparison test. **p-value<0.01, and ***p-
value<0.001 vs CTR; $$$p-value<0.001 vs 0.5 nM S1; °°p-value<0.01, and °°°p-value<0.001 vs 10 nM S1. All the slides were counterstained with DAPI (blue). Scale
bar 20 mm.
March 2022 | Volume 13 | Article 827146
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A

B C D

E F G

FIGURE 2 | S1, through ACE2, upregulates adhesive molecules on HMEC-1 by impairing AMPK signalling. (A) Quantification and representative Western Blots of
ACE2 protein expression in HMEC-1 exposed for 24h to medium alone (CTR) or S1 (10 nM). GAPDH was used as a sample loading control. (B–D) Quantification and
representative images of ICAM-1 expression [(B), red], P-selectin expression [(C), red], and vWF deposition [(D), red] on HMEC-1 incubated with medium alone (CTR)
or with S1 (10 nM) in the presence of anti-ACE2 Ab (2 mg/ml) or Irr Ab (2 mg/ml). (E) Quantification and representative Western Blots of AMPK activation, evaluated as
the ratio between the expression of pAMPKThr172 and total AMPK in HMEC-1 exposed for 24h to medium alone (CTR) or S1 (10 nM). (F, G) Quantification of ICAM-1
expression (F) and vWF deposition (G) on HMEC-1 incubated with medium alone (CTR) or with S1 (10 nM) in the presence or absence of AMPK agonist AICAR (2
mM). All experiments were repeated at least 3 times. Data represent mean ± SEM and were analysed with unpaired t-test or Tukey’s multiple comparison test, as
appropriate. **p-value<0.01, and ***p-value<0.001 vs CTR; °°°p-value<0.001 vs 10 nM S1; ###p-value<0.001 vs 10 nM S1+Irr. All slides were counterstained with
DAPI (blue). Scale bar 20 mm for (B, C) and 50 mm for (D).
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 8271466
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was inhibited significantly by ACE2 functional blockade (10 nM
S1+ACE2: 536 ± 102 vs S1+Irr: 228 ± 47, pixel2/cell;
representative images are shown in Supplementary Figure 3B).

Taken together, these data suggest that S1, by targeting ACE2,
plays a critical role in inducing the activation of the
microvascular endothelium, driving the shift toward a pro-
inflammatory and pro-thrombotic endothelial phenotype.

SARS-CoV-2-Derived S1 Protein Impairs
AMPK Signaling
To find the molecular mechanisms behind the phenotypic
changes in microvascular endothelial cells that S1 induces, we
investigated whether AMPK signaling is involved (42). As shown
in Figure 2E, we observed a significant reduction in AMPK
activity in HMEC-1 upon 10 nM S1 exposure, as revealed by the
decreased ratio of phospho AMPK (pAMPK) and total AMPK
by Western Blot analysis. Given that AMPK plays a major role in
regulating the expression of adhesive molecules (62–64), we
studied the effect of the AMPK agonist AICAR on S1-treated
HMEC-1. In this setting, AICAR exerted a beneficial effect on
endothelial cells by reducing the expression of ICAM-1 and vWF
induced by S1 (Figures 2F, G, and Supplementary Figure 4A, B),
providing direct evidence that AMPK signaling plays a protective
role in mediating the endothelial cell response to the S1 protein.

SARS-CoV-2-Derived S1 Protein Induces
Endothelial Dysfunction, Leading to
Aberrant Complement Activation via ACE2
Recent evidence suggests that the complement system may play a
substantial role in promoting microvascular inflammation, which
appears to contribute to the severity of COVID-19 (65–67). The
finding that the upregulation of adhesive molecules, such as P-
Selectin (58, 59), or the loss of thrombomodulin (59, 68), may drive
the complement attack on the endothelium, prompted us to
investigate whether S1 protein-induced endothelial dysfunction
could modulate complement activation and deposition on the
microvascular endothelium. To this end, we exposed HMEC-1 to
S1 and then to human serum (HS) from a pool of healthy volunteers
as a source of complement. As shown in Figure 3A, we observed
massive C3 deposition on HMEC-1 exposed to 10 nM S1,
compared to unstimulated cells. When endothelial cells were
exposed to S1 in the presence of anti-ACE2 Ab, there was a
significant decrease in C3 staining, compared to the deposits
observed on cells treated with an Irr Ab (Figure 3A),
demonstrating that the S1/ACE2 axis plays a key role in
mediating complement activation at the endothelial level. Pre-
treating human serum with complement C3 inhibitor compstatin
led to a significant decrease in C3 staining that was comparable to
that of unstimulated HMEC-1 (Figure 3A). A significant inhibitory
effect was found in the presence of complement 1 inhibitor, which
blocks the classical pathway (Figure 3A). Notably, blocking the
endothelial C3a receptor with a specific antagonist led to a
significant decrease in C3 deposits on endothelial cells, whereas
C5a receptor blockade had no effect (Figure 3A).

In our assay, we also demonstrated that complement
activation on HMEC-1 exposed to 10 nM S1 protein
Frontiers in Immunology | www.frontiersin.org 7
proceeded to the formation of the terminal membrane attack
C5b-9 complex, as shown in Figure 3B. The massive C5b-9
staining that had been observed on endothelial cells exposed to
S1 protein was largely prevented by anti-ACE2 Ab but not by Irr
Ab (Figure 3B). Blocking C3 activation with compstatin led to a
profound inhibition of C5b-9 formation on the surface of
HMEC-1 (Figure 3B). The partial effect of C1 inhibitor on
C5b-9 staining was like that obtained on C3 deposits
(Figure 3B). Blockade of the C3a and C5a receptors led to an
inhibition of C5b-9 formation on HMEC-1 (Figure 3B).

Overall, these data indicate that endothelial dysfunction
induced by SARS-CoV-2-derived S1 protein triggers exuberant
complement deposition on activated microvascular endothelial
cells and that the anaphylatoxins C3a and, to a lesser extent, C5a,
further amplify the complex process of complement activation
that fuels inflammation in response to S1.

SARS-CoV-2-Derived S1 Protein Induces
Endothelial Dysfunction, Promoting
Leukocyte Adhesion via ACE2
To investigate the functional impact of the observed endothelial
phenotypic changes, we first determined whether the activation
of HMEC-1 promoted by S1 was instrumental to the recruitment
of leukocytes under flow conditions. Exposure of HMEC-1 to 10
nM S1 markedly induced leukocyte adhesion on HMEC-1 in a
parallel plate flow chamber (Figure 4A). This effect was like that
obtained by a positive control such as Shiga Toxin 2 (Stx2,
Supplementary Figure 5A). Data that the functional blocking
antibody against ICAM-1 robustly reduced the number of
adherent leukocytes (Supplementary Figure 5B) confirmed
that the upregulation of ICAM-1 on S1-activated HMEC-1 was
accountable for leukocyte stable adhesion. We also found that
ACE2 affected the adhesive properties of S1-activated endothelial
cells, as demonstrated by the significant decrease in leukocyte
adhesion by ACE2 functional blocking antibody, unlike with the
Irr antibody (Figure 4A). Pre-exposure of leukocytes to 10 nM
S1 resulted in more adherent leukocytes on S1-treated HMEC-1
(Figure 4B). Co-staining of histone H3 citrullinated (citHH3,
green) and neutrophil elastase (NE, red) revealed that
neutrophils adhered to S1-treated HMEC-1 and were activated
to release NE in extracellular traps (NETs, inset) when they were
challenged with 10 nM S1 (Figure 4C, insets). No detectable
NETs were found when unstimulated leukocytes were perfused
on S1-activated HMEC-1 (Figure 4C, insets).

A recent study has suggested that aberrant complement
activation during COVID-19 plays an important role in the
activation of circulating neutrophils (65). Therefore, we
proceeded to evaluate whether C3a generated during the S1-
induced C3 activation amplifies the process of leukocyte-
endothelial interaction induced by S1. Notably, we found that
the number of adherent S1-treated leukocytes on S1-activated
HMEC-1 rose significantly after endothelial exposure to C3a,
compared to endothelial cells exposed to S1 alone (adhesion of
S1-treated leukocytes on: 10 nM S1-treated HMEC-1, 35 ± 2 vs
10 nM S1- and C3a-treated HMEC-1, 46 ± 2, adherent
leukocytes/mm2).
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FIGURE 3 | S1 induces C3 and C5b-9 deposition on HMEC-1 by interacting with ACE2. (A) Quantification and representative images of C3 deposition (green) on
HMEC-1 pre-exposed for 24h to medium alone (CTR) or to S1 (10 nM) in the presence of anti-ACE2 Ab (2 mg/ml) or the corresponding Irr Ab (2 mg/ml) and then
incubated with human serum (HS, 50%) for 2h in the presence or in the absence of complement inhibitors (Compstatin, Comp; C1 inhibitor, C1inh; C3a receptor
antagonist, C3aRa; C5a receptor antagonist, C5aRa). (B) Quantification and representative images of C5b-9 formation (green) on HMEC-1 pre-exposed for 24h to
medium alone (CTR) or S1 (10 nM) in the presence of anti-ACE2 Ab (2 mg/ml) or Irr Ab (2 mg/ml) and then incubated with HS 50% in the presence or in the absence
of complement inhibitors (Comp, C1inh, C3aRa, and C5aRa). All experiments were repeated at least 3 times. Data represent mean ± SEM and were analysed with
Tukey’s multiple comparison test. *p-value<0.05, and ***p-value<0.001vs CTR; °p-value<0.05, °°p-value<0.01, and °°°p-value<0.001 vs 10 nM S1;
###p-value<0.001 vs 10 nM S1+Irr. All slides were counterstained with DAPI (blue). Scale bars 50 mm.
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SARS-CoV-2-Derived S1 Protein Induces
Platelet Aggregates, Exacerbated by
Complement Activation, on Microvascular
Endothelial Cells
We then moved on to evaluating whether the endothelial
dysfunction induced by the S1 protein also has functional
relevance in disrupting the thromboresistant phenotype of the
microvascular endothelium. To this end, we perfused
heparinized whole blood on S1-activated HMEC-1 in a parallel
plate flow chamber. Our data showed that 10 nM S1 exposure on
HMEC-1 promoted significant platelet deposition and
aggregation on the cell surface compared to unstimulated cells
under flow (Figure 5A). The S1-induced platelet aggregate
formation was comparable to that observed following Stx2
Frontiers in Immunology | www.frontiersin.org 9
exposure (Stx2: 2277 ± 129 pixel2/field), used as a positive
control (69).

To demonstrate how complement activation contributes to
amplifying S1-dependent platelet aggregation, S1-treated HMEC
were exposed to HS as a source of complement. Here, we found
that when perfused with whole blood under flow conditions
(Figures 5B, C), HMEC-1 exposed to 10 nM S1 protein
exhibited a more than 10-fold increase in the cell area covered
by platelet aggregates compared to unstimulated cells. The
addition of anti-ACE2 Ab during incubation with 10 nM S1
protein almost normalized platelet aggregate formation on
the endothelial cell surface, which remained unaffected after
the addition of Irr Ab (Figures 5B, C). The pivotal role of the
complement system was demonstrated by the remarkable
A B

C

FIGURE 4 | S1 promotes leukocyte adhesion and NET formation on HMEC-1 under flow. (A) Quantification of leukocyte adhesion under flow conditions on HMEC-
1 exposed for 24h to medium alone (CTR) or to subtoxic concentration of S1 (10 nM) in the presence of anti-ACE2 functional blocking Ab (ACE2, 2 mg/ml) or the
corresponding Irr Ab (2 mg/ml). (B) Adhesion of leukocytes, incubated for one hour with control medium or with S1 (S1*, 10 nM) and perfused under flow conditions
(1.5 dynes/cm2) on HMEC-1 exposed to medium alone (CTR) or with S1 (10 nM). (C) Representative images of leukocytes treated with medium alone (CTR) or S1
(S1*, 10 nM), which adhered to HMEC exposed for 24h to medium alone or to S1. In this setting, neutrophils were co-stained with histone H3 citrullinated (citHH3,
green) and neutrophil elastase (NE, red). The release of neutrophil extracellular traps (NETs) was observed only when leukocytes were activated with S1 (10 nM S1+
10 nM S1*, inset). All experiments were repeated at least 3 times. Data represent mean ± SEM and were analysed with Tukey’s multiple comparison test.
***p-value<0.001 vs CTR; °p-value<0.05, and °°°p-value<0.001 vs 10 nM S1; ###p-value<0.001 vs 10 nM S1+Irr. Slides were counterstained with DAPI (blue). Scale
bar 20 mm.
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inhibition of platelet aggregation detected on 10 nM S1-treated
HMEC-1 in the presence of HS incubated with C3 inhibitor
compstatin, C3aR or C5aR antagonists, respectively
(Figures 5B, C).

We then evaluated whether complement activation affects
vWF deposition on HMEC-1. In this experimental setting,
exposure of endothelial cells to 10 nM S1 and HS also induced
a significant increase in vWF on the endothelial cell surface
(Figures 5D, E). Conversely, the addition to HS of the C3
inhibitor compstatin, C3aR, or C5aR antagonists, significantly
decreased vWF staining on HMEC-1 exposed to 10 nM S1
(Figures 5D, E).

Overall, these data indicate that S1 promotes a robust
microvascular endothelial cell response, which is a determinant in
the propagation of pro-inflammatory and thrombogenic processes
both amplified by the activation of the complement system.

SARS-CoV-2-Derived S1 Activates
Pulmonary Endothelial Cells to Express
Adhesive and Pro-Thrombotic Molecules
by Binding to ACE2
To provide proof-of-concept that the above mechanisms are also
shared by microvascular endothelial cells in the lungs, we further
studied the effect of S1 on the expression of ACE2, ICAM-1, vWF
and AMPK signalling on primary human pulmonary
microvascular endothelial cells (HPMECs). First, we found that
S1 bound to the surface of HPMEC (Figure 6A). We confirmed
that HPMEC constitutively express ACE2, whose expression was
not affected by S1 challenge (Figure 6B). Notably, we found that
HPMEC expressed ACE2 to a similar extent as Vero cells, used as
a positive control, while they expressed higher ACE2 levels than
HMEC-1 (Supplementary Figure 6). Exposure of HPMEC to S1
elicited a marked increase in ICAM-1 and vWF stainings, which
were limited by the addition of ACE2 blocking antibody
(Figures 6C, D). Lastly, we found that S1 impaired AMPK
signalling (Figure 6E). The finding that AICAR prevented
ICAM-1 and that vWF increased expression induced by S1
(Figures 6C, D) demonstrated that AMPK signalling plays a
critical, protective role in HPMEC activation.

All these data suggest that S1 induced a robust response in
HPMEC, even more than HMEC-1, and caused a loss in the
thromboresistant phenotype via ACE2.
DISCUSSION

In this study, we describe a mechanism that has never been
reported through which SARS-CoV-2-derived S1 protein alone
induces a pro-inflammatory and pro-thrombotic phenotype of
human microvascular endothelial cells of dermal and pulmonary
origin, possibly recapitulating the systemic microvascular
complications observed in severe COVID-19 cases.

The first finding of this study is that the spike protein of
SARS-CoV-2 can be found in the sera of patients with COVID-
19. Indeed, using ELISA we found that spike protein is detected
Frontiers in Immunology | www.frontiersin.org 10
in at least 30% of hospitalized patients with severe disease.
Although this assay cannot discriminate between intact SARS-
CoV-2 virus and free spike protein, a recent study suggests that
SARS-CoV-2 can be found in the circulation in a similar
proportion (30-40%) of severe COVID-19 patients and that
plasmatic viremia correlates with disease severity and mortality
(34). Our finding that patients positive for plasmatic spike
protein had a borderline significant increase in the rate of
SARS-CoV-2 RNA positivity suggests that spike protein-
positive patients may have had a higher viral load at the time
of hospitalization than spike protein-negative subjects. However,
we cannot exclude the possibility that the presence of spike
protein could be the result of systemic viral particle release
during COVID-19. At this stage of the disease, elevated
viremia could contribute to the diffusion of viral particles that
may damage microvascular endothelial cells in the lungs and in
more distal organs, leading to systemic thrombotic
complications. In line with this possibility, a study in mice
showed that circulating S1 could localise in the microvascular
endothelium (54). Furthermore, a recent report documented that
circulating nucleocapsid protein can be detected in the sera of
COVID-19 positive subjects, particularly in those who remain
negative for anti-SARS-CoV-2 antibodies, suggesting that
systemic shedding of viral components likely occurs soon after
infection (70). However, our serological analysis was performed
on the sera of hospitalized patients, who are generally admitted
to the hospital 10 days after symptom onset (32, 49–51). All
available data regarding the kinetics in SARS-CoV-2 viral load
reveal that the viraemic peak occurs early, 2-4 days after
infection, and viral shedding is almost absent 10 days after
infection (32, 49–51). In line with this finding, we found that
patients positive for plasmatic spike protein tended to be
admitted earlier after symptom onset. The presence of spike
protein in the sera of hospitalized patients suggests that the total
burden of circulating S1 on endothelial cells could be
significantly higher early during COVID-19.

Based on our data and the available published studies, we can
infer that, during the early phase of the infection, the lung
microvasculature is the first target of SARS-CoV-2. Indeed, the
high replication rate of the virus in lung epithelial cells could
particularly affect the local microvascular endothelial cells lining
the capillaries in the alveoli. In this phase, pulmonary embolism
has been identified as the hallmark feature of microvascular
thrombosis in severe COVID-19 cases (71, 72). As the disease
progresses, sustained shedding of viral protein may target
microvascular endothelial cells in organs distal to the lungs,
possibly leading to systemic thrombotic complications (73).

Following these observations, here we investigated whether S1
protein could induce endothelial cell activation and dysfunction
to understand the underlying mechanisms that may recapitulate
the microvascular thrombotic complications observed in
COVID-19. We provide data that S1 alone was able to activate
human microvascular endothelial cells, thus promoting
leukocyte adhesion. The ability of S1 to induce inflammatory
cell recruitment on endothelial cells was the result of the
upregulation of endothelial P-selectin and ICAM-1, which are
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FIGURE 5 | S1 activates the complement system amplifying platelet aggregate formation on HMEC-1 through ACE2. (A) Quantification of platelet aggregate
formation on HMEC-1 pre-exposed for 24h to medium alone (CTR) or S1 (10 nM). Platelets aggregates on HMEC-1 perfused with heparinised blood under flow
conditions (60 dynes/cm2) were evaluated and expressed as pixels2/field analysed. (B, C) Quantification (B) and representative images (C) of platelet aggregate
formation on HMEC-1 pre-exposed for 24h to medium alone (CTR), S1 (10 nM), or 10 nM S1 in the presence of anti-ACE2 Ab (2 mg/ml) or the corresponding Irr Ab
(2 mg/ml) and then incubated with 50% human serum (HS) for 2h. In selected samples, S1-treated HMEC-1 were incubated with 50% HS in the presence of
complement inhibitors (Compstatin, Comp; C3a receptor antagonist, C3aRa; C5a receptor antagonist, C5aRa). Platelet aggregate formation on HMEC-1 under flow
conditions (60 dynes/cm2) was quantified and expressed as pixel2/field analysed. (D, E) Quantification (D) and representative images (E) of vWF deposition on
HMEC-1 pre-exposed for 24h to medium alone (CTR) or S1 (10 nM) and then incubated with 50% HS in the presence or absence of complement inhibitors (Comp,
C3aRa, and C5aRa). All experiments were repeated at least 3 times. Data represent mean ± SEM and were analysed with unpaired t-test or Tukey’s multiple
comparison test, as appropriate. **p-value<0.01, and ***p-value<0.001 vs CTR; °p-value<0.05, °°p-value<0.01, and °°°p-value<0.001 vs 10 nM S1; ##p-value<0.01
and ###p-value<0.001 vs 10 nM S1+Irr. Scale bars 50 mm.
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FIGURE 6 | S1, through ACE2, upregulates adhesive molecules on HPMEC by impairing AMPK signalling. (A) Quantification and representative images of the
binding of the S1 protein (red) to HPMEC treated with medium alone (CTR) or S1 (10 nM) for 24 h. (B) Quantification and representative Western Blots of ACE2
protein expression in HPMEC exposed for 24h to medium alone (CTR) or S1 (10 nM). GAPDH was used as a sample loading control. (C, D) Quantification and
representative images of ICAM-1 expression [(C), red], and vWF deposition [(D), red] on HPMEC incubated with medium alone (CTR) or with S1 (10 nM) in the
presence or absence of anti-ACE2 Ab (2 mg/ml) or AICAR (2 mM). (E) Quantification and representative Western Blots of AMPK activation, evaluated as the ratio
between the expression of pAMPKThr172 and total AMPK in HPMEC exposed for 24h to medium alone (CTR) or 10 nM S1. All experiments were repeated at least 3
times. Data represent mean ± SEM and were analysed with unpaired t-test or Tukey’s multiple comparison test, as appropriate. *p-value<0.05, and ***p-value<0.001
vs CTR; °°p-value<0.01, and °°°p-value<0.001 vs 10 nM S1. All slides were counterstained with DAPI (blue). Scale bar 50 mm.
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known to be key players in the paradigm of rolling and stable
adhesion of inflammatory cells on the endothelium (55).

To demonstrate that the S1 directly elicits cell signalling via
interaction with its cognate receptor, we showed that the
functional blockade of ACE2 was sufficient to inhibit S1-
dependent increased endothelial adhesiveness to leukocytes.
The hypothesis that ACE2 plays a fundamental role in S1-
endothelial cell interaction is supported by the available data,
which confirms that soluble human recombinant ACE2 halted
SARS-CoV-2 infection in engineered human blood vessel
organoids (74). However, we cannot rule out the possibility
that other endothelial receptors, such as neuropilin-1 (75),
dipeptidyl peptidase 4 (76), and CD147 (77) contribute to S1-
induced endothelial cell injury.

Although it is important to consider that S1 can induce
exocytosis from Weibel-Palade bodies, contributing to
increased expression of P-selectin on endothelial cells, it is
possible that the engagement of S1 with ACE2 activates
endothelial gene transcription of P-selectin and ICAM-1. Our
in vitro studies support this hypothesis because they clearly
demonstrated that S1-ACE2 interaction impaired AMPK
signalling, inducing an increase in the adhesive properties of
endothelial cells. Indeed, AMPK inhibits NF-kB (78), the main
transcription factors involved in the expression of
proinflammatory and adhesive proteins (79). Notably, the
importance of AMPK signalling is a common feature of the
microvascular endothelial cells of different origin.

Our data also revealed an additional mechanism through
which S1 potentiates microvascular endothelial injury via the
direct activation of neutrophils. Indeed, leukocytes challenged
with S1 further increased their recruitment on S1-activated
endothelial cells and promoted neutrophil NET release. The
clinical relevance of our data rests on the findings that both
the accumulation of neutrophils activated by SARS-CoV-2 (80),
and the formation of NETs in damaged tissue are associated with
a poor COVID-19 prognosis (81, 82). Collectively, our findings
highlight that S1 plays a direct role in fuelling the process of
inflammation in microvascular endothelial cells.

Exposing HMEC-1 to S1 significantly promoted the
deposition of platelet aggregates under flow at high shear
stress, which demonstrates that S1 directly affects the
endothelial thromboresistant phenotype. This phenomenon
was likely the result of the S1-induced alterations in the
complex interplay between the surface expression of P-selectin
and vWF, due to increased exocytosis. However, the contribution
of blood-derived vWF should also be considered, as revealed by
the lower level of vWF expression in the serum-free experimental
setting. It is well known that endothelial P-selectin participates in
the process of thrombosis by binding directly to platelets or by
interacting with vWF, which further supports our data. At high
shear stress, this latter fundamental adhesive substrate enables
the deposition of platelets, tethering their GPIb and then aIIb3
receptors (56, 69).

Furthermore, the ability of S1 to induce the loss of
thrombomodulin – a cofactor that prevents local fibrin
formation and that is also an inhibitor of complement
Frontiers in Immunology | www.frontiersin.org 13
activation (59) – may amplify the thrombotic effects triggered
by the viral protein. Considering that S1 was able to promote
exocytosis in endothelial cells, the loss of thrombomodulin could
be the result of its shedding by newly exposed proteases on the
cell surface.

Our in vitro study highlights the direct role that S1-ACE2
interaction plays in engaging intracellular signalling,
contributing to the impairment of vascular integrity and
development of a pro-thrombotic state that may have
pathophysiological implications in COVID-19.

Earlier studies have shown that alterations in the endothelial
thromboresistant phenotype, including the overexpression of
endothelial P-Selectin (58, 69) and the loss of thrombomodulin
(59, 68), contribute to complement activation, which increases
the risk of thrombosis. In line with these reports, we have
provided evidence that S1 interaction with ACE2 led to
marked C3 and C5b-9 deposition on endothelial cells, which
was associated with increased formation of platelet aggregates.
The complement system plays a major role in exacerbating this
phenomenon, as confirmed by data that showed that the specific
C3 inhibitor compstatin, as well as the inhibitors of C3a and C5a
receptors, robustly inhibited platelet deposition on S1-activated
endothelial cells. Furthermore, several pieces of evidence support
the hypothesis that the terminal complement pathway plays a
role in exacerbating the inflammatory reaction on the
endothelium by promoting neutrophil and macrophage
recruitment and their activation to generate an oxidative burst
(83). Additionally, C3a and, to a lesser extent, C5a – generated
following S1 exposure – were the key mediators in the
amplification of the complement cascade and, together with
C3, contributed to S1-dependent microvascular thrombosis.
There is evidence that C3a and C5a, generated following
complement activation, are driving factors in altering
endothelial thromboresistance (59, 84, 85). Further proof-of-
concept that C5a has thrombogenic effects on endothelial cells
comes from data showing that C5a inhibition halts the platelet
aggregation induced by sera from severe COVID-19 patients,
possibly through the exocytosis of vWF and P-selectin (48).
Finally, data from the UK show that genetic predisposition to
complement dysregulation is a risk factors for morbidity and
death from SARS-CoV-2 infection, which indicates that
hyperactivation of complement is a hallmark feature of the
pathophysiology of severe COVID-19 (86, 87).

Based on the above, inhibiting the complement system could
be a potential treatment for COVID-19 patients. A recent case
report on a patient with ARDS due to COVID-19 pneumonia
showed that treatment with a C3 inhibitor was safe and
associated with a favourable outcome (88). Much larger case
series have shown that the C5 inhibitor, eculizumab, and a
MASP-2 inhibitor, narsoplimab, may have also some
therapeutic efficacy (89–91).

Limitation of the study: one of the major limitations of our
study is the small sample size of patients, which may affect the
analysis outcomes. Additionally, the analysis of circulating spike
protein was performed exclusively in serum from COVID-19
patients obtained at the time of hospital admission, making it
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impossible to study the early phase kinetics of circulating spike
proteins, as well as the temporality of the thrombotic phenomena
in COVID-19. Furthermore, these patients were in an advanced
phase of the disease and thrombosis was mainly diagnosed based
on the analysis of medical records. Additionally, thrombosis in
COVID-19 is often difficult to detect, particularly in
mechanically ventilated patients with severe pneumonia.
Finally, the ELISA assay used to detect the spike protein in
human sera cannot differentiate between intact SARS-CoV-2
virus and free spike protein.

In summary, our study documented that: 1) circulating spike
protein can be found in severe COVID-19 patients; 2) S1 directly
induced the activation of multifaceted deleterious processes that
lead to endothelial cell dysfunction; 3) engagement of ACE2 by
S1 is sufficient to alter the adhesive properties of microvascular
endothelial cells by altering AMPK signalling, resulting in the
recruitment of inflammatory cells; 4) the S1-induced
inflammatory phenotype favours exuberant C3 and C5b-9
deposits on microvascular endothelial cells, and the generation
of C3a and C5a further amplified the complement activation
induced by S1; 5) all these events promote a loop of reciprocal
activation, ultimately leading to increased platelet aggregates on
microvascular endothelial cells.

Overall, these data provide novel insights that can help to
identify more effective therapies to inhibit the complement
system in patients with severe COVID-19.
MATERIALS AND METHODS

Ethics Statement
Sera from convalescent COVID-19 patients with mild disease or
negative subjects were selected from a previous study by our
group in the same geographical area and during the same period
of time (92). These subjects were selected in order to obtain age-
and sex-matched controls for the severe COVID-19 cases.
Patients with severe COVID-19 who were admitted to the
COVID Unit of the Azienda Socio Sanitaria Territoriale
(ASST) Papa Giovanni XXIII hospital in Bergamo (Italy)
between March and June 2020 because of severe respiratory
distress due to COVID-19 diagnosed on the basis of the 19
March 2020 WHO Interim guidance criteria (93). Sera from
severely ill COVID-19 patients were collected at hospital
admission. The study was approved by the Ethical Committee
of the Azienda Sanitaria Locale Bergamo, Italy. Written informed
consent was obtained from all enrolled patients. All patients’
characteristics are summarized in Table 1.

Detection of Spike Protein and
Complement Components in
Human Samples
To detect SARS-CoV-2 spike protein in human sera, the specific
COVID-19 Spike Protein ELISA Kit (Abcam, ab274342) was used,
following the manufacturer’s instructions. Briefly, microwell plates
were coated with SARS-CoV-2-derived spike antibody and
incubated with human sera. Antigen detection was performed
Frontiers in Immunology | www.frontiersin.org 14
by incubation with an anti-SARS-CoV-2 spike antibody, followed
by streptavidin-HRP conjugate. Measurement of OD at 450 nm
was performed on the multimode microplate reader TECAN
Infinite M200® PRO.

Plasmatic levels of sC5b-9 and C5a were evaluated using
MicroVue sC5b-9 Plus EIA (Quidel) and MicroVue C5a EIA
(Quidel). Blood was collected in ice-cold EDTA tubes and
immediately centrifuged at 4°C to avoid ex vivo complement
activation. Plasma was quickly separated and frozen at -80°C
until assay.

Endothelial Cell Cultures and
Experimental Design
A large body of the literature reported the use of different types of
immortalized endothelial cell lines to study SARS-CoV-2 infection
(47, 94–96).We chose to study the humanmicrovascular endothelial
cell line of dermal origin (HMEC-1; RRID: CVCL_YJ39), obtained
from Dr Edwin Ades and Francisco J. Candal (Centers for Disease
Control and Prevention) and Dr Thomas Lawley from Emory
University (97). Cells were cultured and validated as described
previously (69). In our setting, HMEC-1, obtained from different
batches,were used at lowpassages (max 20th) in order to retain all the
endothelial functions during culture (69).

For cell viability studies, HMEC-1 were exposed to MCDB
131 medium (Invitrogen) supplemented with 2% Fetal Calf
Serum (FCS, Invitrogen) in the presence or absence of SARS-
CoV-2-derived spike protein 1 (S1) at a concentration of 0.5 nM
(37.5 ng/ml), 10 nM (750 ng/ml), and 50 nM (3750 ng/ml) for
24 h and then a cell count was performed. The S1 used for all the
experiments is a commercially available recombinant SARS-
CoV-2 S1 purified by metal ion affinity chromatography (230-
01101, RayBiotech). The above range of concentrations was
chosen on the basis of previous studies (47, 53, 54).

All the experimental designs are summarized in
Supplementary Figures 7A, B. For the leukocyte adhesion
assay, leukocyte suspensions were incubated for 1h with control
medium or S1 (10 nM) before perfusion on unstimulated or S1-
treated HMEC-1 (24 h, 10 nM). In selected experiments, HMEC-1
were incubated with S1 for 24 h in the presence of anti-ACE2
functional blocking antibody (Ab, 2 mg/ml, Adipogen, AG-20A-
0037PF), anti-ICAM-1 functional blocking Ab (10 mg/ml, Merck,
MAB2146), or the corresponding irrelevant (Irr) Ab (IgG mouse,
Santa Cruz, sc2025) at the proper concentration (2 and 10 mg/ml)
1 h before S1 incubation (Supplementary Figure 7A). In
additional experiments, HMEC-1 were incubated with 1 mM
C3a (A118, Complement Technology; for 4 h) or 50 pM Shiga
Toxin 2 (Stx2, for 24 h) – used here as a positive control (98) –
before leukocyte perfusion.

For immunofluorescence studies, HMEC-1 were incubated
for 24h with control medium or S1 (10 nM) in the presence or
absence of anti-ACE2 Ab (2 mg/ml, Adipogen) or the
corresponding Irr Ab (IgG mouse, Santa Cruz). In additional
experiments, after 24 h incubation with control medium or S1,
cells were exposed for 2 hours to a pool of human serum from
healthy donors (HS) diluted 1:2 with test medium (HBSS with
0.5% BSA) in the presence or in the absence of compstatin (100
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µM, Tocris bioscience, 2585/1) to block the complement
component C3, or complement inhibitor 1 (36 µg/ml, Merck,
SRP3318) to block the classical complement pathway. In this
setting, the addition of a C3a receptor antagonist (1 µM, Merck,
559410) or a C5a receptor antagonist (10 µM, Merck, 234415)
were tested (Supplementary Figure 7B). In additional samples,
AMPK activator, 5-aminoimidazole-4-carboxamide-1-b-D-
ribofuranoside (AICAR, Toronto Research Chemicals Inc,
A611700) was used at a concentration of 2 mM.

For the analysis of vWF localization, HMEC-1 were stained
with 1 mM cell tracker green CMFDA (Life Technology, C7025)
for 30 minutes at 37°C at the end of incubation with control
medium or 10 nM S1.

For the platelet adhesion assay under flow conditions,
HMEC-1 were incubated for 24h with control medium or S1
(10 nM) before blood perfusion. In additional experiments, after
24h of incubation with medium or S1, HMEC-1 were exposed for
2 hours to HS diluted 1:2 in the presence or in the absence of
anti-ACE2 Ab (2 mg/ml, Adipogen) or the corresponding Irr Ab
(IgG mouse, Santa Cruz), or C3 inhibitor compstatin (100 µM,
Tocris bioscience). In this setting, a C3a receptor antagonist (1
µM, Merck) or a C5a receptor antagonist (10 µM, Merck) were
also added in HS diluted 1:2.

Human primary pulmonary microvascular endothelial cells
(HPMEC; Lonza, CC-2527) were grown in EGM™-2 MV
Microvascular Endothelial Cell Growth Medium-2 BulletKit™

(Lonza, CC-3202) following the manufacturers’ instructions.
According to the manufacturer’s validation, HPMEC express
CD31/105, von Willebrand Factor VIII, are positive for acetylated
low density lipoprotein uptake, and are PECAM positive. HPMEC
were incubated with S1 at a concentration of 10 nM for 24h in the
presence or absence of 2 mg/ml anti-ACE2 Ab or 2 mM AICAR.

As a positive control for the determination of S1 binding and
ACE2 expression, Vero CCL-81 cells (ATCC, CCL-81; RRID:
CVCL_0059) were cultured in Eagle’s minimal essential medium
(EMEM, Sigma-Aldrich) supplemented with 10% heat-
inactivated fetal bovine serum (FBS) and 1% penicillin/
streptomycin (P/S, Invitrogen).

Crystal Violet Viability Assay
HMEC-1 were seeded 10000 cells/well in 96-well plates in
MCDB 131 in the presence of 2% FCS and, when confluent,
were exposed for 24 h to different concentrations of S1 (0.5 nM,
10 nM and 50 nM). At the end of incubation, cells were fixed and
stained with 0.5% crystal violet in 20% methanol. The stain was
eluted with a 1:1 solution of ethanol and 0.1M sodium citrate, the
absorbance was measured at 595 nm on the multimode
microplate reader (Victor3, 1420 Multilabel counter,
PerkinElmer). Cell viability was evaluated as live cells stained
with crystal violet after subtraction of baseline absorbance. Data
are expressed as percentage of viable cells.

Leukocyte Adhesion Assay Under
Physiologic Flow Conditions
Leukocytes were isolated from blood collected on EDTA (final
concentration 5 mmol/L) as we previously described (98). For
adhesion experiments, we used a parallel-plate flow chamber
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connected to a perfusion system (98). HMEC-1 slides were
flowed with leukocyte suspension (106 cells/ml) with a shear
stress of 1.5 dynes/cm2 to reproduce the circulation of post-
capillary venules for 10 minutes (98). Images of adhering
leukocytes on the HMEC-1 surface were acquired during the
perfusion experiments, digitized, and processed using Image J
software. The number of adherent leukocytes was determined on
a series of 16 consecutive images. Adherent leukocytes were
identified and counted at the end of the 10 min perfusion (98).

Platelet Adhesion Assay Under
Flow Conditions
Perfusion of heparinized whole blood (10 UI/ml) obtained from
healthy subjects (prelabelled with the fluorescent dye mepacrine,
10 mM) was performed in a flow chamber at 60 dynes/cm2, as
encountered in the microvasculature (59, 69). After 3 min of
perfusion, the endothelial cell monolayer was fixed in acetone.
Fifteen fields – systematically digitalized per sample of platelets,
deposited along the endothelial surface – were acquired using an
inverted confocal laser microscope (Leica TCS SP8, Leica
Microsystems), and areas occupied by platelet aggregates were
evaluated using Image J software and expressed as pixel2 per field
analysed. For each sample, after excluding the lowest and the
highest value, the mean was calculated based on the remaining
13 fields.

Immunofluorescence Analysis
The slides were fixed with 3% paraformaldehyde (Società Italiana
Chimici). After blocking, cells were incubated with the specific
antibodies: mouse anti-SARS-CoV-2 RBD (1:1000, Abcam,
ab277624), mouse anti-P-selectin (1:10, R&D Systems, BBA30),
mouse-anti ICAM-1 (1:100, Merck, MAB2146), FITC-conjugated
rabbit anti-C3c-complement (1:300, Dako, F0201), rabbit anti-
complement C5b9 complex (1:200, Calbiochem, 204903), rabbit
anti-vWF (10 mg/ml, Dako, A0082), mouse anti-thrombomodulin
(1:50, R&D Systems, MAB3947) followed by the corresponding
secondary antibodies (Jackson ImmunoResearch Laboratories).
Nuclei were counterstained with 4’,6-diamidino-2-phenylindole
(DAPI, Sigma-Aldrich). Digital images were acquired using an
inverted confocal laser microscope (Leica TCS SP8) or ApoTome
Axio Imager Z2 (Zeiss).

The quantification of S1 deposition on endothelial cells was
performed by analysing 10 fields/sample using Image J software
and expressed as the area covered by the fluorescence per cell
number (pixel2/cell).

The quantification of endothelial P-selectin and ICAM-1
stainings was performed by analysing 10 fields/sample using
Image J software and expressed as the area covered by the
fluorescence per cell number (pixel2/cell).

For C3, and C5b-9, fifteen fields, systematically digitized along
the surface, were acquired using a computer-based image analysis
system. The area occupied by the fluorescent stainingwas evaluated
by automatic edge detection, using built-in specific functions of
Image J software andexpressed aspixel2perfield analysed. vWFwas
quantifiedas above and expressedaspixel2per cell. For each sample,
after excluding the lowest and the highest values, the mean was
calculated on the remaining 13 fields.
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NET formation, at the end of the leukocyte adhesion assay,
was studied on HMEC-1 fixed with 3% paraformaldehyde, and
permeabilised with 0.1% Triton X-100 (Sigma-Aldrich, T8787).
After blocking, cells were incubated with rabbit anti-Histone H3
(citrulline R2+R8 R17, 1:100, Abcam, ab5103) and mouse anti-
Neutrophil Elastase (1:100, Abcam, ab254178), followed by the
corresponding secondary antibodies. Nuclei were counterstained
with DAPI.

Protein Extraction and Western
Blot Analysis
HMEC-1, Vero CCL-81, and HPMEC were sonicated in CelLytic
M (Sigma-Aldrich, C2978) supplemented with protease inhibitor
cocktail (Sigma-Aldrich, P8340). Following centrifugation at
16000xg for 10 minutes at 4°C, lysates were collected and total
protein concentration was determined using DC™ assay (Bio-
Rad Laboratories, 5000112).

Equal amounts of proteins (30 mg) were separated on 12% SDS-
PAGE under reducing conditions and transferred to nitrocellulose
membranes (Bio-Rad Laboratories). After blockingwith 5% bovine
serum albumin (BSA) in Tris-buffered saline (TBS) supplemented
with 0.1% Tween-20, membranes were incubated overnight at 4°C
with the following antibodies: rabbit anti-ACE2 (1:1000; abcam,
ab272500), rabbit anti-phospho AMPKa Thr172 (1:1000; Cell
signaling, 2531), and rabbit anti-AMPKa (1:1000; Cell signaling,
2532). Mouse anti-GAPDH (1:5000; Origene Technologies,
TA802519) was used as sample-loading control. The signals were
visualised on an Odyssey®FC Imaging System (LiCor) by infrared
(IR) fluorescence using a secondary goat anti-rabbit IRDye 680LT
antibody (1:1000; LiCor, FE3680210) and a goat anti-mouse IRDye
800CW (1:1000; LiCor, FE30926210). Bands were quantified
through densitometry using the Image Studio Lite 5.0
(LiCor) software.

Statistical Analysis
For studies in human subjects, data were expressed as mean ±
standard deviation (SD) or as number of patients (%).
Comparisons of binary characteristics in positive vs negative
participants were performed using the chi-squared test, while age
and continuous levels were compared with unpaired t-test. All
analyses were carried out using SAS (Version 9.4). All p-values
were 2-sided.

For in vitro studies, all experiments were performed in at least
three distinct biological samples (15 replicates for each sample).
Data arepresentedas themean± standard errorof themean (SEM).
Data analysis was performed using Prism Software (GraphPad
Software Inc). Comparisons were made using unpaired t-test or
ANOVA with Tukey post hoc test, as appropriate. Normality
assumption was verified with the Shapiro-Wilk test. Statistical
significance was defined as p-value<0.05.
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